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model of a homogeneous thermally conducting orthotropic material whose surface is subjected to   thermal excitations. 
The governing equations are solved by applying Laplace and Fourier transforms technique. Eigen value approach is 
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 I.

 

Introduction

 Most materials experience volumetric variations when are subjected to 
temperature variations

 

and the consequent thermal stresses developed due to 
temperature gradient in the surface vicinity

 

results in micro-crack and others 
imperfection development at the surface of anisotropic materials.

 

Thus owing to 

anisotropic material’s applications in aeronautics, astronautics, plasma physics,

 

nuclear 
reactors and high-energy particle and in various others engineering sciences, theory of

 
thermoelasticity has aroused intense attention in our challenge to understand the nature 
of the

 

interaction between temperature and strain fields.

 
Thermo

 

elasticity theory, Chadwick (1960, 1979) and Nowacki (1962, 1975),

 

of 
thermal disturbances has aroused considerable interest in the last century, but 

systematic research started only after thermal waves –

 

called second

 

sound –

 

were first 
measured in materials like solid helium, bismuth and sodium fluoride. Thus, the 
thermoelasticity theories, which admit

 

a finite speed

 

for thermal signals, have been 
receiving a lot of attention for the past thirty

 

years. In contrast to the conventional 
coupled thermoelasticity theory basedon a parabolic heat equation, Biot (1956), which 
predicts an infinite speed for

 

the propagation of heat, these theories involve a 
hyperbolic heat equation and

 

are referred to as generalized thermoelasticity theories.

 
The Lord and Shulman (1967) theory introduces a single time constant todictate 

the relaxation of thermal propagation as well as the rate of change ofstrain rate and the 
rate of change of heat generation, and obtained a wave-type heat equation by 
postulating a new law of heat conduction to replace the

 

classical Fourier law for 
isotropic bodies.

 

Green and Lindsay (1972) developed a temperature rate dependent 
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thermoelasticity that includes two thermal relaxation times and does not violate the 
classical Fourier law of heat conduction,  when body under consideration has center of 
symmetry.  

Dhaliwal and Sherief (1980) derived the governing field equations of generalized 
thermoelasticity for anisotropic media and also developed a variational principle for 
these equations. Dhaliwal and Rokne (1989) investigated the one dimensional thermal 
shock problem with two relaxation times. Simionescu (1992) studied the effect of 
concentrated loads in quasi-static coupled thermoelasticity. 

Green and Naghdi (1993) proposed a new theory of thermoelasticity without 
energy dissipation and presented the derivation of a complete set of governing 
equations of the linearized version of the theory for homogenous and isotropic materials 
in terms of displacement and temperature fields and proved the uniqueness of the 
solutions of the corresponding initial mixed boundary value problem. An important 
feature of this theory, which is not present in other theories, is that this theory does 
not accommodate dissipation of thermal energy. 

Tzou(1995) and Chandrasekharaiah(1998) developed dual-phase-lags  
thermoelastic model, In these models two different phase-lags, i.e.,one for the heat flux 
vector and other for the temperature gradient have been introduced in theFourier’s 
law. Cimmelli(1998) studied thermodynamics of anisotropie solids near absolute zero. 

Das and Lahiri (2001) employed the eigen value approach to determine the 
thermal stress in an orthotropic elastic slab due to prescribed surface temperatures. 

Kumar and Rani(2004)investigated the disturbance due to mechanical and 
thermal sources in generalized orthorhombic thermoelastic material. 

Kumar and Rani(2007) considered a two-diamensional problem of 
thermoelasticity and discussed the effects of mechanical and thermal sources in 

generalized orthorhombic thermoelastic material. Ieşan and Quintanilla(2009) studied  
inner structure and microtemperatures of thermoelastic bodies. Dolotov and Kill (2012) 
considered a dynamic problem for an elastic half-space with asymmetric normal loading 
on its boundary and obtained expressions for the components of the stress tensor in the 
form of series, possessing asymptotic properties, which converge for short values of the 
time. Liu, Lin and Li(2013) discussed convergence result for the thermoelasticity of 
type III. 

Sherief and El-Latief (2014) applied the fractional order theory of 
thermoelasticity to a 2D problem for a half-space, solved it with Laplace and 
exponential Fourier transform techniques and study the effect of the fractional 
derivative parameter on the behavior of the solution. Marotti de Sciarra and Salerno 
(2014) discussed thermodynamic functions in thermoelasticity without energy 
dissipation. Yermolenko and Ivanov(2014) developed the principles of correspondence 
between static boundary value problems of thermoviscoelasticity and thermoelasticity 
Abbas, Kumar and Rani (2015)studied ramp-type heating in a thermally conducting 
cubic crystal. Zhyhailo and Bajkowski (2016) discussed axisymmetrical problem 
of thermoelasticity for halfspace with gradient coating. El-Karamany and Ezzat 

(2016)proposed three models of generalized thermoelasticity: a single –phase - lag 

Green–Naghdi theory of type III, a dual-phase–lag Green–Naghdi theory of type II and 

of type III for linear anisotropic inhomogeneous material. Fernández and Masid(2017) 
studied  mixture of thermoelastic solids with two temperatures 
          The present work aims to determine the distributions of the  displacement 
component, stresses  and  temperature  distribution in a three-phase-lag model of 
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homogeneous, thermally conducting, orthotropic materialdue to thermal loading in 
presence and absence of the viscosity for two values of time.  Expressions for the 
physical quantities are obtained using eigen value approach and are presented 
graphically. The results of the problem may be applied to a wide class of geophysical 
problems involving temperature change. The physical applications are encountered  in 
the context of problems such as ground explosions and oil industries. This problem is 
also useful in the field of geomechanics, where the interest is in various phenomenon 
occurring in earthquakes and measurement of displacements, stresses and temperature 
field due to the presence of certain sources.  

II.  Basic Equations  

The constitutive relations for orthotropicthermoelastic medium following 
Dhaliwal and Sherief (1980) and Green and Lindsay (1972) are given by  

              
klijklijiaijklijkl cT

t
ec αβτβ =








∂
∂

+−=            ,1t ,ij 1,2,3)lk,j,(i, =       (1)   

Equation of motion for anorthotropic  thermoelastic medium in the absence of 
body force is given by  

,, ijij ut ρ=
 

The heat conduction equation following Green and Nadhdi (1993) and 
Choudhuri (2007) is  
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where list of symbols has been given at the end of the paper. The comma notation is 
used for spatial derivatives and dot notation represents time differentiation.  

ijklc satisfies the (Green)  symmetry conditions:  

.jiklijlkklijijkl cccc ===
 

 III.

 

Formulation And Solution Of The Problem

 
We consider a homogenous, orthotropicthermoelastic half-space in the 

undeformed state at uniform temperature 0T . The rectangular Cartesian co-ordinate 

system (x,y,z) having origin on the plane surface z=0 with z-axis  pointing vertically 
into medium is introduced. The boundary of the half-space is affected  

 

by   thermal

  
loading, which depends on time t and spatial coordinate z (- ∞<<∞ z

 

).
 

 
In equation (2), we have used the contracted Voigt notation for t

he                  

stiffness

 

to

 

according to the scheme

 

   ,423     3,3

 

3    2,2

 

2    1,11 →→→→

 

612     ,513

 

→→ .

 

ijklc
ijc
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(2)  

(3)  

In order to account for the material damping behavior the material coefficients 

ijc are assumed to be function of the time operator  D= 
t∂
∂

, i.e.

*
ijij cc =                                         (4)
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where *
ijc = )(cij D



 

 

 

 

 

 

Assuming that the viscoelastic nature of the material is described by the Voigt 
model of linear viscoelasticity (1963) , we write 

 

                                   
)(cij D = ijc (1+ )

t0 ∂
∂

τ ,                               (5)

 

where 0τ

 

is the relaxation time assumed to be identical for each ijc .

 

 

Making use of the pqc

 

from equation (2)  in equation (1) then the field 

equations and constitutive relations for such a medium in the absence of body forces 
and heat sources in non-dimensional form after suppressing the primes can be rewritten 
as 
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where comma notation is  used for spatial derivatives, we have defined the  
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ρ
v are, respectively, the velocity of compressional waves  

in x-direction and characteristic frequency of the medium.  

 

The initial and regularity conditions are given by
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Applying the Laplace and Fourier transforms
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The equations (14)-(16) can be written as 
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To solve the equation (17),

 

we take

 

Deformation in a Three-Phase-Lag Model of Orthotropic Thermoviscoelastic Material

Notes

                  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
er

sio
n 

I
V

V
Y
ea

r
20

18

21

  
 

( F
)

© 2018   Global Journals

qzepXpzW  ),(),,( ξξ =            (18)   



 

 

  
so that
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 which leads to an eigenvalue problem. The characterstic equation  corresponding to the 
matrix A is given by 
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The roots of equation (20) are )3 ,2 ,1(q =±  . 

The eigenvalues of the matrix A are roots of equation (20). The eigenvector X

)p,(ξ  corresponding to the eigenvalues  q   can be determined by solving the 

homogeneous equation  
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The solution of equation (21) is given by  
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where )6,5,4,3,2,1(B =  are arbitrary constants.  

Thus equation (22) represents the solution of the general problem in the plane 
strain case of generalized homogeneous thermoelasticity by employing the eigenvalue 
approach and therefore can be applied to a broad class of problems in the Laplace and 
Fourier transforms. Displacements and temperature distribution that satisfy the 
regularity conditions (12) are given by  
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IV. Application 

a) Dynamic thermoelasticcase 

i. Thermoelastic Interactions due to Thermal Source 

The boundary conditions at the plane surface are  
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Applying the Laplace and Fourier transforms defined by (12),we get 
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Making use of Eqs. (1), (9) -(13) in the boundary conditions given by Eq. (26)  

and with the help of Eqs. (23) –(25), we obtain the expressions for displacement 
components,  stresses and temperature distribution as
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where
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 respectively, we obtain the expressions 

for temperature gradient boundary and temperature input boundary. 

we set a triangular pulse      
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in equation (26). Using equations (9) -(10) and applying  the Laplace and Fourier 
transform defined by equation (13), we get 
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Case 1:  Instantaneousloading: 
The plane boundary z=0 is assumed to be traction free and is subjected to an 

instantaneous input in temperature, i.e.  

)(F=F(t) 0 tδ 

with  

)28(,)(~
0FpF =  

where 0F  is a constant representing the magnitude of constant temperature and )(tδ  is 

the Dirac delta function.  

Case 2:  Continuous  loading:  

The plane boundary z=0 is subjected to  a  continuousinput in  temperature,  i.e.  

F(t)= ,)(F0 tH  

with  

)29(F)(~ 0

p
pF = where 0F  

is a constant representing the magnitude of constant temperature and )(tH is the 

Heaviside unit step function.  

V.  Special Cases  

Transformed solutions of equation (27) reducesto various models of 
thermoelasticity as:  

(1)
 

Classical thermoelastic model - ijK * =0. 

(2)
 

Dual phase-lag-model of thermoelasticity- ijK >> ijK *
, ijK * =0. 

(3)  Lord shulman (L-S) model- ijK * =0,
 

,0,0 == vT ττ .ττ =q
 

(4)  Coupled thermoelasticity(CT) model- ijK * =0,
 

.0=== vqT τττ  

Deformation in a Three-Phase-Lag Model of Orthotropic Thermoviscoelastic Material

which leads to an eigenvalue problem. The characterstic equation  corresponding to the 

NotesNotes
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(5) Uncoupled thermoelasticity(UCT) model - = 1ε 0, ijK * =0, .0=== vqT τττ
 

(6) Green-Nighdi(G-N)model(Type-1)-
ijK * =0.

 

(7) Green-Nighdi(G-N)model(Type-II)- 
ijK << ijK *

, .0=== vqT τττ
 

(8)
 

Green-Nighdi(G-N)model(Type-III)- 
.0=== vqT τττ  

VI. Particular Cases 

a) Transversely isotropic materials  

This type of medium has only one axis of thermal and elastic symmetry. We take 
the z axis along the axis of symmetry. Then the non-vanishing elastic and thermal 
parameters are 

.K,     ,K    , 3131313311
∗∗ ==== KKcc αα  
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b) Cubic crystal 
For cubic crystals, the nonvanishing elastic and thermal parameters are

tKKKcc αααβββ ========= ∗∗
31      ,3131313311      ,KK    ,

c) Isotropic media
For isotropic material every direction is a direction of elastic as well as thermal 

symmetry and the nonvanishing elastic and thermal parameters are

tt

KKKcc

αµλβββααα

µλµλ

)23(        ,

   ,KK     ,c    ,c    ,2

3131

313155133311

+=====

======+== ∗∗

VII. Inversion Of The Transforms

To  obtain  the  solution  of  the  problem  in  the  physical  domain,  we  must  
invert the  transforms  in  equation (26) for three phase lag theory of thermoelasticity.
These expressions are functions of z, the parameters of Laplace and Fourier transforms 

p and ξ, respectively, and hence  are of the form f~ (ξ, z, p). To get the function  
f(x,z,t)  in the physical domain, first we invert the Fourier transform using 

,d)x)fsin(i-f)x(cos(1  dp)z,,(f~e
2
1)p,z,x(f̂

0
0e

x i ξξξ
π

=ξξ
π

= ∫∫
∞

∞

∞−

ξ−              (30)

where  fe and  f0 are, respectively,  even and  odd  parts  of  the  function f~ (ξ, z,p).

Thus, expression (30) gives us the Laplace transform f̂ (x, z, p) of the function  

f(x,z,t). Following  Honig  and  Hirdes(1984 ), the Laplace transform  function f̂ (x, z, 
p) can be inverted to f(x,z,t). 

The last step is to calculate the integral in equation (30). The method for 
evaluating this integral is described by Press et al. (1986), which involves the use of 

Romberg’s integration with adaptive step size. This, also uses the results from 
successive refinements of the extended trapezoidal rule followed by extrapolation of the 
results to the limit when the step size tends to zero.
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NotesNotes

Following Dhaliwal and Singh (1980), we take the case of magnesium crystal-like 
material for numerical calculations. The physical constants used are:

ε = 0.0202,      c11 = 5.974 x 1010 Nm-2,   12c = 2.624 x 1010 Nm-2,   

ρ = 1.74 x 103 kgm-3,     c44 = 3.278 x 1010 Nm-2 ,  ce= 1.04 x 103 J kg–1degree–1

11*
1 1058.3 x=ω s-1, == 31 KK 1.7 x 102 Wm-1degree-1, == 31 ββ 2.68 x 106 Nm-2degree-1,

         

0F =1, a=1, T0 = 2980K.

The comparison of normal boundary displacement w and boundary temperature 

field T, and normal stress zzt for instantaneous thermoviscoelastic material (ITVM) and  

instantaneous thermoelastic material (ITM) are depicted in Figures 1-3 and continuous  
thermoviscoelastic material  (CTVM) and  continuous thermoelastic material (CTM) 
are depicted in Figures 4-6.for three-phase-lag theory of thermoelasticity. The 
computations were carried out for two values of time t=1.0 and t=2.0, non-dimensional 

relaxation times 06.0,04.0,05.0,02.0 ==== qTav ττττ   at  z=1.0  in the range 

.10x0 ≤≤

a) Thermoelastic Interactions due to Thermal Source (Temperature gradient boundary)

Dynamic thermoelastic case:

Figure 1. depictsthe variation of normal displacement ‘w’ with distance x for 
ITM and ITVM for different values of time in context of three phase-lag-model. At 

t=1.0  the viscosity effect on ‘w’ is prominent in the ranges  

5.87,5.45.3,5.20 ≤≤≤≤≤≤ xxx    and less in rest of ranges where asat t=2.0  the 

viscosity effect on ‘w’ is more  in the ranges  5.97,35.0 ≤≤≤≤ xx and less in rest of 

ranges.
Figure 2. determinethe variation of temperature distribution T with distance x.

At t=1.0  the t=2.0 the ITVM and ITM show opposite oscillatory behavior in the 

whole range 100 ≤≤ x .
Figure 3. displays the variation of normal stress tzzwith distance x. Near the 

point of application of source, the magnitude of normal stress for ITM is more ITVM 
and then become oscillatory in the whole range about zero for the time t=1.0 and 
t=2.0,respectively.

Figure 4. showsthe variation of normal displacement ‘w’ with distance x for 
CTM and CTVM. The viscosity effect is more prominent than thermal effect in the 

range 5.20 ≤≤ x for time t=1.0 and t=2.0, respectively, and less in rest of the range.
Figure 5. depictsthe variation of temperature distribution T with distance x. The 

values of temperature shows same oscillatory pattern in the whole range for CTVM and 
CTM for time t=1.0 and t=2.0,respectively.

Figure 6. displaysthe variation of normal stress tzzwith distance x.The thermal 

effect is more prominent than viscosity effect in the range 70 ≤≤ x and reverse in rest of 

the range 107 ≤≤ x for both values of time t=1.0 and t=2.0,respectively.

IX. Conclusion

The problem of investigating displacement component, temperature and stress 
components in anhomogeneous anisotropic thermoelastic half-space is studied in the 
purview of viscothermoelasticity. Eigen value technique is employed to express the 

VIII. Numerical Result And iscussion
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results mathematically. Theoretically obtained field variables are also shown  through a 
specific model to present the results in graphical form.
The results of the present work can be summarized as 

1. The Laplace and Fourier techniqueis used to derive expressions for displacement 
components, stresses and temperature distribution for dynamic thermo-elastic 
case.

2. The values of all physical quantities are observed to follow oscillatory pattern 
about zero in the whole range with increase in distance x.

3. The viscosity effect has a significant role in the considered physical quantities.
4. The time effect has significant influence  on the distribution of the considered 

physical quantities.

Nomenclature

),,( wvuu =


- displacement vector

T(x,y,z,t) -temperature change

ijklc - isothermal elastic parameters, 

t- time

ijt -stress tensor

ije -strain tensor

T0  -uniform temperature
ρ -density

qaT and ττττ ν,, -thermal relaxation times

klα -linear thermal expansion tensor.

4
11* ccK e

ij = -the material characteristic constant of the theory.

Variation of Normal Displacement with Distance X.Fig. 1:

Notes
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NotesNotes

Variation of Temperature with Distance X.

Variation of Normal stress with Distance X.

Variation of Normal Displacement with Distance X.

Fig. 2:

Fig. 3:

Fig. 4:
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