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I.  INTRODUCTION

We note above all about that the idea of this paper came to us from the proof
of structure theorem of complete Riemannian flags of H. Diallo being in [7].
Let (My,F1), (Ma,F3),..., (Mg, F,) be g codimension 1 transversaly ori-
entable Riemannian foliations, let M = M; x My x ... x My, let Fj, = F1 x Fa x
X FpX Myy1 X Mo x .. x My, let (U*, f* T* vkj )icr+ be a foliated cocycle defin-
ing (M, Fr), TF=T'xT2%x... xT* let p, be the projection of M on M, let P,
be the projection of T'? on T%, let Ui"”' = Ui1 X Uf X oo X Uik X Myp1 X Mo x ... x My,
~ i N B B
let f,k: (f,l °p1, flz O P2y -y fik Opk) and let ’Yij = (Vzlj Op17’>/7,2j O Py vy ’75] Opk),

We easily verify that (ﬁf, f;k, T k. ﬁfj) is a foliated cocycle defining the codi-

mension k£ Riemannian foliation Fj.

We have ﬁq - .7?,1_1 C..CF.We say that the sequence foq: (ﬁq_l, e .7?1>
is a completed flag of Riemannian extension of Riemannian foliation Fqon M.

Specifically, being given a codimension ¢ foliation F; on a manifold M, a
flag of extensions of a foliation F, is a sequence Diﬁ_q = (Fy=1, Fg—2, -y Fk)
of foliations on M such as Fq C Fq—1 C Fy—2 C ... C F}, and each foliation F
is a codimension s foliation.

For k = 1, the flag of extensions Dﬁq will be called complete and will be
noted D, .

If each foliation F; is Riemannian, the flag of extensions Diq will be called
flag of Riemannian extensions of F,.

That said, is denoted by X}, the unitary field of T* orienting T and (X k)h’“
the lifted of Xj on the tangent bundle TT9 of T,

One checks easily [10] that [(Xk)h’c ,(Xs)hs] = 0 for k # s. There is thus
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obtained a coordinates system (1, ..., £4) on T such as % = (X)) . As each

¥ is an local isometry of T* then relative to the coordinates system (21, ..., ) B

10. R. Nasri and M. Djaa, 2006. “Sur la courbure des variétés riemanniennes produits’,

the Jacobian matrix J5r of §kj checked:
ij
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From the foregoing the foliation Fj will be said Riemannian transversaly
diagonal.

Specifically a foliation F on a manifold N is said transversely diagonal if and
only if it is defined by a foliated cocycle (U,, f,, T, %j)ieI such as the opens U,
are F -distinguished and on each open f, (U,) it exists a local F-transverse coor-
dinates system (y;yéyi) such as relatively to local F-transverse coordinates
systems ((yéyéyi))zel on the opens f, (U,),

the Jacobian matrix JWU of 7, 1s diagonal. In the case where there exists a
metric h,. on the transverse manifold 7' such as the ~7, are local isometries for
this transverse metric, we say that F is Riemannian transversaly diagonal.

The primary purpose of this paper is to show that the existense of a transver-
saly diagonal foliation F on a manifold implies the existence of a complete flag
of extensions of F. The second purpose of this paper is to prove the existence
of Riemannian transversely diagonal foliation nontrivial. Indeed, we show that
if F, is a codimension ¢ Riemannian foliation having a complete flag of Rie-
mannian extensions ’qu = (Fy-1, F4—2, ..., F1) on a connected manifold N
and if there exists a metric h that is bundlelike for any foliation F; of this flag
then each foliation Fy is Riemannian transversely diagonal.

In all that follows, the manifolds considered are supposed connected and
differentiability is C°.

[I.  REMINDERS

In this paragraph, we reformulate in the direction that is helpful to us some
definitions and theorems that are in ([2],[3], [5], [7], [8],[10]).

Definition 2.1 Let M be a manifold.

An extension of a codimension q foliation (M,F) is a codimension ¢ fo-
liation (M,F’) such that 0 < ¢ < q and (M,F') leaves are (M,F) leaves
meetings ( it is noted F C F').

We show ([2], [6]) that if (M, F’) is a simple extension of a simple foliation
(M, F) and if (M,F) and (M, F’) are defined respectively by submersions = :
M — T and ' : M — T", then there exists a submersion 6 : T' — T such that
' =0om.

We say that the submersion 6 is a bond between the foliation (M, F) and
its extension foliation (M, F’).

It is shown in [3] that if the foliation (M, F) and its extension (M,F’) are
defined respectively by the cocycles (U,, f,, T, Y., Jier and (U, f/, T, ’yzj )icr then
we have

fi="0i0f; andy] 00; =007,

where 65 is a bond between the foliation (Us, F) and its extension foliation
(Us, ).

Proposition 2.2 Given a foliation (M,F) having T for model transverse fo-
liation, let T' be a dimension q/>0 manifold. If the local diffeomorphisms of
transition of F preserve the fibers of a submersion of T on T', then the foliation
F admits a codimension q’ extension having T for model transverse manifold.
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The following theorem is demonstrated in the same way that the structure
theorem of complete Riemannian flags being in [7] :

Theorem 2.3  Let (M;h) be a connected Riemannian manifold not necessarily
compact and let qu = (Fy=1, Fq—2, ..., F1) be a complete flag of riemannian
extensions of a codimension q Riemannian foliation F, having T for transverse
manifold and having h for bundlelike metric.

If the metric h is bundlelike for any foliation of D, = (Fye1s Fy—2y ooy F1)
then:

1) Each foliation Fy, is transversaly parallelizable. The vector fields of par-

allelism Fj—transverse (Ys)0<s<k71 are orthogonal. For s# 0, each vector

field Y , is an unitary section of (TFey1)™ N (TF,) and Y is an unitary section
of (TFy)" where (TFy)" is the orthogonal bundle of TFy. Additionally each
vector field Y, directs the flow it generates.

2) The induced parallelism (Ys)o<,cy 1 of T9 by (?S)Ogsgqfl satisfies
the equality [Ys,Y,] = ksYs for ¢ — 1 > s > r > 0. Functions ks, are called
structure functions of D,, .

Note that the parallelism (Y;)o<,, ; of T will be said parallelism F;—
transverse of Diallo associated to D, .

We note also, relatively to the transverse induced metric hy by h on T,
that vectors fields Ys are unitary and orthogonal two by two.

We end these reminders by the following proposition being in [10]. It will
allow us to construct local coordinate systems in the proof of the theorem 3.2
which is the main theorem of this paper in the following paragraph.

Proposition 2.4  Let M x N be the product of two manifolds M and N, let
X, € X(M) and let Y; € X(N) then

[X{”,Xgl] = [X1, Xo)™ [Ylhz,YQhZ] = [Y1,Ys]" and [Xfl,yzhz} —0

where

RW: T,M — T, MxN R: T,N — Ty, MxN
(z,y) and (z.) .
u o uh = (u,0) w o o wh = (0,w)

I1I. MATRIX EXPRESSION OF A COMPLETE FLAG OF RIEMANNIAN
EXTENSIONS ON A MANIFOLD

There is a link between transversaly diagonal foliations and complete flags of
extensions.
Specifically we have:

Proposition 3.1 Let F, be a codimension q transversaly diagonal foliation on
a manifold M .
Then Fq4 admits a complete flag of extensions D, = (Fa1, Fg—2, oy F1).

Proof. Let (Uf, f,T9,79)ier be a foliated cocyle defining the transversaly
diagonal foliation F, and let ((ys yi_1...91)),., be Fy—transverse coordinates
systems on opens f9 (U,‘I) such as the Jacobian matrix J,q is diagonal. Let also

i K2 1]
1 0

pa (x) = iﬂ_jl < (’)yi
= k

(z) >

be the integrable differential system on f(Uf) and let Z/{;Fl be a leaf of this
differential system.

It is clear that the foliation defined by the integrable differential system
xr — P% () is transverse for the flow Foy; of 6%}.
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That said, quits to reduce the "size" of opens U?, it may be considered an
open recovering (U?);cr of M such as in each f? (Uq) the flow fayl of ay and

the mtegrable differential system z — P9 (z) define simple foliations so that
Z/{Zq is diffeomorphic to quotient manifold of simple foliation fay; .

Let 07 : f7(U%) — U™" be the projection on UL following the flow Foyi

f)
of By

The manifold 79 can be regarded as a disjoint union of f? (U q) Therefore

we can say that submersions 67 defines a submersion #? on T'? whose restriction
to each f7(UY) is 67.

Note that J,« = (A?im) being a invertible and diagonal matrix has all its
Jji s
diagonal elements non-zero.

As

0 0 0
(’Y?t)* (8y}1> = ()‘?'Lrs)rs <ay}1> = )‘?zllaiyé and )‘;1‘1'11 7é 0

then the 49 preserve the fibers of the submersion #9.

It follows from this (18], [5))( ¢f-prop.2.2 ) that the codimension ¢ foliation
F4 have an codimension g — 1 extension F,_;.

We set

fIt=0%o fland T = UL and fI71 (U NUY) = V!

for UINUZ # 0.

As 79, preserves the fibers of the submersion 67 then 79, induces a local
diffeomorphism ~9~" : Vi~ e Vi ! and this diffeomorphism checks ([3], [5])
(c¢f def.2.1) the equahty

=1 599 = 99 o 14
Vi 91 QJ Vi

We easily verify that (U4, f¢~1, 7971, 'yji_l)ie[ is a foliated cocycle defining
the extension F,_1 of Fy.
We now show that the foliation F,_; is transversaly diagonal.

We have [ay Byl ] = 0 for all k. Hence the ¢g—1 vectors fields dy o 3y‘3 e 8%1
are foliated for the flow o 82}'1 . 07, (822) is a vectors field on U~ !
forall k < q—1.

But the ¢ — 1 vector fields 3 ? , ﬁ, ey 887; are tangent to Uiq_l at any
point in U7 " so for k # g and a € [ (U ) we have (67),, (8; ) = 622 (07 (a)) .

Therefore the ¢ — 1 vector fields 3 v ay‘z s a ; define a coordinates

system fay; -transverse on Uf_ and thls coordinates system is the restriction

to UP " of (i yi_1. yi). So it will be noted yet (yi_y,..., y}).

For clarity in the presentation we note for following (67), ( B?ﬂ, ) = a?ﬂ et

Using equality 7;1;1 00 =0%0 79, we obtain for k # g,

(). a;/y) = () on. (5r)
= @0 (). (57)
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9
(67), (Afjmkﬂquﬂ)'a%)

0
= )\;-Ij(q_k+1)(q—k+1) (93)* <8y1]g>

0

= Akt Dkt 7T :
ij(g—k+1)(g—k+1) dyl s

Thus the foliation F,_; is transversaly diagonal.
Before closing we note that equality
’Y(,],il o 93 =070~ show that J q-1 Jyga = Jga J a
Ji J ji Yii - i j

Vi

where Jpa is the Jacobian matrix of §2. But

0o 0 .. 0

01 0 0

0 0 1 0 :

JO(SI - . 0 .
: 0

0 0 O 0 1

$0 J_ a-1 is obtained by removing the first line and the first collonne of Sy,
%) K
We are constructing Fy_2, F4—3, ... , F1 using the same technical of con-
struction of F,_;.

We note that each foliation F; will be defined by (Uiq,ff,Tk,’Yfi)iel a fo-

liated cocycle where 6% is defined in the same way as 67, [ = 0% o fF,

i

k _ E i k : q-1 k-1 _pk _ pk _ k
T = iLeJIUi with U;* defined in the same way as ;' and V5, © 0; =050 Vs

We note that if the transversaly diagonal foliation 7, is Riemannian rela-
tively to a transverse metric Ay and if local vector fields 632_ are Killing vector
fields for Ay for all ¢ and all k then the foliations of complete flag of extensions
D, = (Fy=1, Fy—2, ..., F1) are Riemannian transversaly diagonal and there
existe a common metric bundlelike for any foliation Fj. Indeed in this case the
submersions Gf are Riemannian submersions for all ¢ and all k. And, the equal-
ity 'yfi’l o 9? = 9? o 'y’f implies that 'yffl is a local isometry once 'yf is a local
isometry.

Under certain conditions specified in Theorem 3.2, the previous proposal
admits a reciprocal.

In the proof of the following result is given matrix expression of a complete
flag of Riemannian extensions of a Riemannian foliation .

Theorem 3.2 Let F, be a codimension g Riemannian foliation on a connected
manifold M and h a metric Fy—bundlelike on M.

If Fy4 admits a complete flag of Riemannian extensions D, = (Fy=1s s F1)
such as the métric h is bundlelike for any Riemannian foliation Fy, then each
foliation Fy, is Riemannian transversaly diagonal.

Proof. We assume that the foliation F, admits a complete flag of Rie-
mannian extensions D, = (Fy=1, Fq—2, ..., F1)such as the metric h is bundle-
like for any Riemannian foliation F.

We denote by T'? a transverse manifold of 7.
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According to the theorem 2.3 each foliation Fj is transversaly parallelizable.

The vector fields of Fj—transverse parallelism (YS)O o<k are orthogonal.

For s# 0, each vector fields Y, is an unitary section of (T]-'Hl)J‘ N (TF,) and
Y is an unitary section of (TF;)" where (T'F;)" is the orthogonal bundle of
TF;. Additionally each vector field Yy directs the flow it generates and the
induced parallelism (Ys)ogsg g—1 of T Dby (75) satisfies the equality
Y5, Y] = kg Yy forg—1> s >r >0.

0<s<q—-1

—1
We have T' (T'?) = q@o < Yy > where T (T7) is the tangent bundle of 7' and

< Ys > is the tangent bundle of flow of Y.
The differential system

q—1
Sk () =@ <Yi(z)>
2
is integrable because [Ys, Y, ] = kg, Y for s > r. It then defines a foliation Sy.
For k # r, one checks easily that S, is an extension of flow Fy, of unitary
vector field Y. On the other side Fy, is transverse for the foliation Sj because
forall x € T9, T, (T9) = T, Sp® < Yy (z) > .
That said, for all z; € T? there exists an open V; of T? containing x;,
distinguished for each foliation Sy and for each flow Fy, .
Let sﬁ; be a submersion defining Si on V; .
As Fy, is transverse to the foliation Sy and dim (Fy,) = codim (Si) then
the open V; can be chosen such that for all maximal plaques (for the natural
relation of inclusion) Lg,k and P{}k for Fy, contained in V; we have s}, (L%,k) =

s (Vi) = s, (P,)
Thus, we can assume that s}, (V; ) = L}, because st (L@k) is diffeomorphic
to L, .

It follows from the foregoing that the application p’ : V, — Lg/qil X .. x Ly,

such as for all z € V,, p'(z) = (s, (x),s,_, (x),.... s} (x)) is a diffeomor-
phism.

It is easy to verify that the leaves of ((ﬂi)fl) (fyk/vi ) are of the form
{p} < Ly, x{p'} wherep € L§, XLy,  x..xLy —andp’ €Ly,  xLj %
o L

This being, is considered in what follows a recovery (U,);c; of opens of
the manifold M such as each open U, is Fjp—distinguished for each k£ and
if (U,, fiq,Tq,vgi)ie 1 is a foliated cocycle defining F, then there exists a dif-
feomorphism 4, : ff(U;) — Ly, | x Ly, , % .. x Li such as the leaves of

1

L—1\ * . . .
((u)™") (Fviyw, ) ave of the form {p} x L, x {p'} where p € L, , x L, _, x
wex Ly cand pf € Ly, < Ly, | % ..o x L.

Let hr be the metric F -transverse associated to the metric F,—bundlelike
h and let YLik be the unitary vector field tangent to the leaf Lg,k induced by
the unitary vector field Y}, of F,—transverse parallelism (Y;),<,, , of Diallo
of T1.

We note in passing that the vector fields YLik are orthogonal two by two
relatively to the metric hr.

i i

: — (4 i

We now consider a = (aq_l, vees ao) €Ly, | X..xXLy,.

We set

hi . I L L
Rgr o TyilLly, — Ta;,lLqul X oo X Tyi Ly,
) o\ P .
K2 K2 — . . K3 . .
xXi, - (Xa§;>aqi - (Oa;_lv~-~70a;+17Xa;;0az,17~-~70aa)

Notes
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where 0,; is the null vector of Ta;:L;t.

Let X (LYk) be the Lie algebra of vector fields tangent to LYk and let
Xjex(Ly,).

By varying af, € Ly, , the lifted RE* ((X}),.) of (X{),, in TLy, , x ..x
TL;,0 define a vector field on L;q,l X X L;O. We will note it by (X,i)hk . So,
we have (X})2* = ()" (a) = B+ (X)), )

Is shown in [10] (cf.prop.2.4) that for X} € X (LYk) and X! € X (Ly) we
have [(Ykl)hk , (Y;)hs] =0 for k # s. It follows from this, Y} being the unitary
vector field on L;,T induced by Y, of F,—transverse parallelism (Ys)O <s<g-1 of
Diallo, that | (V£,)" , (V)" ] =0 for k # 5.

Thus, pl, : f1(U,) — Lgfqil ><L§,q72 x...x Li, being a diffeomorphism,the vec-

tor fields ((uz) _1) ) ((Yﬁs) hs) define on f (U,) a coordinated system F,—transverse.

In the following ((uz)fl) ((Yﬁs)hs> is noted %.
We note in passing that if we denote by Y the restriction of Yy at fi(U,)
and pt : L;,qi X L;,H X oo X L;,U — L;/k the projection on LZYk then:

1
1) We have (p}), (v)"™) = Vi and (o), ((70)") =0 for s £ k.
2) The projections (pé)* not being necessarily Riemannian submersions.
Therefore the vector fields (Y;)hs are not necessarily unitary (relatively to the
metric ((Mé)_l) hr on the product L;q,l X ... X L;O ) despite the fact that

Y}, is unitary on Ly .

3) Forallp € L;q,l x..xLy  andp’ €Ly _ x..xLy, wehave (ui), (V7)

which is tangent to {p} x L;, x {p'}. Hence the vector fields (st)hs and

(ufl)* (Y;) are collinear. And that implies that % and Y are also collinear.
4) Y coincides with a%i on LY however, the values of these two fields on

Viq\Lg,S are not necessarily identical where f{ (U,) = V1.

5o on fi(U,) = V;? are orthogonal

One checks easily that the vector fields
two by two.
fi

Let F} = Fyu, and Df;‘ = (Fi_y, Figr s
(Fg=1, Fq—2, ..., F1) at the open Uj.
The flag D_, = (Fi_y, Fi_y, ..., Fi) is projected on f{ (U,) = V; follow-

F1) the restriction of D, =

q q—

ing the leaves of .7-"; in a complete Riemannian flag D; = (?11, ?;, e f;_1>
where ?Z = fl ( ;_k> .
__ q—1 . —1 9
We have TF), = & <Y!>= @& < g5 > . Thus on each open U; the
s=k s=k s
submersion py’, o yig o f{' defines the foliation 7 where pi’, is the projection
of Ly, | % .. X Ly, on Ly, X Ly, X ..X Ly,
Let Hgk be the Riemannian bond between the Riemannian foliations f; and
i let 05" be the Riemannian bond between the Riemannian foliations F}
x Ly % ..x Ly on
k—2 0

and Fi_, and let p/*,") be the projection of Ly, |

i i
Ly, , X ...X Ly,.
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We note [3] that fibers of 9‘1 are leaves of foliation 7, and fibers of %!

are leaves of flow Fp,:  of ay
k— 1

For all s, it follows from the above that there exists a diffeomorphism T
7 U;) — L;/S_l X L;,S_Q X . X L;,O making the following diagram commutative

v, Loopwy ML x.xLy

Id | Lo Loy

uooL opwy B Ly,  x..xLy (%)
Id| Lo Loty

P k—1 & i i
U 5 N0 TS Ly, xx Ly,
| Let az € L;,qil X oo X LYk and Tai the immersiop of L;kil X X L;O in
L;/q_l XX L;,O such as 7, (b) = ai x b forallbe Llyki1 X ... X L;,O.
We have (ufl)_l 0 Tgi © pi which is an immersion of f(U;) in f1(U;).

Thus, quits to replace ff by (,ufz)_l 0 Tgi O u}; o fz-k, we can suppose that
fE(U;) is an immersed submanifold of f{(U;) and this submanifold is a leaf of

k—1 . k—1
differential integrable system P*(z) = @ < Yi(z) >= @ < Biyi () > on
s=0 s=0 s

i1 (U).

Using the same arguments one can assume that f}(U;) € f2(U;) C ... C
F(U).

That said, it is assumed in what follows that f}(U;) C f2(U;) C .... € f1(U;)

and fF(U;) is a leaf of differential integrable system  — P* (z) on fq( i)

We have [ } = 0 for all (k, s) and T]-'k = 69 < ay >. Hence the vec-

ayz ? 82!

tor fields % are foliate for the foliation 7 i, for s < k. Therefore (O‘Zk) < 3‘3->

is a vector field on f¥(U;) for all s < k because Hq is the projection of fi(U;)
on f¥(U;) following the leaves of F .

But for s < k the vector fields aiyi are tangent to f¥(U;) at any point of
fF(U;) so for s < k and a € f7 (U?) we have (9?’“) ( ‘9,-) 3y (qu (a )) :

i oy,

Therefore for s < k the vector fields é% define a coordinate system F-

transverse on f; ¥ (U;) and this coordinates system is the restriction of (yq 1seeos yf))
to fF(U;). It will be noted therefore (yi_;, ..., 43) .

We can write that (ng) (yé_l, ...,yé) = (y};,p ‘e yé) .

Using the diagram (*) it is easy to verify that Qf(k_l) = 9?‘1 o Hgk. Which
causes that

9?71 (y,ifl,y};fQ, ,y(‘)) = (9?71 o 93’“) (yéfl, ...7y8)

A (TS|

= (Yi—os-r¥) -

© 2018 Global Journals
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For U; NU; # 0, we set:

Wk

We have [3] the equality,

7

F7T =65 o g and o506l 05t oy

that is to say that the following diagram is commutative

U N U;
Idy;nu; l

UiNU;

From where the equality 6’?71 (y,i_l,y,i_Q, ...7yé) = (yi_27 ...7y8) causes that:

1l .
o (yi,27...7y6)

but

P () = (

k
J
-

1k

=

(k—1)i
Vi—2

k—1

k
L

JHUinU;) L

k—1

tJ

e 4
0; ok (yi,pyi,g,--.,yé)

k 0; k-1
fj (Uinl;) = fj (UinU;)
LAkt
fENUinUy)

k—1 k—1 j j
Ve ot (yi,pyi,y yé)

k=1 (ki ki ki
0; (%11771@127---7702)

(VE gy s v

k—1)3 k—1)i
A o (4

Which implies v5* = 4% for all 7, s and t.

We can set

o (yi,l,yi,27.-.7yé) = (Ve—15Vie2 - 70) -

The equality

Wk_l

show that

k—1)i
I Sl

" (yi,g,-.-,yé) = (V2 76") = (Vo1 Vh—20-+570)

7Z (yi_layi_gv‘“vyé) ::(72—1,72427'~776)

with

i i
(’7!675717 V—s—25 -

It follows from the foregoing that the Jacobian matrix J,x of ij satisfies
k¥

the equality:

Therefore

57)
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(7’“) 2 ) _ ifh}’?,t_ o
Y ayi—r t:layi—r 8y%*t
The matrix J,» is invertible and triangular. From where all diagonal element

ij
of J,r is nonzero that is to say that gz
]

%*T # 0 for all 7.

k—

As 'yi, is an isometric for the transverse metric hp and as the vector fields

9 _ are orthogonal two by two then
Yy,
0 0
0 = hT( Y )
W1 OYp_s
0 0
= hr| (7 : ),vf : ))
((8). 5= )-04). 5
8’)’2—1 372—1 0 9
5 hr — .
ayk_z ayk_l ayk—l ayk—l
But

07, o,
#;zéOanth LL # 0 so 7;?*1:0.
5yk_1 8yk71 3yk,1 3yk_2

Let rg € {1,2,...,k}. Suppose by recurrence that for all » < ry and all s < 7,

Vi
ke = (.
Ay _,.

We have for all s < rg+1
0 0
0 = hr < Y )
Oy ayk—(r0+1)

= (). ) ). (5r)
= hyp <aﬂ“‘s J mil L : )

s Oyhs t=1 ay.}i—(ﬁﬁ»l) Oy,

_ Mi_ O, b 0 0
ayi703+l) 8yi75 ayi—s,ayi—s
But
i, 0 3
—>#0 and hr| z——, 55— | #0
Y] Wi s OYps
SO
a 7
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In conclusion

DVi—s N

=0 forall s <r and # 0 for all r.
Wiy Oy,
It follows from the foregoing that
872—1
oy, O e .. 0
0 Y=o 0
Byk,2 . 671
oy _ . —r
J,ij = 0 ﬁ o .. = with f #0 for all r.
' 0 . . : J—r
: 0
876’_
0 0 0 0 ou]

Thus F}, is Riemannian transversaly diagonal.

We will say that the covering of opens (U, );es of the manifold M and the
local F—transverse coordinates system ((yj,_1,--¥5)),., are compatible with
the flag D, .

We show in [4] that if F is a foliation with dense leaves then the local com-
patible Fj—transverse coordinates system with D, is a global F,—transverse
coordinates system on any Fj,—transverse manifold. And, in this case it is not
necessary to specify in the previous theorem the fact that the F,—bundlelike
metric h is bundlelike for each foliation 7y of D, for k < g.

We note that for any Fj—transverse manifold T* there exists k foliations
Hi, Ha, ..., Hi, and dim (H,) = 1 for each r ( just write H,,1 = Fy, where Fy,
is the flow of unitary field ¥;) such as:

k
i T (Tk) = @ TH, and each foliation H,. is invariant by the changers ’y’?j
r=0 -

of Fj—transverse coordinates,

k
i) the differential system S (z) = & T,’H, is integrable.
1

r=

r#t
We say that a n dimension manifold N is almost produces p-type multi-
foliate if and only if there exists p foliations Hi, Ha, ..., H, where p < n such as

k k
TN = @0 TH, and the differential system S*?) (z) = & T, H, is integrable.
r— r=1

r#£t
A such manifold is locally diffeomorphic to L; x Ly X ... X L, where L, is a

plaque of H,. (Cf. proof of theorem 3.2").

That said, we now consider a codimension ¢ foliation F having N? for
F—transverse manifold.

The proofs of proposition 3.1 and of theorem 3.2 allow us to see that F is
transversaly diagonal if and only if N? is almost produces n-type multi-foliate
and the foliations H,. allowing the decomposition of TN? are invariant by the
changers o of F—transverse coordinates.

In the case where the F—transverse manifold N? is almost produces p-type
multi-foliate with p < n, if the foliations H, allowing the decomposition of
TN4Y are invariant by the changers Y. of F—transverse coordinates then using
Proposition 2.4 we can construct as in the proof of Theorem 3.2 a family of
local F—transverse coordinates system ((y;,,yi)) on N? and following
this family we have

i€l
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J,;lj 0 0
0 Jf] 0 0
0 0 .0
J—y” - 0 :
: : : . . 0
0 0O 0 ... O Jipj

where J, is the Jacobian matrix of v and Jj; is a square matrix of order n,
i

where n, = dim (H). | \ otes
We say in this case that the foliation F is transversaly diagonal by block.
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