

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: C
BIOLOGICAL SCIENCE
Volume 18 Issue 2 Version 1.0 Year 2018
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Preliminary Investigation into the Periphyton Community of a Tidal Creek, Bonny River, Rivers State, Nigeria

By O. A. F. Wokoma & U. Friday
Ignatius Ajuru University of Education

Abstract- In this report the periphyton community of a tidal creek in Bonny River was investigated, study site was demarcated to five stations where samples were collected for six (6) months. Laboratory analysis was based on standard methods and involved identification and enumeration of periphytic organisms. The periphytic community of the study area was composed of 83 species belonging to six classes and 61 genera. The most dominant class was Bacillariophyta represented by 32 species, followed by Chlorophyta with 18 species, Cyanophyta with 17 species, Pyrrophyta 7 species, and Euglenophyta and Xanthophyta with 5 and 4 species respectively. The order of total class abundance contrasted with that of species richness, following in decreasing order – Bacillariophyta, Cyanophyta, Euglenophyta, Pyrrophyta, Chlorophyta and Xanthophyta. The increasing presence of Cyanophyta and Euglenophyta in all stations suggests that study area is under stress which may have been caused by petroleum hydrocarbon.

Keywords: *periphyton, cyanobacteria, bio-indicators, species richness, class abundance, dominance.*

GJSFR-C Classification: FOR Code: 279999

PRELIMINARY INVESTIGATION INTO THE PERIPHYTON COMMUNITY OF A TIDAL CREEK BONNY RIVER RIVERS STATE NIGERIA

Strictly as per the compliance and regulations of:

Preliminary Investigation into the Periphyton Community of a Tidal Creek, Bonny River, Rivers State, Nigeria

O. A. F. Wokoma ^a & U. Friday ^a

Abstract- In this report the periphyton community of a tidal creek in Bonny River was investigated, study site was demarcated to five stations where samples were collected for six (6) months. Laboratory analysis was based on standard methods and involved identification and enumeration of periphytic organisms. The periphytic community of the study area was composed of 83 species belonging to six classes and 61 genera. The most dominant class was Bacillariophyta represented by 32 species, followed by Chlorophyta with 18 species, Cyanophyta with 17 species, Pyrrophyta 7 species, and Euglenophyta and Xanthophyta with 5 and 4 species respectively. The order of total class abundance contrasted with that of species richness, following in decreasing order – Bacillariophyta, Cyanophyta, Euglenophyta, Pyrrophyta, Chlorophyta and Xanthophyta. The increasing presence of Cyanophyta and Euglenophyta in all stations suggests that study area is under stress which may have been caused by petroleum hydrocarbon.

Keywords: periphyton, cyanobacteria, bio-indicators, species richness, class abundance, dominance.

I. INTRODUCTION

Periphytons are a complex mixture of algae, cyanobacteria, heterotrophic microbes and detritus that are attached to submerged surfaces such as rocks, macrophytes etc. in most aquatic ecosystem (Ekhator, 2010). Periphytons are the dominant producers and sources of autochthonous organic matter in most standing water, since most lakes and reservoirs are predominantly small and shallow (Wetzel, 1996), similarly, when current velocity is appreciable nearly all primary production is from periphyton as phytoplankton are unstable and not abundant. Gaiser, (2008) observed that periphytons are a crucial and fundamental part of the food web, as the primary food source for small consumers such as fish and invertebrates. Through the physicochemical interactions with the biotic and abiotic environment, periphyton affects many biotic communities and ecosystem features such as nutrient circling, dissolved oxygen concentration and soil/sediment quality through photosynthesis to sustain much of the aquatic life in its surrounding (Gaiser, 2008; Vadéboncoeur and Steinman, 2002). According to Lowe and Pan(1996)

periphyton contributes significantly to the biodiversity of these ecosystems.

Periphytons serve as an important food source for invertebrates, tadpoles, and some fishes (Finlay, et. al., 2002), and can absorb contaminants removing them from the water column and limiting their movement through the environment (Wikipedia, 2012). Periphyton due to their sedentary nature, species composition, community structure, succession and biomass are sensitive to changes in water quality and are often used as bio-indicators of ecological conditions and change in response to human and natural disturbance (Cascaller et. al., 2003) and in classification of water ways (DeNicola, Etyo, Wemaere and Irvine, 2004). Their responses to pollutants or water quality changes according to Cairns, (2003), can be measured in a variety of scales or levels viz, physiologically, population, community etc levels. Their fast response to changes in the environment, naturally high species richness and their high level of tolerance/ sensitivity makes them ideal bio-monitors (Wikipedia, 2012).

Periphytons have a very high rate of reproduction, and in ideal conditions (sufficient supply of light and nutrients) their population can explode into blooms which can contribute to oxygen depletion, fish kills and aesthetic problems that can interfere with recreational use (DeNicola, et. al., 2004; Siva and John, 2002).

Despite its ecological significance, periphytic algae has received less attention from Hydrobiologists than planktons (phytoplankton and zooplankton), and in the study area there is no report on the periphytic community in the past. This study is therefore aimed at providing information to fill this gap.

II. MATERIALS AND METHODS

a) Description of the study area

The study area – Kua-Kinabere creek, in Ogoni land is a mangrove wetland, an estuary of the Bonny River serving as transportation channel or route and is notorious for oil activities including illegal oil bunkering and or refining.

Prior to commencement of sampling, a reconnaissance visit was paid to the study area during which five (5) sampling stations were identified. Two

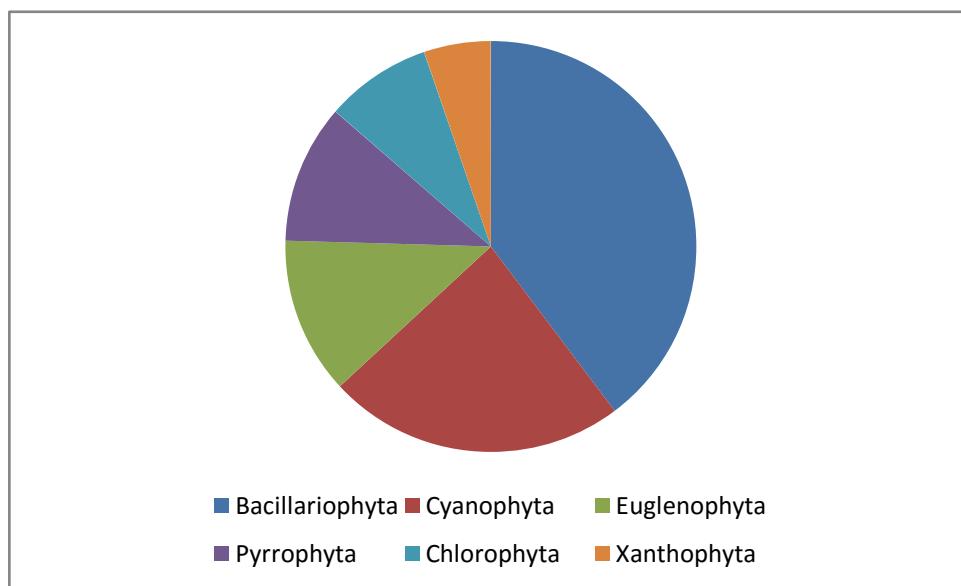
Author a: Dept. of Biology, Ignatius Ajuru University of Education, P. M. B. 5047, Rumuolumeni, Port Harcourt.
e-mail: okoriwokoma@yahoo.com

replicate samples were collected from each station for six (6) months (March to August). The geographical location of the various sampling stations obtained with a hand-held Global Positioning System (G.P.S) instrument (GARMIN EXTREX) are, (STN 1) N 04040.017°, E 007014.081°; (STN 2) N 04040.506° E 007013.577° (STN 3) N 04040.699° E 007014.800° (STN 4) N 04041.184° E 007014.199° and (STN 5) N 04041.169° E 007014.256°.

b) Field Methods

Periphyton samples were collected at low tide in each of the five sampling stations in triplicates by randomly throwing a 2cm by 2cm quadrant on the surface of aquatic macrophytes or any other object and carefully scrapping off the quadrant area with a scalpel, which was then emptied into a properly labeled. To each of the container was then added a few drops of eosin solution to stain the tissues of the organisms and make them visible during microscopic analysis in the laboratory. The samples were then preserved in 10% formalin solution with few drops of eosin before transporting to the laboratory in an ice-chest cooler for identification and enumeration.

c) Laboratory Methods


In the laboratory samples were allowed to stand for a minimum of 24 hours before decanting the supernatant. The supernatant was removed carefully until a 50ml concentrated sample was achieved. The concentrated sample was then properly shaken and 1ml sub-sample was collected from it and transferred into a Sedgewick Rafter counting chamber using a stampel pipette. Identification and enumeration was carried out under a binocular compound microscope with magnification of 40 x 400. Three replicates of the sub-

samples were analyzed. For each sample, each solitary cell was counted as one unit in a cell by cell basis. The result was then expressed in number of organisms per ml of sample.

Identification and characterization of the periphytic algae species was based on the descriptive keys and illustrations of Maesen, (1978) and Durand and Leveque (1980).

III. RESULTS AND DISCUSSION

The periphyton community in the study area was represented by 83 species, spread across 6 classes and 61 genera. Bacillariophyta had the highest number of species -32, followed by Chlorophyta with 18 species, Cyanophyta was represented by 17 species, Pyrrophyta, Euglenophyta and Xanthophyta, had 7, 5 and 4 species respectively, as shown in Table 1. However, the total abundance of the periphytic community showed that the diatoms Bacillariophyta were the most dominant class accounting for 39.72% of the population, followed by the class Cyanophyta with 23.39%. The next is class Euglenophyta with 12.34%, Pyrrophyta with 10.93%, Chlorophyta with 8.35% while at the rear with 5.27% is class Xanthophyta, see figure 1. The most occurring species is the diatom *Stauroneis acuta* with 5100 individuals followed by *Ophiocytium capitatum* of class Xanthophyta with 3200 individuals, following next with a population of 2700 is *Peridinium bipes* of class Pyrrophyta. However, the total abundance in decreasing order of dominance is Bacillariophyta>Cyanophyta>Euglenophyta>Pyrrophyta>Chlorophyta>Xanthophyta.

Figure 1: Periphyton Class Total Abundance in the study area

Table 1: Checklist of Periphytic algae in the study area

BACILLARIOPHYTA	<i>Achnantheshungarica</i>	<i>Aphanothecaceclathrata</i>
<i>Melosiralistans</i>	<i>Pinnularia braunii</i>	<i>Oscillatoria lacustris</i>
<i>M. varians</i>		<i>Spirulina subtilissima</i>
<i>M. distans</i>		<i>Raphidiopsis curvata</i>
<i>M. pusilla</i>	CHLOROPHYTA	<i>Anabaenopsis raciborskii</i>
<i>Cyclotella meneghiniana</i>	<i>Closterium dianae</i>	<i>Coelosphaerium dubium</i>
<i>C. comta</i>	<i>C. intermidium</i>	<i>Gomphosphaeria lacustris</i>
<i>C. operculata</i>	<i>C. moniliferum</i>	<i>Gloeocapsa turgida</i>
<i>Synedra ulna</i>	<i>Carteria multifilis</i>	<i>Gloeotrichia echinulata</i>
<i>S. vaucheriae</i>	<i>C. globosa</i>	
<i>Cymatopleura solea</i>	<i>Volvox aureus</i>	
<i>C. elliptica</i>		EUGLENOPHYTA
<i>Navicula cuspidata</i>	<i>Gloeotaenium loitlesbergerianum</i>	<i>Euglena sanguinea</i>
<i>N. radios</i>	<i>Asterococcus limneticus</i>	<i>E. oxyuris</i>
<i>N. gracilis</i>	<i>Schroederia setigera</i>	<i>E. variabilis</i>
<i>Stauroeisanceps</i>	<i>Ankistrodesmus falcatus</i>	<i>Trachelomonas dubia</i>
<i>S. acuta</i>	<i>Radiococcus nimbatus</i>	<i>T. volvocina</i>
<i>Gyrosigma attenuatum</i>	<i>Gonatozygon aculeatum</i>	<i>T. armata</i>
<i>Nitzschia denticula</i>	<i>Gymnozygamoniliformis</i>	<i>Colacium cyclopica</i>
<i>Surirella tenera</i>	<i>Cosmarium granatum</i>	
<i>S. elegans</i>	<i>Tetraclanthos lagerheimii</i>	PYRROPHYTA
<i>Cymbella hauckii</i>	<i>Actidesmium hookeri</i>	<i>Glenodinium cinctum</i>
<i>Epithemia zebra</i>	<i>Eudorina elegans</i>	<i>G. quadrident</i>
<i>Rhopalodiagibba</i>	<i>Golenkinia radiata</i>	<i>Gonyostonum semen</i>
<i>Flagilaria capucina</i>		<i>Peridinium bipes</i>
<i>Cocconeishustedtii</i>	CYANOPHYTA	<i>Chiliomonas paramaecium</i>
<i>Cymatopleura solea</i>	<i>Anabaena flos-aquae</i>	
<i>Tabellaria fenestrata</i>	<i>Affinis</i>	XANTHOPHYTA
<i>Pinnularia appendiculata</i>	<i>hassalii</i>	<i>Ophiocytium capitatum</i>
<i>Asterionella formosa</i>	<i>Phormidium valderiae</i>	<i>O. cochleare</i>
<i>Stephanodiscus hantzschii</i>	<i>P. mucicola</i>	<i>Tribonema viride</i>
	<i>Microcystis aeruginosa</i>	<i>Gloeobotrys limneticus</i>
	<i>M. pulvrea</i>	
	<i>Nostoc plantonicum</i>	

The 83 species of periphyton observed in this investigation is lower than the 149 and 169 species gotten by Carrick and Steinman, (2001) and Chindah, (2004), respectively and even much lower than the 457 species recorded by Algarte, Siqueira, Murakami and Rodrigues (2009) in the Upper Parana River floodplain, but is comparable to the 77 species reported by Chindah, (1998) in the Upper Reaches of the New Calabar River and the 75 species recorded by Wokoma, Umesi and Edoghotu, (2010) in the Elechi Creek. It is however higher than the 30 species recorded by Onyema et al., (2010) in the shoreline of Lagos as well as the 54, 32 and 22 species reported by Wood, Kuluajek, Winton and Phillips (2011) in Rotoiti, Tikitapu and Okareka Lakes respectively. Several factors may account for the observed variation of periphyton species richness, such as differences in substrates from which periphyton was gotten, variations in nutrient concentration, habitat differences in water quality as well as changing conditions in some physicochemical parameters such as pH, Conductivity and Salinity gradient, (Chindah, 2004). The dominance of the periphytic algal community by the diatoms

(Bacillariophyta) is a common feature in most Niger Delta water bodies. There was however a clear departure from this trend in the report of Algarteet. al., (2009) where Zygnemaphyceae was observed as the most dominant class, followed by class Bacillariophyceae. Generally, the pattern of species richness in this study in decreasing order is (Bacillariophyta>Chlorophyta>Cyanophyta>Euglenophyta>Pyrrophyta>Xanthophyta) at variance with the trend reported by Chindah et. al. (2006) – (Bacillariophyta>Chlorophyta>Euglenophyta>Cyanophyta) and Wood et. al., (2011) – Bacillariophyta>Cyanophyta>Chlorophyta>Euglenophyta>Xanthophyta = Chrysophyta.

The few species observed and even the low abundance of periphyton in this present investigation could be associated to the low nutrient content of the river. However, the order of species dominance and community structure were slightly different.

The order of total abundance observed in this study showed Bacillariophyta as the most dominant class followed by Cyanophyta and Euglenophyta as the second and third most dominant classes. The high

number of Cyanophyta and Euglenophyta above Chlorophyta (with more species) indicates that the prevalent environmental conditions are favourable to them more than the others. This suggests that the study sites are contaminated with petroleum related wastes which may have enhanced their growth relative to the other classes. This is corroborated by the earlier reports of Wokoma et al., (2012) Chindah et. al., (2006) and Chindah, (1998) who concluded that cyanophyta thrives in oil contaminated environment.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Algarte, V. M., Siqueira, N. S., Murakami, E. A., and Rodrigues, L. (2009). Effects of hydrological regime and connectivity on the interannual variation in taxonomic similarity of periphytic algae. *Brazilian Journal of Biology*, 62(2, suppl.): 606-616.
2. Cairns Jr., J. (2003): Biotic Community Response to stress in Biological Response Signatures: Indicator Patterns using Aquatic Communities. Simon, T. P. Ed. Boca Raton, Florida, CRC Press.
3. Carrick, H. J. and Steinman, A. D. (2001): Variations in periphyton biomass and Species composition in Lake Okeechobee, Florida (USA): Distribution of Algal guilds along environmental gradients. *Arch. Hydrobiol.* 152(3): 411 – 438.
4. Cascaller, L., Mastranduono, P., Mosto, P., Rheinfeld, M., Santiago, J., Tsoukalas, C. and Wallace, S. (2003). Periphytic algae as bioindicators of nitrogen Inputs in Lakes. *Journal of Phycology*, 39(1), 7- 18.
5. Chindah, A.C. (2004): Response of Periphyton Community to Salinity gradient in Tropical Estuary, Niger Delta. *Polish Journal of Ecology*, 52(1), 83 – 89.
6. Chindah, A. C. (1998). The effect of industrial activities on the periphyton Community at the upper reaches of the New Calabar River, Niger Delta, Nigeria. *Water Resources*, 32(4), 1137 – 1143.
7. Chindah, A. C., Braide, S. A., Obianefo, F. and Obunwo, C. C. (2006): Water Quality and periphyton community of a stream system receiving Municipal Waste discharges in Rivers State, Niger Delta, Nigeria. *Estud. Bio.* 28(4): 73- 89.
8. DeNicola, D. M., Eytö, E. d., Wemaere, A. and Irvine, K. (2004). Using Epilithic algal communities to assess trophic status in Irish Lakes. *Journal of Phycology*, 40(3), 481 – 495.
9. Durand, J.R. & Leveque, C. (1980). Flore etfauneaquantiques de l'AfriqueCah. Off. Rech. Sci. Tech. Outre – Mer. 1, 5 – 46.
10. Ekhator, O. (2010): Composition, occurrences and checklist of periphyton algae of some water bodies around Benin City, Edo State, Nigeria. *Ethiopian Journal of Environmental Studies and Management*, 3(3), 1 – 10.
11. J. C., Khandwala, S. and Power, M. E. (2002). Spatial scales of carbon flow in a River food web. *Ecology*, 83(7), 1845 – 1859.
12. Gaiser, E. (2008). Periphyton as an indicator of restoration in the Everglades. *Ecological Indicators*, 9(6), 537 – 545.
13. Lowe, R. L. and Pan, Y. (1996): Benthic algal communities as biological monitors, in *Algal Ecology: Freshwater Benthic Ecosystems*, R. J. Stevenson, M. L. Bothwell and R. L. Lowe, Eds. San Diego California, Academic Press.
14. Maosen H. (1978). Illustration of Freshwater Plankton. Shangai: Agricultural Press.
15. Onyema, I. C., Onwuka, M. E., Olatimehin, A. O., Lawal, S. T., Babalola, R. M.
16. Olaniyi, A. J., Morgan, P. and Suberu, T. B. (2010): Periphyton algae Dynamics at the University of Lagos shoreline in relation to physico-Chemical characteristics. *Life Science Journal*, 7(4), 40 – 47.
17. Siva, C. J. and John, J. (2002): Urban land use and periphytic diatom communities: a comparative study of three metropolitan streams in Perth, Western Australia. *Proceedings of the 15th International Diatom Symposium*, Perth, Australia. pp. 125-134.
18. Vadeboncoeur, Y. and Steinman, A. D. (2002): Periphyton functionin lake ecosystems. *Scientific World Journal*, 2: 1449–1468.
19. Wetzel, R. G. (1996). Benthic algae and nutrient cycling in standing freshwater Ecosystems. In: Stevenson, R. J., Bothwell, M. and Lowe, R., Editors, *Algal Ecology: Benthic Algae in Freshwater Ecosystems*. New York, Academic Press.
20. Wikipedia the free Encyclopedia (2012): Periphyton. Retrieved 18th May, 2012.
21. Wokoma, O.A.F.; Umesi, N and Edoghotu, A.J. (2010): Organic pollution and Periphyton abundance of the Upper Bonny estuarine system, Nigeria. *International Journal of Educational Development (IJOED)* 1 (1): 27 – 35.
22. Wokoma, O.A.F. and Friday, U. (2012): Effect of petroleum hydrocarbon from municipal drainage on the periphyton community of a tidal Creek. *Continental Journal of Environmental Sciences*, 6(1): 25 -31.
23. Wood, S. A., Kuluajek, J. M., Winton, M. D. and Phillips, N. R. (2011): Species Composition and cyano-toxin production in periphyton mats from three Lakes of varying trophic status. *FEMS Microbiology Ecology*, 79(2): 312 – 326.