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Section(1) 

In this section, we write a Matlab program and apply it to solve the chosen 
problems. The program uses sub programs :- 

 1. htu(G,A): to evaluate the inverse of the active Lagrangian matrix, using the 
QR-factorization of the matrix of constraints when the tableau is 

complementary).[[13],[14]]. (We know that H,U and T define the inverse of the upper left 
partition of the basis matrix).This calls for making them available at every 

complementary tableau[[2],[19 ]].  

2. init(A,G) to obtain an initial feasible point to the main algorithm.  
3. solver (A,b), is used to solve a subsystem in the main algorithm.  
4. lufactors (A), is used by solver(the above program). [17] 

The Program 

The program is designed to start with the Hessian matrix G, which is an � × � 

symmetric matrix, and A is an � × � matrix of the constraints, g the gradient of and 

b, the vector of right-hand coefficients .[[6],[7],[9]].  
f,

bi

Chosen Problems 

Abstract-  In this paper we have two sections. In section (1), we write a Matlab program and apply it to solve chosen 
problems in general QP –problems, we use sub programs[11]. Section (2) conclude our work reported in this paper 
gave no account to the special structures that the matrix of constraints A might have. The work is ideal when A is dense, 
that is, full of non-zero elements. [19 ]. 

The above program has been tested by some problems and proved to work adequately. 

 *     Minimize : 2

2

2

121 4168 xxxx 

Subject to: 521  xx

We solve a general quadratic programming problems[[15],[4],[17]] , obtaining a 
local minimum of a quadratic function subject to inequality constraints. The method 
terminates at a KKT-point in finite steps[8]. No effort is needed when the function is 
non- convex[[10],[8] ,[ 19]]. We give the general description of the matrices that uses in 
the program and tested the program by a number of problems. 
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la =  

         1.7500

       -8.2500

       16.0000
x =  

         0

         0

         

2

la = 
         1.7500

        -8.2500

        16.0000 
>> x  

x =  

                    

0

          

1.5000

          

2.0000

6

>> la

la = 

          

11.2188

20.5000
0.6563

III. Conclusion
Section(2)

The work reported in this paper gave no account to the special structures that 
the matrix of constraints A might have. The work is ideal when A is dense, that is, full 
of non - zero  elements.  In  many problems  the  unknown  variables) are 
required to satisfy-bound restrictions, in which case we start the problem as follows: 

),...,1( nixi 

iii

T

TT

uxI
bxA
tosubject

xgxGximize





5.0min

                            (2.1)

Where and  are respectively the lower and upper bounds for the variable  
A is � × � and assumed to be dense,    is an m vector, G is an � × � symmetric matrix 
and g is an n-vector. In (2.1) except in very special situations. A is dense since the 
bound constraints are separately considered. In this section we give our trial in treating, 
the case when  and is infinite, that is when ,  we do not give general 
proofs here, nor do we present a compact description of an algorithm. Instead we will 

show the steps to be followed in a similar way similar to those given in our work 
reported in this paper [19]. 

The problem to be treated is
 

Ii 𝑢𝑖 xi,
b

Ii  = 0 ui ixi  0
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


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vyx

xyV
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TT
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                       (2.3)

where v is the vector of slack variables (2.3) could be put in the form :  qZMWM  21
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Ref

let be  the  vector  of  multipliers  corresponding  to and be the 
vector of multipliers[1], corresponding the bound constraints . 

The KKT – conditions to (2.2) we get 
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Here G11, G12 and  G22  define the following partition of G.
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Accordingly the basic variables are 
112 ,, yx  and 

2v . Their respective non-basic com-

plements are 112
,, xvy and 

2 .

Omitting the superscripts,  let q solve

 
21,min qqy                         (2.5)

 21,qqq

Where
1q and 

2q satisfy :
11

1 min
ni

iq yy


            (2.6)

iq  min2                  (2.7)

11 mi 

To carry on the description let q = q2 . If  02 q ,  then we are at  a              point. Otherwise KKT-

the complement vq2  is chosen to be increased.  

Accordingly the basic variables change by:

2

\

22 qvxdxx                                        (2.8)

2

\

11 qx vd                                         (2.9)

2

\

11 qyvdyy                                           (2.10)

2

\

11 qx vdvv                                           (2.11)

Notes
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where the dashes indicate the current values yx ddd ,,  and vd are the 

solution of  :
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x
T dAvd 22                                              (2.15)

2qv
2q 2qv

1Px
2q

1Py
1Px

2P 2Pv

The  increase  of is  continued  until  either increase to  zero  or  is 
blocked by either a basic decreasing to zero. The next step is to restart again if   

decreases to zero first, in which case we are at another [19]   complementary 

tableau[2]. Or one of the complements of  or of is to be changed in a 
similar way to that described in the main work of the paper. The process will keep on 
going until the solution is located. Also we point out another two incomplete features of 
our algorithm. They are: 

1) It did not give any account to degeneracy. 

2) Updating the factors of is not carried in all cases.  

So,  according to [ [14 ],[15],[16]], is equivalent to active set methods in convex problems. 
When solving non-convex problems the method is more systematic than the variants of 
the active set methods[ [8],[10]]. 

)(K
AG

The latter methods need to change the strategy of choosing the direction of 
search from time to time, and some of them have no clue of what to do in the negative 
definite case[11]. In our work no change in the strategy is needed. In fact no check of 
indefiniteness of the reduced (generalized) Hessian is required. 

Still we believe that our work should be tested in all aspects against the 
(modified) active set methods to reflect the major advantages and disadvantages of our 
work (i.e the active set methods) which dominated the scene for the last twenty years 
(of course to our knowledge). Also our work  need  to be compared with Beal's method  
[11] , [14]], since they are both constrained as simplex-like methods, although we feel 
that the general behavior of our work looks different. However, [14] referenced to the 
equivalence between the active set methods and Beale's method in convex problems. 
Orthoganalization methods are well known in the numerical analysis community for 
their numerical stability. Conversely, normal equation methods are known for their lack 
of numerical stability. QR- factorizations[ [12], [17] ,[18]],can make very good use of 
sparsity of the problem. 
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