

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: D
AGRICULTURE AND VETERINARY
Volume 18 Issue 4 Version 1.0 Year 2018
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Effect of Mycorrhizal Inoculation (VAM) and Phosphorus Levels on Growth and Yield Attributes of Sunflower

By Kalaiyaran C., M. V. Sriramachandrasekharan, S. Jawahar & R. Ramesh

Annamalai University

Abstract- The field experiment was conducted at Experimental Farm, Department of Agronomy, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Tamil Nadu during July – October 2015 to study the effect of mycorrhizal inoculation (VAM) and different levels of phosphorus on growth, yield attributes and yield of hybrid sunflower cv. Sunbred. The experiment was conducted by factorial randomized block design with two replications. The treatments of experiment consisted of 5 levels of P_2O_5 (0, 25, 50, 75 and 100kg/ha) applied in the presence or absence of VAM inoculates. The results revealed that growth, yield attributes and yield was significantly influenced by various P levels in the presence and absence of VAM inoculations. The growth and yield of sunflower was highest under mycorrhizal inoculated plants than non mycorrhizal inoculation. Among the various phosphorus levels tried, P_2O_5 at 100 kg ha^{-1} recorded maximum values for growth and yield, while P_2O_5 at 0kg ha^{-1} registered minimum values for growth and yield of sunflower. Among the treatment combinations tried, mycorrhizal inoculation with P_2O_5 @ 100 kg ha^{-1} recorded maximum values for growth and yield attributes and yield of sunflower (2153 kg ha^{-1}) but it was on par with $M_2 P_3$ (mycorrhizal inoculation with P_2O_5 @ 75 kg ha^{-1}). The lowest values of growth and yield attributes and yield were recorded by non-mycorrhizal inoculation with P_2O_5 @ 0 kg ha^{-1} .

Keywords: sunflower, VAM growth and yield.

GJSFR-D Classification: FOR Code: 070302

Strictly as per the compliance and regulations of:

Effect of Mycorrhizal Inoculation (VAM) and Phosphorus Levels on Growth and Yield Attributes of Sunflower

Kalaiyarasan C. ^α, M. V. Sriramachandrasekharan ^ο, S. Jawahar ^ρ & R. Ramesh ^ω

Abstract- The field experiment was conducted at Experimental Farm, Department of Agronomy, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Tamil Nadu during July – October 2015 to study the effect of mycorrhizal inoculation (VAM) and different levels of phosphorus on growth, yield attributes and yield of hybrid sunflower cv. Sunbred. The experiment was conducted by factorial randomized block design with two replications. The treatments of experiment consisted of 5 levels of P_2O_5 (0,25,50,75 and 100kg/ha) applied in the presence or absence of VAM inoculates. The results revealed that growth, yield attributes and yield was significantly influenced by various P levels in the presence and absence of VAM inoculations. The growth and yield of sunflower was highest under mycorrhizal inoculated plants than non mycorrhizal inoculation. Among the various phosphorus levels tried, P_2O_5 at 100 kg ha^{-1} recorded maximum values for growth and yield, while P_2O_5 at 0kg ha^{-1} registered minimum values for growth and yield of sunflower. Among the treatment combinations tried, mycorrhizal inoculation with P_2O_5 @ 100 kg ha^{-1} recorded maximum values for growth and yield attributes and yield of sunflower (2153 kg ha^{-1}) but it was on par with $M_2 P_3$ (mycorrhizal inoculation with P_2O_5 @ 75 kg ha^{-1}). The lowest values of growth and yield attributes and yield were recorded by non-mycorrhizal inoculation with P_2O_5 @ 0 kg ha^{-1} .

Keywords: sunflower, VAM growth and yield.

I. INTRODUCTION

Sunflower (*Helianthus Annuus L.*) belongs to the family Asteraceae, a new world plant, native of southern parts of United States of America and Mexico has been developed into a valuable source of edible oil and meal, with almost 20-27 percent protein and 40-47 percent oil (Saleem *et al.*, 2003). It is easy to cultivate and grown in different conditions and soils. Sunflower oil has excellent nutritional properties, and has a relatively high concentration of linoleic acid (Seiler, 2007). It is also a wealthy source of vitamins A and D. The sunflower seed cake used for cattle feed which is a good source of protein (Gandhi *et al.*, 2008). Indian soils are deficient in phosphorus. P is generally a limiting factor in sunflower growth and yield because

Author ^α ^ρ ^ω: Department of Agronomy, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Tamil Nadu, India.

e-mail: kalai77.agri@gmail.com

Author ^ο: Department of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Tamil Nadu, India.

P deficiencies reduce the accumulation of crop biomass (Zubillaga *et al.*, 2002). P is an essential plant nutrient required for higher and sustained productivity of oil from sunflower. Its influence on seed yield, oil yield and oil quality has been well established (Bahl and Toor, 1999). Phosphorus is one of the most essential element for plant growth after nitrogen. It plays a significant role in several physiological and biochemical plant activities like photosynthesis, transformation of sugar to starch and transporting of the genetic traits. A great advantage of feeding the plants with phosphorus is to create deeper and more abundant roots. Phosphorus causes early ripening in plants, decreasing grain moisture, and improving crop quality. However, the availability of this nutrient for plants is limited by different reactions. A great proportion of phosphorus in chemical fertilizer becomes unavailable to the plants after its application in the soil and further, the mobility of this element is very slow in the soil and cannot respond to its rapid uptake by plants. This causes the creation and development of phosphorus depleted zones near the contact area of roots and soil in rhizosphere. Therefore, the depletion zones and helps to absorb the phosphorus from a wider area by developing an external network around root system. Mycorrhiza symbiotic association between the soil fungi and roots of higher plants (Smith *et al.*, 2010). These fungi enhance the plant growth through making availability of mineral nutrients such as P, Zn and Cu (Phiri *et al.*, 2003). Colonization of AM fungi in cortical tissues of sunflower increased the growth parameters of sunflower (Jalaluddin and Hamid, 2011).

The current trend is to explore the possibility of supplementing chemical fertilizers with organic ones, more particularly biofertilizers of microbial origin. In this context, VAM fungi are receiving greater attention in their beneficial effects on plant growth. Vesicular-arbuscular mycorrhizae (VAM) are widespread in soils, and often the growth of mycorrhizal plants will be higher in comparison to non-mycorrhizal plants. This beneficial effect on plant growth has largely been attributed to higher phosphorus (P) uptake and consequently better P nutrition of mycorrhizal plants (Antunes *et al.* (2007)). The beneficial effects of VAM inoculation on P uptake, growth and yield of sunflower have not been carried out. Hence, the present study was taken up to find out the

effect of mycorrhizal inoculation and phosphorus on the growth and yield attributes of hybrid sunflower.

II. MATERIALS AND METHODS

Field experiment was conducted during July – October 2015 at the Experimental Farm, Department of Agronomy, Faculty of Agriculture, Annamalai University. The experimental soil was clay loam with pH 8.1, OC 5.0g kg⁻¹, available N (235 kg ha⁻¹), P (22.1 kg ha⁻¹) and K (356 kg ha⁻¹). The experiment consisted of ten treatments and was laid out in factorial randomized block design with two replications. The treatments imposed in the experiment are M₁-Non inoculated and M₂-inoculated *Glomus intraradices* were tried along with different phosphorus levels (P₀-0, P₁-25, P₂-50, P₃-75 and P₄-100 kg P₂O₅ ha⁻¹) through SSP. Recommended dose of 60:60 kg of N&K ha⁻¹ was applied in the form of Urea and MOP respectively. Half the dose of N and entire dose of K were applied basally. The remaining quantity of N was applied at 30 DAS. P was applied as per treatment schedule. The mycorrhizal inoculum was applied near the root zone of sunflower. 2gm VAM was applied per plant by placement method. At harvest, plant height was recorded from the first node at the bottom of the plants to the bottom of the head and expressed in cm. The leaf area index (LAI) was calculated by dividing the total leaf area of the plant by the land area occupied. To estimate dry matter production (DMP) the selected plant samples were

collected washed, air dried and kept in an oven at 80°C till constant weight was obtained and expressed in Kg ha⁻¹. The yield parameters and yield were recorded at harvesting stage of plant. The head samples for yield were also dried to constant weight and threshed mechanically. Seed yield was adjusted to a 10% moisture basis. Filled seeds and empty hulls were separated by hand. Hereafter, grain number head⁻¹ refers to filled grains only. Data collected were subjected to statistical analysis of variance according to Gomez and Gomez (1989).

III. RESULTS AND DISCUSSION

a) Growth Attributes

Mycorrhizal inoculated plants significantly influenced the growth attributes viz., plant height, LAI, DMP and CCI (Table 1). Mycorrhizal inoculation recorded the highest plant height at harvest (147.0 cm), leaf area index at flowering (4.26), dry matter production at harvest (4994 Kg ha⁻¹) and chlorophyll content index (23.43) at flowering stage than non - mycorrhizal inoculation. This might be due to the formation of external mycelium around the roots by AM fungi which possibly helped to increase the availability of nutrients to the surface of the roots and thereby increased the nutrient uptake and growth of the plant. Similar finding was earlier reported by Kavitha and Nelson (2014).

Table 1: Effect of Mycorrhizal Inoculation (VAM) and Phosphorus Levels on Growth and Yield Attributes and Yield of Sunflower

Treatments	Plant Height (cm) at Harvest	LAI at Flowering	DMP at Harvest (kg ha ⁻¹)	Chlorophyll Content Index	Head Diameter (cm)	Number of Filled Seeds Head ⁻¹	100 Seed Weight (g)	Seed Yield (kg ha ⁻¹)	Stalk Yield (kg ha ⁻¹)
VAM									
M ₁	133.1	3.65	4485	20.39	15.7	514	5.31	1438	3570
M ₂	147.0	3.91	4994	23.43	17.7	660	5.83	1845	4069
SEd	1.09	0.016	25.11	0.19	0.09	8.02	0.016	28.46	20.75
CD(P=0.05)	2.34	0.034	53.86	0.41	0.20	17.19	0.034	61.05	44.51
Phosphorus Levels(kg ha⁻¹)									
P ₀	98.3	2.91	3645	16.21	11.12	321	4.81	973	2692
P ₁	126.0	3.48	4101	18.49	14.4	428	5.02	1197	3179
P ₂	134.1	3.67	4491	21.03	15.8	528	5.39	1477	3589
P ₃	146.3	3.92	5051	23.38	17.8	661	5.81	1843	4129
P ₄	153.8	4.05	5316	24.73	18.9	730	6.06	2048	4379
SEd	1.54	0.023	35.51	0.27	0.13	11.34	0.022	40.25	29.35
CD(P=0.05)	3.30	0.049	76.18	0.58	0.29	24.32	0.048	86.34	62.95

Among the different levels of phosphorus, application of P₂O₅ at 100 kg ha⁻¹ significantly recorded highest plant height at harvest (153.8 cm), leaf area index at flowering (4.05), dry matter production at harvest (5316 Kg ha⁻¹) and chlorophyll content index (24.73) at flowering stage. This might be attributed to the P stimulating effect on root growth and expansion by increasing crop growth rate. The lowest values for growth attributes were recorded in the treatment which did not receive phosphorus. Similar findings were earlier reported by Adebayo *et al.* (2010) and Abubaker Ali *et al.* (2014).

The interaction effect between the mycorrhizal inoculation and phosphorus was significant (Table 2). The

treatment combination of mycorrhizal inoculation along with P₂O₅ at 100 kg ha⁻¹ recorded maximum values for growth attributes, but it was on par with mycorrhizal inoculation along with P₂O₅ at 75 kg ha⁻¹. The highest values under these treatments might be due to mycorrhizal inoculation, because this bio fertilizer can enhance absorption of phosphorus by plant. The lowest growth attributes was recorded in the treatment combination of non mycorrhizal inoculation with 0 kg P₂O₅ ha⁻¹. This could be due to inadequate availability of nutrients. This result is in conformity with the findings of Khirood Doley and Paramjit Kaur Jite (2012).

Table 2: Interaction Effect between VAM and Phosphorus on Growth and Yield Attributes of Sunflower

Treatments	Plant Height (cm) at Harvest	LAI at Flowering	DMP (kg ha ⁻¹) at Harvest	Head Diameter (cm)	No. of Filled Seeds Head ⁻¹	Test Weight (g)	Seed Yield (Kg ha ⁻¹)	Stalk Yield (Kg ha ⁻¹)
M ₁ P ₀	98	3.11	3521	11.1	298.1	4.31	880	2712
M ₁ P ₁	121	3.58	3883	13.6	366.1	4.78	1019	2946
M ₁ P ₂	126	3.78	4175	14.4	435.1	5.07	1219	3271
M ₁ P ₃	137	4.04	4697	16.5	563.1	5.47	1571	3795
M ₁ P ₄	149	4.36	5184	18.4	692.4	5.94	1942	4268
M ₂ P ₀	109	3.24	3689	11.9	328.6	4.69	996	2968
M ₂ P ₁	131	3.90	4319	15.2	490.6	5.26	1376	3412
M ₂ P ₂	142	4.15	4807	17.2	621.8	5.71	1735	3908
M ₂ P ₃	156	4.48	5403	19.1	758.4	6.16	2114	4464
M ₂ P ₄	159	4.50	5448	19.3	768.2	6.18	2153	4491
SEd	2.18	0.035	50.22	0.19	16.03	0.032	56.9	41.5
CD (P = 0.05)	4.65	0.075	107.73	0.40	34.39	0.068	122.1	89.03

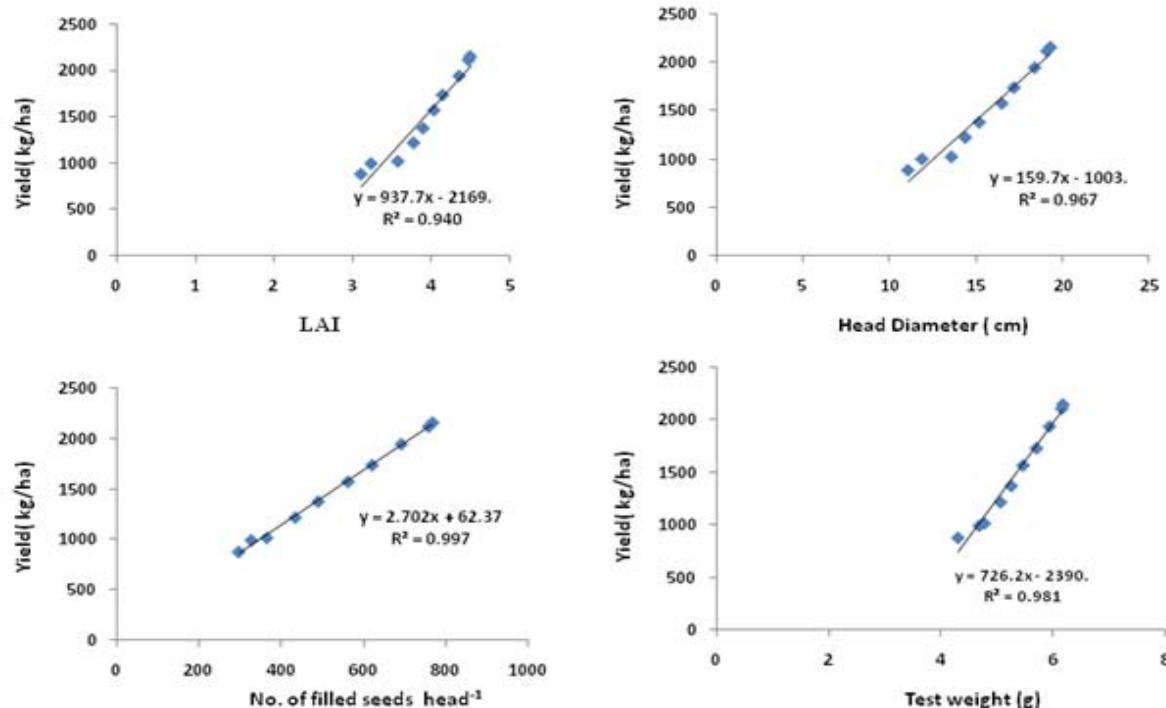


Fig. 1: Linear Relationship between Seed Yield with a) LAI, b) Head Diameter, c) No. of Filled Seeds / Head, d) Test Weight

b) Yield Attributes and Yield

Mycorrhizal inoculated plants showed significant influence on yield attributes and yield (Table 1). Mycorrhizal inoculation recorded the maximum head diameter (17.7cm), number of filled seeds head-1 (660), 100 seed weight (5.83 g) and seed yield (1845 kg ha⁻¹) and stalk yield (4069 kg ha⁻¹) than non-mycorrhizal inoculation. The per cent increase in seed and stalk yield due to mycorrhizal inoculation was 28.3 and 13.9 over non-mycorrhizal. Many researchers suggested that VAM symbiosis increased the units of photosynthesis, and so as to increase the rate of photosynthetic storage and export at the same time (Auge, 2001).

Phosphorus levels significantly influenced the yield attributes and yield (Table 1). Among the different levels, P₂O₅ at 100 kg ha⁻¹ produced maximum head diameter (18.9 cm) number of filled seeds head⁻¹ (730), 100 seed weight (6.06 g) and seed yield (2048 kg ha⁻¹) and stalk yield (4379 kg ha⁻¹). The best treatment caused 53 and 38 per cent increase in seed and stalk yield over control. The lowest value for yield attributes and yield was recorded in the treatment P₂O₅ at 0 kg ha⁻¹. This might be due to the role of phosphorus in cell division and cell enlargement, photosynthesis, which ultimately affect the yield attributes. Similar finding was earlier reported by Ghazanfar Ullah Sadozai (2013).

The interaction effect between the mycorrhizal inoculation and phosphorus was not significant (Table 2). The treatment combination of mycorrhizal inoculation along with P₂O₅ at 100 kg ha⁻¹ recorded higher values for yield attributes and yield but it was on par with mycorrhizal inoculation along with P₂O₅ at 75 kg ha⁻¹. The mycorrhizal inoculation caused a saving of 25 kg P₂O₅/ha. This might be due to more availability of phosphorus and other nutrients at both vegetative and reproductive stages. Similar findings were earlier reported by Hossein Soleimanzadeh (2012) and Khirood Doley and Paramjit Kaur Jite (2012). The lowest values of yield attributes and yield were recorded under the treatment combination of non mycorrhizal inoculation with 0 kg P₂O₅ ha⁻¹. This might be due to the absence of mycorrhiza resulted in reduced growth and yield attributing characters and seed and stalk yield. The effect due to different treatments on yield was confirmed by significant positive linear relationship noticed between seed yield with LAI, Head diameter, number of filled seeds per head and test weight (Fig. 1). The present result was in harmony with earlier reported by Ultra Jr *et al.* (2007) and Mostafa Heidari and Vahid Karami (2014).

REFERENCES RÉFÉRENCES REFERENCIAS

- Abubaker Ali, B., A. Omer Altayeb, Mohammad Alhadi and Yu Shuang-En. (2014). Effect of different levels of nitrogen and phosphorus fertilization on yield and chemical composition hybrid sunflower grown under irrigated condition. *J. Environ. Agric. Sci.* 1 (7): 1-7.
- Adebayo, A. G., H. A. Akintoye, M. T. Olatunji, A. O. Shokalu and O. O Aina. (2010). Growth Response and Flower yield of Sunflower to Phosphorus Fertilization in Ibadan, South Western Nigeria. *Report and Opinion*, 2(4): 29-33.
- Antunes, P. M., K. Schneider, D. Hillis and J. N. Kliironomos. (2007). Can the arbuscular mycorrhizal fungus *Glomus intraradices* actively mobilize P from rock phosphates?. *Pedobiologia*, 51: 281-286.
- Auge, R. M., (2001). Effects of VAM on host plant in the condition of drought and Vesicular-arbuscular Mycorrhizal symbiosis. *Mycorrhiza*, 11: 3-42.
- Bahl, G. S and G. S. Toor. (1999). Efficiency of P utilization by sunflower grown on residual P fertility. *Bioresour. Technol.* 67: 97-100.
- Gandhi, A. P., K. Jehan and V. Gupta (2008). Studies on production of defatted sunflower meal with low polyphenol and phytate contents and its nutritional profile. *Asian Food J.* 15: 97-100.
- Ghazanfar Ullah Sadozai, Muhammad Farhad, Muhammad Ayyaz Khan, Ejaz Ahmad Khan, Muhammad Niamatullah, Muhammad Saifdar Baloch, Abdul Aziz Khakwani and Kashif Wasim. (2013). Effect of different phosphorous levels on growth, yield and quality of spring planted sunflower. *Pak. J. Nutr.*, 12(12): 1070-1074.
- Hossein Soleimanzadeh. (2012). Response of sunflower (*Helianthus Annuus L.*) to inoculation with mycorrhiza under different phosphorus levels. *Amer Eurasian J. Agric. Environ. Sci.*, 12(3): 337-341.
- Jalaluddin, M. and Maria Hamid. (2011). Effect of adding inorganic, organic and microbial fertilizers on seed germination and seedling growth of sunflower. *Pak. J. Bot.*, 43(6): 2807-2809.
- Kavitha, T. and R. Nelson. (2014). Effect of arbuscular mycorrhizal fungi (AMF) on growth and yield of sunflower (*Helianthus Annuus L.*). *J. Exp. Biol. Agric. Sci.* 2 (2): 226-232.
- Khirood Doley, Paramjit Kaur Jite. (2012). Response of groundnut ('JL-24') cultivar to mycorrhiza inoculation and phosphorous application. *Not. Sci. Biol.*, 4 (3): 118-125.
- Mostafa Heidari and Vahid Karami. (2014). Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. *J. Saudi Soc. Agric. Sci.* 13: 9-13.
- Phiri, S., I. M. Rao, E. Barrios, and B. R. Singh. (2003). Plant growth, Mycorrhizal association, nutrient uptake and Phosphorus dynamics in a volcanic ash soil in colombia as affected by the establishment of *Tithonia Diversifolia*. *J. Sust. Agric.* 21: 41-49.
- Saleem, R., M. U. Farooq and R. Ahmad. (2003). Bio-economic assessment of different sunflower

based intercropping system at different geometric configurations. *J. Bio. Sci.*, 6: 1187-1190.

- 15. Seiler, G. J. (2007). Wild annual *Helianthus Anomalus* and *H. Deserticola* for improving oil content and quality in sunflower. *Ind. Crop Prod.*, 25: 95-100.
- 16. Smith, E. S., E. Facelli, S. Pope and F. A. Smith. (2010). Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. *Plant Soil*, 326: 3-20.
- 17. Ultra Jr, V. U., S. Tanaka, K. Sakurai and K. Iwasaki. (2007). Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (*Helianthus Annuus* L.) and on the transformation of arsenic in the rhizosphere. *Plant Soil*, 290: (1-2) 29-41.
- 18. Vijay Kumar. R. (2005). Influence of phosphorus solubilising biofertilizer on seed yield and quality in seed parent of sunflower hybrid KBSH-44. M. Sc. (Agri.) Thesis, Univ. Agric. Sci., Bangalore.
- 19. Zubillaga, M. M., J. P. Aristi and R. S. Lavado. (2002). Effect of phosphorus and nitrogen fertilization on sunflower (*Helianthus Annuus* L.) Nitrogen uptake and yield. *J. Argon. Crop Sci.*, 188: 267-274.

