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The heart of technologies of the future are based on our ability to control quantum

system and designing very small quantum devices. Currently, controlling and pro-

against decoherence effects

both theoretical and experimentalists. To protect a quantum system against deco-

hering effects, for example, we can use protocols for speeding up quantum dynamics.

In contrast, high speed quantum dynamics requests robust protocols against sys-

tematic errors, i.e., uncontrollable deviations in the fields parameters used to drive

the system. For this reason, techniques for implementing robust and fast quantum

dynamics has woke up interest in recent years.

For instance, we can consider shortcuts to adiabatic dynamics [1, 2, 3] and in-

verse quantum engineering [4] as two protocols for speeding up quantum tasks.

Hamiltonian inverse quantum engineering (HIQE) is a useful technique to design

Hamiltonians able to perform a desired dynamics. In particular, we could highlight

the application o HIQE for implementing fast and robust quantum gates neces-

sary for quantum information processing [5]. However, we can find many others

interesting applications of both HIQE and shortcuts to adiabaticity techniques, for

example in fast transfer/inversion population in nitrogen-vacancy systems [6], in

Rydberg atoms [7] and trapped ions [8], as well as applications in two level systems

coupled to decohering reservoirs [9, 10, 11, 12], quantum computation [13, 14, 15, 16],

thermal machines [17, 18, 19, 20] and others [ ].

I. Introduction

In this paper we will use HIQE, where no shortcut to adiabaticity is performed,

large class of two-level system Hamiltonians able to drive

a quantum system from input state | inp〉 to an output one | our〉, where | our〉
is output of some quantum algorithm (in our case, Deutsch and Grover’s algo-

rithm output state). In particular we design Hamiltonians associated to Deutsch
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and Grover’s algorithm. Remarkable we show how HIQE allow us to obtain feasible

and time-independent Hamiltonians for implementing such algorithm.

When we start our studies on quantum mechanics, we learn that the dynamics of a

quantum system is dictated by Schrdinger equation

(1)

where H(t) is the Hamiltonian of the system. From this equation, our aim is to solve

it in order to find the evolved state | (t)〉 of the system. Thus, given a Hamiltonian

H(t), the problem is to determinate how our system evolves. If we are interested

to find a dynamics in particular, obviously we need to solve the above equation for

many Hamiltonians until obtaining the desired dynamics. However, sometimes this

can be a very hard task, so that we can use HIQE in order to solve this problem.

We can think about HIQE as a method for obtaining Hamiltonians able to drive

a quantum system from a input state | (0)〉 to a target state | (τ)〉 through a path

| (t)〉. So, given an evolved state | (t)〉, we can use HIQE for finding the Hamilto-

nian H(t) ables to perform this dynamics. In fact, let us write | (t)〉 = U(t)| (0)〉,
where U(t) is a known unitary quantum operator called evolution operator, we can

show that the Hamiltonian H(t) associated with U(t) is obtained from equation

[4, 22, 23]

H(t) = i~U̇(t)U †(t). (2)

The operator U(t) has been considered in literature with different proposals.

Furthermore, in this paper we are interested in a particular definition of the operator

U(t) as discussed in Ref. [5], where U(t) is written as

U(t) =
∑

n
eiϕn(t)|φn(t)〉〈φn(t)|, (3)

where |φn(t)〉 constitutes an orthonormal bases for the Hilbert space associated with

the system and ϕn(t) are real free parameters. We can see that U(t) satisfies the

unitarity condition U(t)U †(t) = 1, for any set of parameters ϕn(t), and it satisfies

the initial condition U(0) = 1 if we impose initial conditions for the parameters

ϕn(t) given by ϕn(0) = 2mπ for m ∈ Z. As it was showed in Ref. [5], from the

operator defined in Eq. (3) we can find Hamiltonians able to implement quantum

gates.

It is important to highlight that we can implement quantum gates from others

approaches of HIQE and definitions of the operator U(t). But, as it was discussed

in Ref. [5], these others protocols request physical system with dimension d ≥ 4,

two-qubit interaction and auxiliary qubits. For example, a good definition of the

operator U(t) has been considered in Ref. [7], where additional free parameters

can be used for providing experimentally feasible Hamiltonians. However, if we use

such method for implement single-quantum gates, for example, we need four-level

system. On the other hand, by using the operator in Eq. (3), such gate can be

performed in two-level systems. For this reason, we will consider the definition in

Eq. (3) throughout this paper.

Let us consider an arbitrary input state | (0)〉 = a|0〉 + b|1〉, where without less

of generality we put a ∈ R and b ∈ C. If we let the system evolves through the

operator U(t) from Eq. (3), with ϕ1(t) = 0, ϕ2(t) = ϕ(t) and

II. Hamiltonian Inverse Quantum Engineering (HIQE)

a) Implementing single-qubit quantum gates by HIQE
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|φ1(t)〉 = cos[θ(t)/2]|0〉+ eiΩ(t) sin[θ(t)/2]|1〉, (4a)

|φ2(t)〉 = − sin[θ(t)/2]|0〉+ eiΩ(t) cos[θ(t)/2]|1〉, (4b)

with θ(t) and Ω(t) being real free parameters, at time t > 0 the evolved state | (t)〉
will be given by

| (t)〉= U1(t)| inp〉 = α(t)|0〉+ β(t)|1〉, (5)

where the coefficients α(t) and β(t) are given, respectively by

α(t) =
aσ+(t)− σ−(t)α̃(t)

2
, β(t) =

bσ+(t) + σ−(t)β̃(t)

2
, (6)

where we define σ±(t) = (eiϕ(t) ± 1), α̃(t) = a cos θ(t) + be−iφ(t) sin θ(t) and β̃(t) =

b cos θ(t) − aeiφ(t) sin θ(t). Thus, we can associate the parameters θ(t), ϕ(t) and

Ω(t) with an arbitrary rotation of a single-qubit state in Bloch sphere [5], i.e., an

arbitrary quantum gate.

The Hamiltonian that evolves the system as in Eq. (5) is obtained from Eq. (2)

and it can be written as

H1(t) =
1

2
[ωx(t)σx + ωy(t)σy + ωz(t)σz] , (7)

where

ωx(t) = (cosϕ− 1)Ω̇ cos Ω cos θ sin θ + (θ̇ cos θ sinϕ+ ϕ̇ sin θ) cos Ω

+ [Ω̇ sin θ sinϕ+ (cosϕ− 1)θ̇] sin Ω, (8a)

ωy(t) = (cosϕ− 1)Ω̇ sin Ω sin θ cos θ + sin Ω(θ̇ cos θ sinϕ+ ϕ̇ sin θ)

+ [Ω̇ sin θ sinϕ− (cosϕ− 1)θ̇] cos Ω, (8b)

ωz(t) = −θ̇ sin θ sinϕ− (cosϕ− 1)Ω̇ sin2 θ + ϕ̇ cos θ. (8c)

In general, there are systems y -component of the Hamiltonian in Eq.
(7) can be hard to implement. For instance, in systems composed by Bose-Einstein

condensates in optical lattices [24] and some superconducting circuits [25, 26, 27, 28].

Remarkably, by using our approach we can choose the parameters θ(t), ϕ(t) and

Ω(t) so that ωy(t) = 0. In fact, without loss generality we can put Ω(t) = 0 and

θ(t) = θ0 = cte, so that ωx(t) = sin(θ0)ϕ̇(t), ωy(t) = 0 and ωz(t) = cos(θ0)ϕ̇(t). In

conclusion, an arbitrary single-qubit gate can be implemented without two qubit

interaction and no additional resource. By using concrete examples (algorithm), in

the next sections we will show how we can adequately choose these parameters.

Quantum Information Processing Via Hamiltonian Inverse Quantum Engineering
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(a) Schematic representation of the Deutsch’s circuit. (b) Circuit and schematic represen-

tation of two-level system associated to alternative approach presented in this paper
Fig. 1:

  

(a) Deutsch’s circuit

  

(b) Alternative to Deutsch’s circuit

or balanced. How can we show if f(x) is constant or balanced? In 1980’s, David

Deutsch proposed an quantum algorithm to solve this problem [29], called Deutsch’s

algorithm. The Deutsch’s algorithm can be implemented by using a quantum circuit

composed by three (or four, optional) Hadamard gates and an oracle O that satisfies

O|n〉|m〉 = |n〉|n ⊕f(m)〉, as shown in Fig. 1a. In addition, we need two qubits: the

register qubit, that will be read after circuit action, and an auxiliary qubit, that
can be discarded.

As we said previous, we are interested to show how we can use HIQE for imple-

menting the Deutsch’s algorithm. Different from Ref. [5], here we will not provide

Hamiltonians to simulate the quantum gates of the circuit in Fig. 1a. We are inter-

ested to consider a protocol in which the Deutsch’s algorithm can be implemented
through an alternative approach. As a first consequence of the our approach, as

shown in Fig. 1b, our scheme is composed by a single-qubit instead two ones. We
can think about others approach where we could implement the Deutsch’s algorithm

using a single-qubit, for example, adiabatic quantum Deutsch’s algorithm [30]. Let

us describe how our protocol works.
Without loss of generality, we consider that the qubit used in our scheme is

initialized in state | 0〉 (eigenstate of the σz Pauli operator with eigenvalue +1). So,

we implement an Hadamard gate for obtaining

the Hadamard gate is implemented by using the Hamiltonian in Eq. (7), where the
simplest Hamiltonian for such operation is written as [5]

(9)

where ϕ(t) satisfies ϕ(τ ) = π . The above Hamiltonian is a Landau-Zener type

Hamiltonian and it can be experimentally projected by using quantum dots [31],
trapped ion [32] or nuclear magnetic resonance [33], for example.

The Deutsch’s algorithm is a quantum algorithm used to solve the following prob-

lem: Given a function f(x) : {0, 1} → {0, 1}, where f (x) is promised to be constant

III. Deutsch's Algorithm with Inverse
Quantum Engineering

Once we are using a different approach of the Deutsch’s algorithm, here we need
to define another oracle. In particular we will define the oracle as in Refs. [30,34],

where we have . The evolution operator UO′(t) used to provide

the correct output associate to oracle O′ is given by Eq. (3),

by Eq. (4). The initial state of this second step of the protocol is | +〉, so that the

evolved state | 2(t)〉 = UO′(t) | +〉 will be

with the vectors given

| 2(t)〉

(10)

ψ

ψ

HHad(t) =
ϕ̇(t)

2
√

2
σz +

ϕ̇(t)

2
√

2
σx,

=
1

2
√

2

[
eiϕ1 + eiϕ2 −

(
eiϕ1 − eiϕ2

) (
cos θ + eiΩ sin θ

)]
|0〉

+
1

2
√

2

[
eiϕ1 + eiϕ2 +

(
eiϕ1 − eiϕ2

) (
eiΩ cos θ − sin θ

)]
|1〉,

O′|n〉 = (−1)f(n)|n〉

|+〉 = (|0〉 + |1〉)/
√

2. In this step,



 
 

 
 

 
 
 
 
 
 
 
 
 
 

therefore, it is easy to show that if we choose the parameters Ω(t) and θ(t) so that

Ω(τ) = 0 and θ(τ) = π, the output can be written as

| 2(τ)〉 =
1√
2

[
eiϕ1(τ)|0〉+ eiϕ2(τ)|1〉

]
, (11)

where we can use ϕ1(t) and ϕ2(t) to encode the function f : {0, 1} → {0, 1} as

ϕ1(τ) = πf(0) and ϕ2(τ) = πf(1). Now, by using that eiπf(n) = (−1)f(n), we can

write

| 2(τ)〉 =
1√
2

[
(−1)f(0)|0〉+ (−1)f(1)|1〉

]
. (12)

their time-dependence. Hence, as previous discussed, we can use this fact to provide

feasible Hamiltonians. Firstly, we choose ϕ1(t) = πf(0) and ϕ2(t) = πf(1), and

from Eq. (2) we get the oracle Hamiltonian HO′(t) as in Eq. (7) where

(13a)

(13b)

(13c)

where . Therefore, we can adjust the functions Ω(t) and

θ(t) in order to obtain the simplest Hamiltonian. For example, because the Ω(t) and

θ(t) needs to satisfy Ω(τ) = 0 and θ(τ ) = π, we can put Ω(t) = 0 and θ(t) = πt/τ.

In this case we get the time-independent Hamiltonian

HO′ =
~
τ

sin2 Fπ

2
.

(14)

It is important to highlight the role of F above. Note that if we have a constant

function, so F = 0, hence HO′ = 0. But this is not a problem of the theory, it is a

trivial result of the protocol. In fact, since the input state of the second step is |+〉,
an oracle associated with a constant f can be simulated without any dynamics.

It is important to mention that the information about f should be encoded in

the Hamiltonian. In addition, such result is not a particular characteristic of our

approach, it is also present in adiabatic version of the Deutsch’s algorithm [30].

To discuss about the last step of the protocol, we need to choose basis in which we

will perform the measurement. If we want to measure the system in computational
basis {|0〉, | 1〉}, we need to apply a Hadamard gate. If we will measure the state in

σx basis, |±〉 = ( | 0〉 ± |1〉)/
√

2, no additional Hadamard gate need to be applied.

In fact, let us consider the measurement in basis |±〉, by rewriting | 2(τ)〉 in such

basis, we get

| 2 (τ )〉 (15)

where the result is if f is constant, otherwise the result is |−〉.

We can note that | 2(τ)〉 is exactly O′ | +〉. Now, we can study the Hamiltonian

that implements this dynamics. We note that the parameters Ω(t), θ(t), ϕ1(t) and

ϕ2(t) should satisfy some boundary conditions, but we have not any condition about

Quantum Information Processing Via Hamiltonian Inverse Quantum Engineering

ψ

ψ

ψ

ψ

ψ

ωx(t) = 2 sin2 Fπ

2

[
Ω̇(t) cos Ω(t) sin θ(t) cos θ(t) + sin Ω(t)θ̇(t)

]
,

ωy(t) = 2 sin2 Fπ

2

[
cos Ω(t)θ̇(t)− Ω̇(t) sin Ω(t) sin θ(t) cos θ(t)

]
,

ωz(t) = 2Ω̇(t) sin2 Fπ

2
sin2 θ(t),

F = (−1)f(0) − (−1)f(1)

| |

                    

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
er

sio
n 

I
V

III
Y
ea

r
20

18

5

  
 

( F
)

© 2018   Global Journals

Ref

=
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To provide a more practical example of a quantum algorithm that can be imple-

mented with this approach, in this section we are interested to provide Hamiltonians

for implementing the search algorithm. This algorithm was devised by Lov Grover

in 1990’s [35, 36], where the problem solved was: given an disordered database with

N entires, one marked element |m〉 can be efficiently found (high probability) by

using quantum mechanics. In his paper, Grover considered an circuit composed by

Hadamard gates and an oracle. Here we will make a different approach, where we will

present Hamiltonians able to simulate such circuit. However, a detailed and good

discussion about the original proposal of Grover’s algorithm (search algorithm) can

be found in Ref. [33].

input state for the Grover’s algorithm as an
n-qubit state |0〉⊗n = |0〉1|0〉2 · · · |0〉n. Thus, the first step is creating a uniform

IV. Search Algorithm with Inverse Quantum Engineering

Quantum Information Processing Via Hamiltonian Inverse Quantum Engineering

In general, we can consider a

to each qubit and we get | 〉 = |+〉⊗n. It is common we represent | 〉 in decimal

basis |k〉 = {|0〉, |1〉, · · · , |N − 1〉}, where N = 2n and each state |k〉 represents

|0〉 = |0〉⊗n, |1〉 = |0〉⊗n−1|1〉, |2〉 = |0〉⊗n−2|1〉|0〉, |3〉 = |0〉⊗n−2|1〉|1〉 and so on.

Therefore, the state | 〉 is written as

distribution of all element of the disordered list, where we apply the Hadamard gate

| inp〉 =
1√
N

N−1∑
k=0

|k〉. (16)

From this representation, we can map our n-qubit system into a hypothetic

single-qubit system. Such mapping provide us a simple way to treat our study and

it is used in others situations [33, 37, 38]. Based on this representation, we can write

the state in Eq. (16) as

| Grov
inp 〉 =

√
N − 1√
N
|m⊥〉+

1√
N
|m〉. (17)

where we define the marked state |m〉 and |m⊥〉, with |m⊥〉 being composed by

a uniform combination of all unmarked state, i.e., |m⊥〉 = (1/
√
N − 1)

∑
m6=k |k〉.

Thus, if we perform a measurement on the system, the probability pm of obtaining

|m〉 is pm = 1/N , so that for N � 1, we have pm � 1. To obtain an efficient

protocol we need to drive | Grov
inp 〉 to another state | out〉 in which pout

m ≈ 1.

To give a geometric representation of how our scheme works, consider the Fig.

2. We define the parameter α such that cosα =
√

(N − 1)/N , in this case we get

| Grov
inp 〉 = cosα|m⊥〉+ sinα|m〉, (18)

From Fig. 2 we can note that if we want to obtain an output state | Grov
out 〉 with

pout
m > pm, we should drive the system from | Grov

inp 〉 to

| Grov
out 〉 = cosαout|m⊥〉+ sinαout|m〉, (19)

where αout > α. From definition of the parameter α in Eq. (18), we can see that

α ≈ 0, therefore, for getting pout
m ≈ 1, we should be able to achieve αout ≈ π/2.

We can show that our approach allow us to achieve this task by using the

evolution operator U(t) given in Eq. (3). In fact, by writing U(t) in basis {|m〉, |m⊥〉}
with

|φ1(t)〉 = cos[θ(t)/2]|m⊥〉+ eiΩ(t) sin[θ(t)/2]|m〉, (20a)

ψ ψ

ψ
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Geometrical representation of the bi-dimensional Grover’s algorithm mapping

|φ2(t)〉 = − sin[θ(t)/2]|m⊥〉+ eiΩ(t) cos[θ(t)/2]|m〉, (20b)

Fig. 2 :

and by choosing ϕ1(t) = 0, ϕ2(t) = ϕ(t) and Ω(t) = 0, we get the evolved state

Quantum Information Processing Via Hamiltonian Inverse Quantum Engineering

Remarkably, note that if we impose | Grov(τ)〉 = | Grov
out 〉, the parameter ϕ(t) in

above equation could be picked so that ϕ(τ) = π, and the final state | Grov(τ)〉 is

written as in Eq. (19), where αout = α−θ(τ). To end, by computing the probability

pout
m we find pout

m = sin2[α − θ(τ)]. Our result shows that there are infinity choices

of θ(τ) where pout
m ≈ 1. More specifically, by imposing sin2[α− θ(τ)] ≈ 1, we find

θ(τ) ≈ (n+ 1/2)π + α =

(
a+

1

2

)
π + arccos

[√
(N − 1)/N

]
, (22)

for any integer a. Moreover, in limit N → ∞ we have θ(τ) → (a+ 1/2)π, where

θ(τ), as well as θ(t), is independent on the number of elements of the database. This

result shows that we are able to implement the Grover algorithm with an arbitrary

probability 1−ε2 from a careful choice of the parameter θ(τ). In fact, by taking pout
m

around α− θ(τ) ≈ π/2, we get pout
m = 1− [α− θ(τ)− π/2]

2
, where we can identify

ε = α− θ(τ)− π/2.

To find the Hamiltonian, we start from Eq. (2). We can show that, in basis

{|m〉, |m⊥〉}, the Hamiltonian is written as in Eq. (7) with

ωx(t) = ϕ̇(t) sin θ(t)− θ̇(t) cos θ(t) sinϕ(t), (23a)

ωy(t) = 2θ̇(t) sin2[ϕ(t)/2], (23b)

ωz(t) = ϕ̇(t) cos θ(t)− θ̇(t) sin θ(t) sinϕ(t), (23c)

where θ(t) needs to satisfy the Eq. (22) and ϕ(t) should satisfy ϕ(0) = 0 and

ϕ(τ) = π. In particular, by putting θ(t) = cte we obtain ωy(t) = 0, but now we will

not take into account any consideration.

+
1

2

[
(1 + eiϕ(t)) sinα− (1− eiϕ(t)) sin[α− θ(t)]

]
|m〉. (21)

| Grov(t)〉 =
1

2

[
(1 + eiϕ(t)) cosα+ (1− eiϕ(t)) cos[α− θ(t)]

]
|m⊥〉

V. Conclusion

In this paper we have considered the role of Hamiltonian inverse engineering when

we wish to implement quantum algorithm. Since such approach is a robust protocol

against systematic errors [5], such algorithm can be efficiently performed at finite

ψ

ψ ψ

ψ
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time. Remarkably, as we showed, the Grover algorithm can be effectively imple-

mented with arbitrary probability though a single quantum evolution. In addition,

as it can be obtained from others schemes of Grover algorithm [30, 34], no auxil-

iary qubits are required and we can use single qubit analysis (from two-dimensional

Grover’s algorithm version). Since the robustness of our protocol was carefully stud-

ied in the literature [5], we believe that our approach constitutes a robust scheme for

providing high fidelity dynamics and successful implementations of the algorithm

studied in this paper.
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