Selberg Integral Involving the Product of Multivariable Special Functions

By FY. AY. Ant

Abstract- The Selberg integral was an integral first evaluated by Selberg in 1944. The aim of the present paper is to estimate generalized Selberg integral. It involves the product of the general class of multivariable polynomials, multivariable I-function and modified multivariable H-function. The result is believed to be new and is capable of giving a large number of integrals involving a variety of functions and polynomials as its cases. We shall see several corollaries and particular cases at the end.

Keywords: modified multivariable H-function, selberg integral, multivariable I-function, class of multivariable polynomials, h-function.

GJSFR-F Classification: FOR Code: MSC 2010: 33C60, 82C31
Selberg Integral Involving the Product of Multivariable Special Functions

FY. AY. Ant

Abstract: The Selberg integral was an integral first evaluated by Selberg in 1944. The aim of the present paper is to estimate generalized Selberg integral. It involves the product of the general class of multivariable polynomials, multivariable I-function and modified multivariable H-function. The result is believed to be new and is capable of giving a large number of integrals involving a variety of functions and polynomials as its cases. We shall see several corollaries and particular cases at the end.

Keywords: modified multivariable H-function, selberg integral, multivariable I-function, class of multivariable polynomials, h-function.

I. Introduction and Prerequisites.

The Selberg integral is the following integral first evaluated by Selberg [6] in 1944:

\[ S_n(a, b, c) = \int_0^1 \cdots \int_0^1 \prod_{i=1}^{n} x_i^{a_i-1} (1-x_i)^{b_i-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} \, dx_1 \cdots dx_n \]

\[ = \prod_{j=0}^{n-1} \frac{\Gamma(a + jc) \Gamma(b + jc) \Gamma(1 + (j + 1)c)}{\Gamma(a + b + (n - 1 + j)c) \Gamma(1 + c)} \] (1.1)

where \( n \) is a positive integer, \( a, b \) and \( c \) are the complex number such that

\[ Re(a) > 0, Re(b) > 0, Re(c) > Max \left\{ \frac{1}{n}, \frac{Re(a)}{n - 1}, \frac{Re(b)}{n - 1} \right\} \]

We refer the reader to Forrester and Warnaar's exposition [2] for the history and importance of the Selberg integral.

In this document, we evaluate a generalized Selberg integral involving the product of the multivariable I-function defined by Prasad [4], modified multivariable H-function defined by Prasad and Singh [5] and class of multivariable polynomials defined by Srivastava [7].

The generalized multivariable polynomials defined by Srivastava [7], is given in the following manner:

\[ S_{N_1, \ldots, N_v}^{o_m, \ldots, o_m} [y_1, \ldots, y_v] = \sum_{K_1=0}^{[N_1/o_{m_1}]} \cdots \sum_{K_v=0}^{[N_v/o_{m_v}]} \frac{(-1)^{K_1} K_1!}{K_1!} \cdots \frac{(-1)^{K_v} K_v!}{K_v!} A[N_1, K_1; \ldots; N_v, K_v] y_1^{K_1} \cdots y_v^{K_v} \] (1.2)

where \( m_1, \ldots, m_v \) are arbitrary positive integers and the coefficients \( A[N_1, K_1; \ldots; N_v, K_v] \) are constants Real or complex. On suitably specializing the quantities, \( A[N_1, K_1; \ldots; N_v, K_v], S_{N_1, \ldots, N_v}^{m_1, \ldots, m_v} [y_1, \ldots, y_v] \) yields a Number of known polynomials, the
Laguerre polynomials, the Jacobi polynomials, and several other ([10], page. 158-161]. We shall note,

$$a_v = \frac{(-N_1)m_1K_1}{K_1!} \cdots \frac{(-N_v)m_vK_v}{K_v!} A[N_1,K_1,\cdots;N_v,K_v]$$  \hspace{1cm} (1.3)

The multivariable I-function of $r$-variables is defined in term of multiple Mellin-Barnes types integral:

$$I(z_1, z_2, \cdots, z_r) = \int_{\mathcal{L}_1} \cdots \int_{\mathcal{L}_r} \phi(s_1, \cdots, s_r) \prod_{i=1}^r \phi_i(s_i) z_i^s ds_1 \cdots ds_r$$  \hspace{1cm} (1.4)

where

$$\phi_i(s_i) = \frac{\prod_{j=1}^{n(i)} \Gamma(1-a_{j(i)}s_i) \prod_{j=m(i)+1}^{n(i)} \Gamma(1-a_{j(i)}s_i) + \alpha_{j(i)}s_i)}{\prod_{j=m(i)+1}^{n(i)+1} \Gamma(1-b_{j(i)}s_i) \prod_{j=n(i)+1}^{n(i)+1} \Gamma(1-a_{j(i)}s_i) - \alpha_{j(i)}s_i}, \quad i = 1, \cdots, r$$  \hspace{1cm} (1.5)

and

$$\phi(s_1, \cdots, s_r) = \prod_{j=n+1}^{n+1} \Gamma(1-a_{j(i)}s_i) \prod_{j=m+1}^{n} \Gamma(1-a_{j(i)}s_i) \prod_{j=m+1}^{n+1} \Gamma(1-a_{j(i)}s_i) \cdots

\frac{\prod_{j=n+1}^{n+1} \Gamma(1-a_{j(i)}s_i) + \alpha_{j(i)}s_i)}{\prod_{j=m+1}^{n+1} \Gamma(1-b_{j(i)}s_i) \prod_{j=n+1}^{n+1} \Gamma(1-a_{j(i)}s_i) - \alpha_{j(i)}s_i)} \cdots

\frac{1}{\prod_{j=m+1}^{n+1} \Gamma(1-b_{j(i)}s_i) \prod_{j=n+1}^{n+1} \Gamma(1-a_{j(i)}s_i) - \alpha_{j(i)}s_i)}$$  \hspace{1cm} (1.6)

About the above integrals and these existence and convergence conditions, see Prasad [4] for more details. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function. We have:

$$|arg z_i| < \frac{1}{2} \Omega_i \pi,$$ where

$$\Omega_i = \sum_{k=1}^{n(i)} \alpha_k^{(i)} - \sum_{k=m(i)+1}^{n(i)} \alpha_k^{(i)} + \sum_{k=1}^{m(i)} \beta_k^{(i)} - \sum_{k=m(i)+1}^{n(i)} \beta_k^{(i)} + \left( \sum_{k=1}^{n_2} \alpha_{2k}^{(i)} - \sum_{k=n_2+1}^{n} \alpha_{2k}^{(i)} \right) + \cdots$$
where $i = 1, \ldots, r$

The complex numbers $z_i$ are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function. We may establish the asymptotic expansion in the following convenient form:

$$I(z_1, \ldots, z_r) = 0(|z_1|^{\alpha_1}, \ldots, |z_r|^{\alpha_r}), \max(|z_1|, \ldots, |z_r|) \to 0$$

$$I(z_1, \ldots, z_r) = 0(|z_1|^{\beta_1}, \ldots, |z_r|^{\beta_r}), \min(|z_1|, \ldots, |z_r|) \to \infty$$

where $k = 1, \ldots, r$, $\alpha_k = \min(\Re(b_j^{(k)}/\beta_j^{(k)})), j = 1, \ldots, m^{(k)}$ and $\beta_k = \max(\Re((a_j^{(k)})^{(k)})/\alpha_j^{(k)}), j = 1, \ldots, n^{(k)}$

If all the poles of (1.7) are simples, then the integral (1.6) can be evaluated with the help of the residue theorem to give

$$I(z_1, \ldots, z_r) = \sum_{G_i=1}^{m^{(i)}} \sum_{g_i=0}^{\infty} \phi_i \prod_{i=1}^{r} \frac{\eta_i}{\delta_{g_i}} \prod_{i=1}^{r} \frac{(-)^{\sum_{i=1} g_i}}{g_i!}$$

where

$$\phi = \phi(\eta_{G_1, g_1}, \ldots, \eta_{G_r, g_r}), \phi_i = \phi_i(\eta_{G_1, g_1}), i = 1, \ldots, r$$

$$\eta_{G_i, g_i} = \frac{d_i^{(i)} + G_i}{\delta_{g_i}}$$

which is valid under the following conditions: $\epsilon_j^{(i), (i)} p_j^{(i)} + p_j^{(i)} \neq \epsilon_j^{(i), (i)} p_j^{(i)} + g_j^{(i)}$, $\phi_i$ and $\phi$ are are given by (1.5) and (1.6) respectively.

The modified H-function studied by Prasad and Singh [5] generalizes the multivariable H-function defined by Srivastava and Panda [8,9]. It is defined in term of multiple Mellin-Barnes types integral:

$$H(z_1^{'}, \ldots, z_s^{'}) = H_{m,n,p,q}: \left( \begin{array}{c} z_1^{'} \\ \vdots \\ z_s^{'} \end{array} \right) = (a_j^{(1)}, \ldots, a_j^{(s)})_{1,p}: \left( \begin{array}{c} c_j^{(1)}, \gamma_j^{(1)} \\ \vdots \\ c_j^{(s)}, \gamma_j^{(s)} \end{array} \right)_{1,q}:$$

$$\left( \begin{array}{c} \alpha_j^{(1)} \\ \vdots \\ \alpha_j^{(s)} \end{array} \right)_{1,p}: \left( \begin{array}{c} \beta_j^{(1)} \\ \vdots \\ \beta_j^{(s)} \end{array} \right)_{1,q}:$$

$$= \frac{1}{(2\pi \omega)^s} \int_{L_1} \cdots \int_{L_s} \theta(t_1, \ldots, t_s) \prod_{i=1}^{s} \theta_i(t_i) z_i^{\omega} dt_1 \cdots dt_s$$

where \( \theta(t_1, \cdots, t_s), \theta_i(t_i), i = 1, \cdots, s \) are given by:

\[
\theta(t_1, \cdots, t_s) = \frac{\prod_{j=1}^{m} \Gamma(b_j - \sum_{i=1}^{s} \beta_j^{(i)} t_i) \prod_{j=1}^{n} \Gamma \left( 1 - a_j + \sum_{i=1}^{s} \alpha_j^{(i)} t_i \right)}{\prod_{j=n+1}^{p} \Gamma \left( a_j - \sum_{i=1}^{s} \alpha_j^{(i)} t_i \right) \prod_{j=m+1}^{q} \Gamma \left( 1 - b_j + \sum_{i=1}^{s} \beta_j^{(i)} t_j \right)}
\]

\[
\theta_i(t_i) = \frac{\prod_{j=1}^{m} \Gamma(c_j + \sum_{i=1}^{s} u_j^{(i)} g_j^{(i)} t_i)}{\prod_{j=1}^{p} \Gamma(t_j + \sum_{i=1}^{s} U_j^{(i)} f_j^{(i)} t_i)}
\]

The integrals (1.14) converges absolutely if

\[
|arg z_i| < \frac{1}{2} U_i \pi \quad (i = 1, \cdots, s)
\]

with

\[
U_i = \sum_{j=1}^{m} \beta_j^{(i)} - \sum_{j=m+1}^{q} \beta_j^{(i)} + \sum_{j=1}^{n} \alpha_j^{(i)} - \sum_{j=n+1}^{p} \alpha_j^{(i)} + \sum_{j=1}^{m} \delta_j^{(i)} - \sum_{j=m+1}^{q} \delta_j^{(i)} + \sum_{j=1}^{n} \gamma_j^{(i)} - \sum_{j=n+1}^{p} \gamma_j^{(i)} + \sum_{j=1}^{R} g_j^{(i)} - \sum_{j=1}^{R} f_j^{(i)} > 0 (i = 1, \cdots, s)
\]

For more details, see Prasad and Singh [5].

\section{Required Integral}

We have the following integrals, see Andrew and R. Askey for more details ([1], p. 402).

\begin{equation}
\int_{0}^{1} \cdots \prod_{i=1}^{k} x_i \prod_{i=1}^{n} x_i^{a-1} (1-x_i)^{b-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^2 \prod_{i=1}^{k} \frac{(a+(n-i)c)}{(a+b+(2n-i-1)c)} S_n(a, b, c)
\end{equation}

Where \( Re(a) > 0, Re(b) > 0, Re(c) > Max \left\{ -\frac{1}{n}, -\frac{Re(a)}{n-1}, -\frac{Re(b)}{n-1} \right\} \) and \( k \leq n. S_n(a, b, c) \) is defined by (1.1).

\section{Main Integral}

Let

\begin{equation}
X_{u,v,w}(x_1, \cdots, x_n) = \prod_{i=1}^{n} x_i^{u} (1-x_i)^{v} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2w}
\end{equation}

\begin{equation}
X = m_1, n_1; \cdots; m_s, n_s
\end{equation}

\begin{equation}
Y = p_1, q_1; \cdots; p_s, q_s
\end{equation}
In this section, we establish the general Selberg integral about the product of a class of multivariable polynomials, multivariable I-function and modified H-function of several variables.

**Theorem.**

\[
\int_0^1 \cdots \int_0^1 \prod_{i=1}^k x_i \prod_{i=1}^n x_i^{s-1} (1-x_i)^{h-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} S_{N_1, \ldots, N_n}^{m_1, \ldots, m_n} \left( y_1 X_{\alpha_1, \beta_1, \gamma_1}(x_1, \ldots, x_n) \right) \cdots \left( y_n X_{\alpha_n, \beta_n, \gamma_n}(x_1, \ldots, x_n) \right) \frac{dz_1 \cdots dz_n}{z_1 \cdots z_n} = \\
H_{m,n+2k+2n+2;R,X}^{p+2n+2k,q+2n+2k;R,Y} \left( z_1', \ldots, z_n' \right) \left[ A_1, A_2, A_3, A_4, A_5, A : C \right) \\
\left[ B_1, B_2, B_3, B_4 : D \right)
\]

where

\[
A_1 = \left[ 1 - a - \sum_{i=1}^v K_i \alpha_i - \sum_{i=1}^r \eta_i \gamma_i, \delta_i - j(c + \sum_{i=1}^v \gamma_i K_i + \sum_{i=1}^r \phi_i \eta_i, \gamma_i); \epsilon_1 + j \zeta_1, \ldots, \epsilon_s + j \zeta_s \right]_{0,n-1}
\]

\[
A_2 = \left[ 1 - b - \sum_{i=1}^v K_i \beta_i - \sum_{i=1}^r \eta_i \gamma_i, \delta_i - j(c + \sum_{i=1}^v \gamma_i K_i + \sum_{i=1}^r \phi_i \eta_i, \gamma_i); \eta_1 + j \zeta_1, \ldots, \eta_s + j \zeta_s \right]_{0,n-1}
\]

\[
A_3 = \left[ -j(c + \sum_{i=1}^v \gamma_i K_i + \sum_{i=1}^r \phi_i \eta_i, \gamma_i); j \zeta_1, \ldots, j \zeta_s \right]_{1,n}
\]

\[
A_4 = \left[ -a - \sum_{i=1}^v K_i \alpha_i - \sum_{i=1}^r \eta_i \gamma_i, \delta_i - (n - j)(c + \sum_{i=1}^v \gamma_i K_i + \sum_{i=1}^r \phi_i \eta_i, \gamma_i); \right.
\]

\[
\epsilon_1 + (n - j) \zeta_1, \ldots, \epsilon_s + (n - j) \zeta_s \right]_{1,k}
\]

\[
A_5 = \left[ 1 - a - b - \sum_{i=1}^v K_i (\alpha_i + \beta_i) - \sum_{j=1}^r \eta_j \gamma_j, \delta_j + \psi_j - (2n - j - 1)(c + \sum_{i=1}^v \gamma_i K_i + \sum_{i=1}^r \phi_i \gamma_i, \gamma_i); \right.
\]

\[
\epsilon_1 + (n - j) \zeta_1, \ldots, \epsilon_s + (n - j) \zeta_s \right]_{1,k}
\]
\[ \epsilon_1 + \eta_1 + (2n - j - 1)\zeta_1, \cdots, \epsilon_s + (2n - j - 1)\zeta_s \]_1,k \tag{3.11}

\[ B_1 = \left( -c - \sum_{i=1}^{r} K_i \gamma_i - \sum_{i=1}^{r} \phi_i \eta_{G_i, G_i} ; \zeta_1, \cdots, \zeta_s \right) \cdots \cdots \left( -c - \sum_{i=1}^{r} \gamma_i R_i - \sum_{i=1}^{r} \phi_i \eta_{G_i, G_i} ; \zeta_1, \cdots, \zeta_s \right) \tag{3.12} \]

\[ B_2 = \left[ 1 - a - \sum_{i=1}^{r} K_i \alpha_i - \sum_{i=1}^{r} \eta_{G_i, G_i} \delta_i - (n-j)(c + \sum_{i=1}^{r} \gamma_i K_i + \sum_{i=1}^{r} \phi_i \eta_{G_i, G_i}) \right] \]

\[ \epsilon_1 + (n-j)\zeta_1, \cdots, \epsilon_s + (n-j)\zeta_s \]_1,k \tag{3.13}

\[ B_3 = \left[ -a - b - \sum_{i=1}^{r} K_i (\alpha_i + \beta_i) - \sum_{i=1}^{r} \eta_{G_i, G_i} (\delta_i + \psi_i) - (2n-j-1)(c + \sum_{i=1}^{r} \gamma_i K_i + \sum_{i=1}^{r} \phi_i \eta_{G_i, G_i}) \right] \]

\[ \epsilon_1 + \eta_1 + (2n-j-1)\zeta_1, \cdots, \epsilon_s + \eta_s + (2n-j-1)\zeta_s \]_1,k \tag{3.14}

\[ B_4 = \left[ 1 - a - b - \sum_{i=1}^{r} K_i (\alpha_i + \beta_i) - \sum_{i=1}^{r} \eta_{G_i, G_i} (\delta_i + \psi_j) - (n+j-1)(c + \sum_{i=1}^{r} \gamma_i K_i + \sum_{i=1}^{r} \phi_i \eta_{G_i, G_i}) \right] \]

\[ \epsilon_1 + \eta_1 + (n+j-1)\zeta_1, \cdots, \epsilon_s + \eta_s + (n+j-1)\zeta_s \]_0,\,n-1 \tag{3.15}

Provided

\[ \min \{ \alpha_i, \beta_i, \delta_j, \psi_j, \phi_j, \epsilon_i, \eta_i, \zeta_i \} > 0, \, i = 1, \cdots, v, \, j = 1, \cdots, r, \, l = 1, \cdots, s ; a, b, c \in \mathbb{C} \]

\[ A = \text{Re} \left( a + \sum_{i=1}^{r} \delta_i \eta_{G_i, G_i} \right) + \sum_{i=1}^{s} \epsilon_i \min_{1 \leq j \leq m_i} \text{Re} \left( \frac{d_{ij}^{(i)}}{\delta_{ij}^{(i)}} \right) > 0 \]

\[ B = \text{Re} \left( b + \sum_{i=1}^{r} \psi_i \eta_{G_i, G_i} \right) + \sum_{i=1}^{s} \eta_i \min_{1 \leq j \leq m_i} \text{Re} \left( \frac{d_{ij}^{(i)}}{\delta_{ij}^{(i)}} \right) > 0 \]

\[ C = \text{Re} \left( c + \sum_{i=1}^{r} \phi_i \eta_{G_i, G_i} \right) + \sum_{i=1}^{s} \zeta_i \min_{1 \leq j \leq m_i} \text{Re} \left( \frac{d_{ij}^{(i)}}{\delta_{ij}^{(i)}} \right) > \text{Max} \left\{ -\frac{1}{n}, -\frac{A}{n-1}, -\frac{B}{n-1} \right\} \text{ and } k \leq n. \]

\[ |\text{arg}(z_i X_{3i, \epsilon_i, \phi_i, \epsilon_1, \cdots, x_n})| < \frac{1}{2} \Omega_i \pi, \text{ where } \Omega_i \text{ is defined by (1.7) for } i = 1, \cdots, r \]

\[ |\text{arg}(z_i X_{r, n, \zeta_i, \epsilon_1, \cdots, x_n})| < \frac{1}{2} U_i \pi, \text{ where } U_i \text{ is defined by (1.15) for } i = 1, \cdots, s \]

the multiple series on the left-hand side of (3.6) converges absolutely.

\textbf{Proof}

To evaluate the integrals (3.6), first, we replace the class of multivariable polynomials \( S^{d_{ij}}_{N_i, \cdots, N_s} [\cdot] \) and multivariable I-function occurring on the left-hand side of your integral in term of series with the help of (1.2) and (1.8) Respectively. Now we express the modified multivariable H-function in Mellin-Barnes contour integrals by using (1.11). Nest, we change the order of the \((t_1, \cdots, t_s)\)-integrals and \((x_1, \cdots, x_n)\)-integrals, (which is justified under the conditions stated), we obtain the following result (say L.H.S.):
Now we evaluate the inner \((x_1, \ldots, x_n)\)-integrals with the help of the lemma and reinterpret the Mellin-Barnes contour integrals thus obtained regarding modified \(H\)-function of \(s\)-variables, we arrive at the required result after algebraic manipulations.

### IV. Special Cases

The multivariable polynomial vanishes and the multivariable \(I\)-function reduces to \(H\)-function defined by Fox [3], we obtain:

**Corollary 1.**

\[
\int_0^1 \cdots \int_0^1 \prod_{i=1}^k x_i \prod_{i=1}^n x_i^{a_i-1}(1-x_i)^{b_i-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} H( \ z_1 X_{\eta_1, \phi_1}(x_1, \ldots, x_n) \ )
\]

where

\[
\begin{align*}
L.H.S. &= \sum_{K_1=0}^{N_1/2m_1} \cdots \sum_{K_v=0}^{N_v/2m_v} \sum_{r_i=0}^{m^{(1)}_r} \phi \prod_{i=1}^{m^{(1)}_r} \phi_i x_i^{\eta, \sigma, \phi} (-)^{\sum_{i=1}^{s_i} \sigma_i} \prod_{i=1}^{m^{(1)}_r} \delta_{G_i} \prod_{i=1} \phi_i x_i^{g_i} \\
&= \frac{1}{(2\pi i)^s} \int_{L_1} \cdots \int_{L_s} \theta(t_1, \ldots, t_s) \prod_{i=1}^{s_i} \theta_i(t_i) \frac{\prod_{i=1}^{s_i} \theta_i(t_i) z_i^{\eta, \sigma, \phi}}{\prod_{i=1}^{m^{(1)}_r} \delta_{G_i} \prod_{i=1} \phi_i x_i^{g_i}} \end{align*}
\]

\[
\prod_{i=1}^{n} x_i^{a_i-1} + \sum_{i=1}^{s_i} K_i \alpha_i + \sum_{i=1}^{s_i} \eta_i \alpha_i + \sum_{i=1}^{s_i} \phi_i \alpha_i (1-x_i)^{b_i-1} + \sum_{i=1}^{s_i} \delta_i + \sum_{i=1}^{s_i} \psi_i + \sum_{i=1}^{s_i} \gamma_i t_i
\]

\[
\prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} \left( x_1 X_{\eta_1, \phi_1}(x_1, \ldots, x_n) \right)
\]

\[
H^{m, n}_{p, q} : R^X \rightarrow R^Y
\]

\[
H^{m, n}_{p+3n+2k} : R^X \rightarrow R^Y
\]

\[
\begin{pmatrix}
 z'_1 \\
 A'_1, A'_2, A'_3, A'_4, A'_5, A'_6, A'_7, B'_1, B'_2, B'_3, B'_4
\end{pmatrix} : D
\]

\[
\begin{pmatrix}
 z'_1 \\
 z'_2, B'_2, B'_3, B'_4
\end{pmatrix} : D
\]

Provided

\[ \min(\delta_1, \psi_1, \phi_1, \epsilon_i, \eta_i) > 0, \quad l = 1, \cdots, s; \quad a, b, c \in \mathbb{C} \]

\[ A' = \text{Re} (a + \delta_1 \eta_{G, \sigma}) + \sum_{i=1}^{s} \epsilon_i \min_{1 \leq j \leq m_i} \text{Re} \left( \frac{d_j^{(i)}}{\delta_j^{(i)}} \right) > 0 \]

\[ B' = \text{Re} (b + \psi_1 \eta_{G, \sigma}) + \sum_{i=1}^{s} \eta_i \min_{1 \leq j \leq m_i} \text{Re} \left( \frac{d_j^{(i)}}{\delta_j^{(i)}} \right) > 0 \]

\[ C' = \text{Re} (c + \phi_1 \eta_{G, \sigma}) + \sum_{i=1}^{s} \zeta_i \min_{1 \leq j \leq m_i} \text{Re} \left( \frac{d_j^{(i)}}{\delta_j^{(i)}} \right) > \text{Max} \left\{ -\frac{1}{n}, \frac{A'}{n-1}, \frac{B'}{n-1} \right\} \quad \text{and} \quad k \leq n. \]

\[ |\arg(z_1 X_{\delta_1, \psi_1, \phi_1}(x_1, \cdots, x_n))| < \frac{1}{2} \Omega_1 \pi, \quad \text{where} \quad \Omega_1 = \sum_{k=1}^{n_{(1)}} \alpha_k^{(1)} - \sum_{k=n_{(1)}+1}^{p_{(1)}} \alpha_k^{(1)} + \sum_{k=1}^{m_{(1)}} \beta_k^{(1)} - \sum_{k=m_{(1)}+1}^{q_{(1)}} \beta_k^{(1)} \]

\[ |\arg(z'_i X_{\epsilon_i, \eta_i, \zeta_i}(x_1, \cdots, x_n))| < \frac{1}{2} U_i \pi, \quad \text{where} \quad U_i \text{ is defined by (1.15) for } i = 1, \cdots, s \]

the series on the left-hand side of (4.1) converges absolutely.

Consider the above corollary, now the modified multivariable H-function reduces to H-function of one variable defined by Fox [3], we have.

**Corollary 2.**

\[
\int_0^1 \cdots \int_0^1 \prod_{i=1}^{k} x_i \prod_{i=1}^{n} x_i^{-1}(1-x_i)^{b-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} H\left( z_1 X_{\delta_1, \psi_1, \phi_1}(x_1, \cdots, x_n) \right)
\]
\[ H_{p_1,q_1}^{m_1,n_1}\left( z_1^m X_{e_1,m_1}(x_1, \cdots, x_n) \right) dx_1 \cdots dx_n = \sum_{G=1}^{\infty} \sum_{g=0}^{G} \phi_1 \frac{\eta_1^{m G} (-)^g}{\delta_{GG!} G!} \]

\[ H_{p_1+3n+2k,q_1+2n+2k}^{m_1,n_1+2n+2k} \left( \begin{array}{c} A'_{1}^{n}, A'_{2}^{n}, A'_{3}^{n}, A'_{4}^{n}, A'_{5}^{n}, A'_{6}^{n}, (\epsilon_j^{(1)}, \gamma_j^{(1)})_{1,p_1}, \epsilon_1, \gamma_1 \cdot \\ \cdot \end{array} \right) \]

where

\[ A'_1 = [1 - a - \eta_{G,G} \delta_1 - j(c + \phi_1 \eta_{G,G}); \epsilon_1 + j \zeta_1]_{0,n-1} \]

\[ A'_2 = [1 - b - \eta_{G,G} \psi_1 - j(c + \phi_1 \eta_{G,G}); \eta_1 + j \zeta_1]_{0,n-1} \]

\[ A'_3 = [-j(c + \phi_1 \eta_{G,G}); j \zeta_1]_{1,n} \]

\[ A'_4 = [\eta_{G,G} \delta_1 - (n - j)(c + \phi_1 \eta_{G,G}); \epsilon_1 + (n - j) \zeta_1]_{1,k} \]

\[ A'_5 = [1 - b - \eta_{G,G} \psi_1 -(2n - j - 1)(c + \phi_1 \eta_{G,G}); \epsilon_1 + \eta_1 + (2n - j - 1) \zeta_1]_{1,k} \]

\[ B'_1 = (-c - \phi_1 \eta_{G,G}; \zeta_1),\cdots, (-c - \phi_1 \eta_{G,G}; \zeta_1) \]

\[ B'_2 = [1 - a - \eta_{G,G} \delta_1 - (n - j)(c + \phi_1 \eta_{G,G}); \epsilon_1 + (n - j) \zeta_1]_{1,k} \]

\[ B'_3 = [-a - b - \eta_{G,G} \psi_1 -(2n - j - 1)(c + \phi_1 \eta_{G,G}); \epsilon_1 + \eta_1 + (2n - j - 1) \zeta_1]_{1,k} \]

\[ B'_4 = [1 - a - b - \eta_{G,G} \psi_1 -(n + j - 1)(c + \phi_1 \eta_{G,G}); \epsilon_1 + \eta_1 + (n + j - 1) \zeta_1]_{0,n-1} \]

Provided

\[ \min \{ \delta_1, \psi_1, \phi_1, \epsilon_1, \eta_1, \zeta_1 \} > 0; a, b, c \in \mathbb{C} \]

\[ A'' = \text{Re} \left( a + \psi_1 \eta_{G,G} \right) + \epsilon_1 \min_{1 \leq j \leq m_1} \text{Re} \left( \frac{d_j^{(1)}}{\delta_j^{(1)}} \right) > 0 \]

\[ B'' = \text{Re} \left( b + \psi_1 \eta_{G,G} \right) + \eta_1 \min_{1 \leq j \leq m_1} \text{Re} \left( \frac{d_j^{(1)}}{\delta_j^{(1)}} \right) > 0 \]

\[ C'' = \text{Re} \left( c + \phi_1 \eta_{G,G} \right) + \zeta_1 \min_{1 \leq j \leq m_1} \text{Re} \left( \frac{d_j^{(1)}}{\delta_j^{(1)}} \right) > \max \left\{ -\frac{1}{n}, -\frac{A''}{n-1}, -\frac{B''}{n-1} \right\} \quad \text{and} \quad k \leq n. \]
the series on the left-hand side of (4.11) converges absolutely.

V. Conclusion

In this paper, we have evaluated a general Selberg integral involving the product of an expansion of multivariable I function defined by Prasad [5], modified multivariable H-function defined by Prasad and Singh [6] and class of multivariable polynomials defined by Srivastava [9] with general arguments. The formulae evaluated in this paper are very general nature. Thus, the results established in this research work would serve as a formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

References Références Referencias