

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: B
CHEMISTRY
Volume 18 Issue 3 Version 1.0 Year 2018
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Production of Multilayered Nanostructure from Zingiber Officinale by Spray Pyrolysis Method

By S. Kalaiselvan, N Mathan Kumar & J Manivannan
SNS College of Technology

Abstract- This present work describes exploring cost-effective a natural renewable Environment-friendly green precursor for the synthesis of Multi-walled carbon nanotubes (MWCNTs) using methyl ester of Zingiber officinale oil over Fe-Co impregnated alumina support at 850°C under N₂ atmosphere. The characterization of the as-grown carbon materials was analyzed by Scanning electron microscopy (SEM), Highresolution transmission electron microscopy (HRTEM), XRD and Raman spectroscopic analysis. The bimetallic catalyst of Fe and Co supported on alumina gel particles improves the quality and uniformity in diameters of CNTs. The diameters of as-synthesized nanotubes are in the range of 22 nm to 24 nm.

Keywords: CNTs, spray pyrolysis, SEM, HRTEM, raman & XRD & zingiber officinale oil.

GJSFR-B Classification: FOR Code: 250399

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Production of Multilayered Nanostructure from *Zingiber Officinale* by Spray Pyrolysis Method

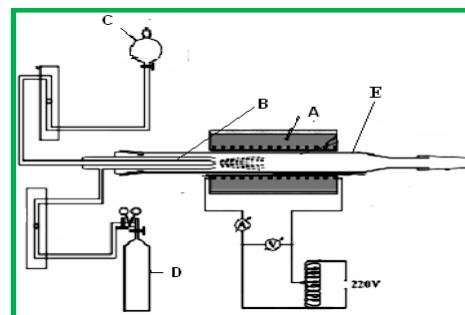
S. Kalaiselvan ^a N Mathan Kumar ^a & J Manivannan ^b

Abstract- This present work describes exploring cost-effective a natural renewable Environment-friendly green precursor for the synthesis of Multi-walled carbon nanotubes (MWCNTs) using methyl ester of *Zingiber officinale* oil over Fe-Co impregnated alumina support at 850°C under N₂ atmosphere. The characterization of the as-grown carbon materials was analyzed by Scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), XRD and Raman spectroscopic analysis. The bimetallic catalyst of Fe and Co supported on alumina gel particles improves the quality and uniformity in diameters of CNTs. The diameters of as-synthesized nanotubes are in the range of 22 nm to 24 nm.

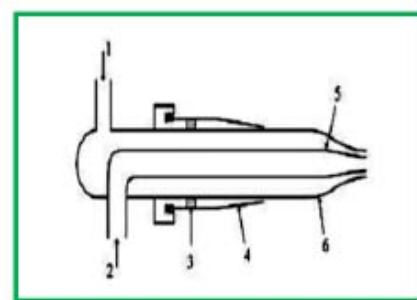
Keywords: CNTs, spray pyrolysis, SEM, HRTEM, raman & XRD & *zingiber officinale* oil.

I. INTRODUCTION

Right from the discovery by Iijima [1], carbon nanotubes attracted significance attention. In general, CNTs are synthesized by arc discharge, laser ablation, and CVD or spray Pyrolysis. Among these method spray pyrolysis method is regarded as a promising method. There are few reports on the synthesis of CNTs from various natural precursors [2-11]. The advantages of the plant derived carbon precursor are that it is a very cheap, renewable biomaterial, green, and abundantly available hence, the resulting product could be commercialized at a lower cost. The present work aims to utilize renewable precursor *Zingiber officinale* oil for the synthesis of CNTs over Fe-Co impregnated Silica support.


II. EXPERIMENTAL METHODS

The scheme of our home-made experimental spray-pyrolysis set-up and sprayer used for the synthesis of carbon nanotubes were represented in Figure 1 and 2.


a) Preparation Catalyst Nanoparticles and Synthesis of Nanotubes

The bimetallic catalyst of cobalt and iron supported on silica gel particles were used as a catalyst for CNT growth by spray pyrolysis. The mixture of Co(NO₃)₃. 3H₂O and Fe(NO₃)₃. 6H₂O were heated at 90 °C to liquefy the Co and Fe nitrates. A one-third weight of alumina gel concerning to the total weight of metal

nitrates was added into the liquefied mixture of Co and Fe nitrates and stirred well for 30 min. The mixture of catalyst was cooled down to room temperature and kept in the oven for drying at 60 °C for 24 hours.[12] The complete dried catalyst ground into fine particles in an agate mortar. The fine powder were then calcined for 1 hour at 450 °C and then re-ground before loading into the reactor. The catalyst placed on the quartz boat. The boat placed in the heating furnace. The carrier gas nitrogen (100 ml/min) was flushed out before switch on the reaction furnace to remove air and create nitrogen atmosphere.

Figure 1: The schematic diagram of the spray pyrolysis set-up. (A) Heating source, (B) Spray nozzle, (C) Carbon feedstock inlet, (D) Nitrogen gas, (E) Quartz tube.

Figure 2: Schematic diagram of the Sprayer 1. 1. Gas inlet; 2. Solution inlet; 3. Tightening; 4. Polished glass-to-glass connection; 5. Inner Pyrex tube; 6. Outer Pyrex tube

The temperature was raised up to the desired growing temperature. Subsequently, *Zingiber officinale* oil introduced into the quartz tube through the spray nozzle, the flow was maintained using the saline tube at the rate of 0.5 ml/min. The deposition time lasted for 45 minutes for each deposition at different temperatures from 550-850°C. The reactor was then allowed to cool to

Author a: Department of Chemistry, SNS College of Technology, Coimbatore, TN, India. e-mail: kalaichem82@gmail.com

Author b: Department of Mechanical Engineering, RVS School of Engineering & Technology, Dindigul, TN, India.

room temperature with nitrogen gas flowing. The carbon product on the silica support was collected and characterized by Raman Spectroscopy, X-ray diffraction (XRD), scanning electron microscope and High-resolution transmission electron microscope (HRTEM).

III. RESULTS AND DISCUSSIONS

Fig. 3a and 3b show the scanning electron microscopy image of the as-grown nanostructures over

Fe-Co bimetallic catalyst, impregnated in alumina at 850 °C under the flow of nitrogen by CVD assisted spray pyrolysis method. SEM image reveals that MWNTs grew nicely on the surface of the Alumina particles.

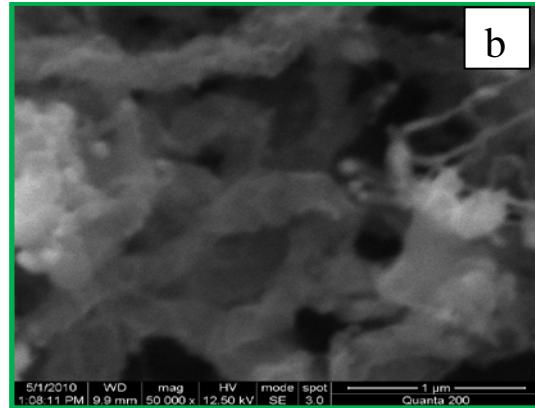
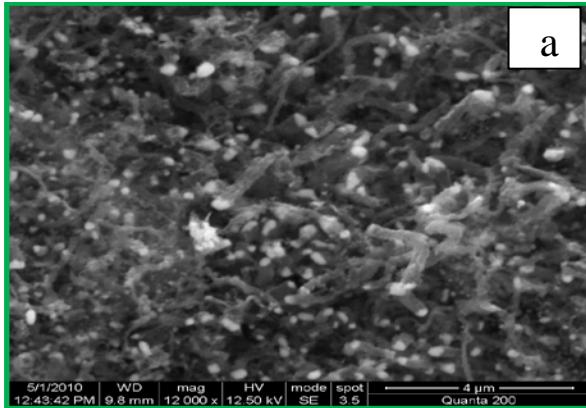



Fig. 3: a and b: SEM images of CNTs grown Fe-Co supported on Alumina at 850 °C

In Fig. 5a and 5b we have presented the high-resolution HRTEM images of MWNTs, grown over Fe-Co bimetallic catalyst impregnated on Alumina support at 850 °C with a flow rate of the methyl ester of *Zingiber*

officinale oil at 0.5 mL per minute. Fig. 4a & 4b show that the inner diameters of the nanotubes were in the range of 10-12nm and the outer diameters of the grown nanotubes 22-24nm. The inner core visible (Fig. 4b).

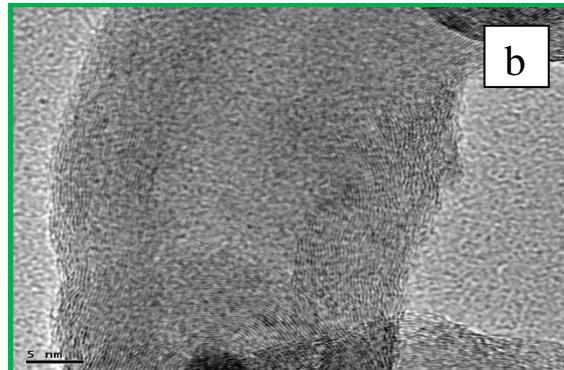
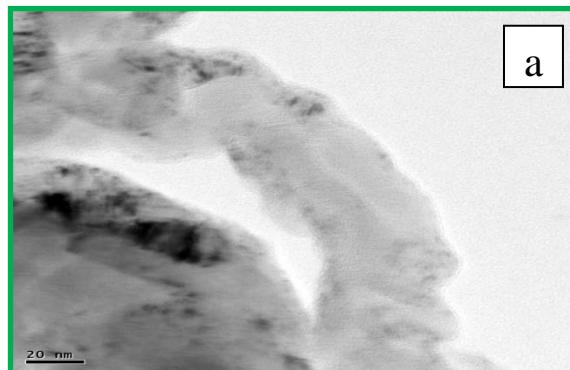



Fig. 4: a and b: HRTEM images of CNTs grown Fe-Co supported on Alumina at 850 °C

Raman Spectroscopy and XRD Analysis

The results of Raman spectroscopy of MWNTs grown on the catalyst surface at 850 °C (Fig-5), indicating two characteristic peaks at 1344.52 cm⁻¹ and 1591.20 cm⁻¹ which correspond to D and G bands, respectively. The G bands are related to stretching vibration in the basal plane of graphite crystal. The D peaks at 1344.52 cm⁻¹ attributed to the defects in the curved graphene sheets. For high-quality samples without defects and amorphous carbon, the I_D/I_G ratio is often less than 3%[13,14]. I_D/I_G ratio was found to be 0.97 indicates lower defects which is in good agreement with theoretical evidence. Fig-6 shows the X-Ray

Diffraction pattern of MWNTs. The intense peaks at 26.1° and 44.2° can be as indexed (002) and (101) reflections of hexagonal graphite. Appearance of characteristic peak of graphite shows the presence of Multi-walled carbon nanotubes in the sample [15].

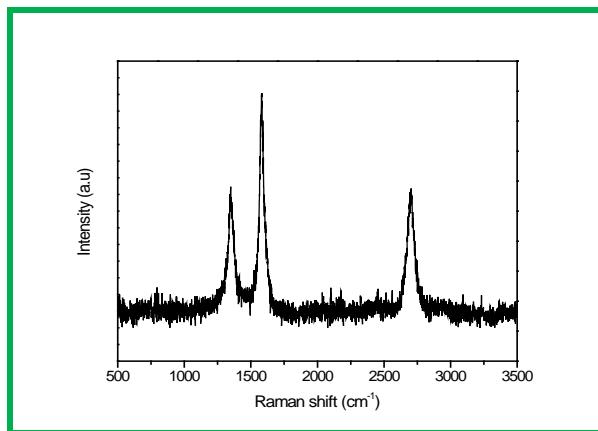


Fig. 5: Raman Spectrum of grown CNTs at 850°C

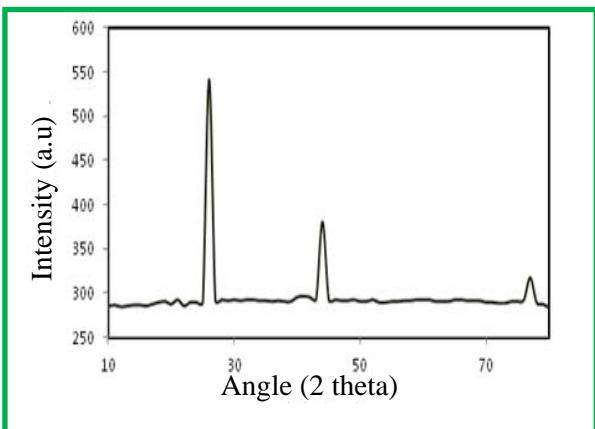


Fig. 6: XRD spectrum of grown CNTs at 850°C

IV. CONCLUSION

We accomplished the synthesis of MWCNTs at a temperature of 850°C using methyl esters of *Zingiber officinale* oil a renewable natural precursor, as a carbon source. CNTs morphology and structure were investigated by SEM, HRTEM, XRD and Raman spectroscopy. It was found that temperature was enough to transform hydrocarbon source into carbon nanotubes with heterogeneous diameter, good quality and yield at this temperature. The experiment has also succeeded in minimizing I_D/I_G ratio of about 0.97. The highest yield of 68% was obtained at the same temperature.

REFERENCES RÉFÉRENCES REFERENCIAS

1. S. Iijima, Helical microstructures of graphite carbon, *Nature*, 354, 56-58, 1991.
2. M. Kumar and Y. Ando, A simple method of producing aligned carbon nanotubes from an unconventional precursor – Camphor, *Chem. Phys. Lett.*, 374, 521-526, 2003.
3. S. Karthikeyan and P. Mahalingam, Studies of yield and nature of multi-walled carbon nanotubes synthesized by spray pyrolysis of pine oil at different temperatures, *Int. J. Nanotechnol. Appl.*, 4, 189-197, 2010.
4. S. Karthikeyan and P. Mahalingam, Synthesis and characterization of multi-walled carbon nanotubes from biodiesel oil: green nanotechnology route, *Int. J. Green Nanotechnol. Phys. Chem.*, 2, 39-46, 2010.
5. Kalaiselvan, S, Balachandran, K, Karthikeyan, S & Venkatesh, R, Renewable precursor based MWCNTs synthesized by spray pyrolysis method for DSSC application, *Silicon* (Springer) doi: 10.1007/s12633-016-9419-7, 2016.
6. V.S. Angulakshmi, K. Rajasekar, C. Sathiskumar and S. Karthikeyan, Growth of vertically Aligned carbon nanotubes by spray pyrolysis using green precursor-methyl ester of *Helianthus annuus* oil, *New Carbon Mater.*, 28, 284-288 , 2013.
7. S. Karthikeyan, S. Kalaiselvan, D. Manorangitham and S. Maragathamani, Morphology and Structural Studies of Multi-Walled Carbon Nanotubes by Spray Pyrolysis using *Madhuca Longifolia* Oil, *J. Environ. Nanotechnol.*, 2, 15-20, 2013.
8. Kalaiselvan, S, Gopal, K & Karthikeyan, S, Synthesis and characterization of multiwalled carbon nanotubes using *Brassica Juncea* oil as carbon source, *Carbon – Sci. Tech.*, vol. 8, no. 1, pp. 25-31, 2016.
9. S. Kalaiselvan, M. Karthik, R. Vladimir and S. Karthikeyan, Growth of Bamboo like Carbon Nanotubes from *Brassica Juncea* as Natural Precursor, *J. Environ. Nanotechnol.*, 3, 92-100, 2014.
10. Kalaiselvan, S, Jothivenkatachallam, K & Karthikeyan, S, The Effect of Catalyst composition on the Growth of Multi-walled Carbon nanotubes from Methyl esters of *Oryza sativa* oil, *J. Environ. Nanotechnol.*, vol. 5, no. 1, pp. 33-38. 212, 2016.
11. Kalaiselvan, S, Karthikeyan, S & Manivannan, G, Growth and Structural Studies of Carbon nanotube From Unconventional Natural Precursor by Spray Pyrolysis Approach, *International Journal of Applied Engineering Research*, vol. 10, no. 21, pp. 242197-42201, 2015.
12. Rakesh A. Afre., T. Soga., T. Jimbo., Mukul Kumar., Y. Ando., M. Sharon., Prakash. RSomani and M. Umeho. Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies *Microporous and Mesoporous Materials* 96, 184-190, 2006.
13. M. Kumar and Y. Ando. Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support *Carbon* 43, 533-540, 2005.
14. Robert J. Andrews, C.F. Smith and A.J. Alexander, *Carbon* 44, 341, 2006.
15. Cao, C. Xu, J. Kiang, D. Wu, B and Wei. *Chem. Phys. Lett.*, 344, 13, 2001.