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Regular Exact Models with Vanishing Anisotropy
Generated using Van Der Waals
Equation of State

Jefta M. Sunzu * & Kasongo A. Mahali °

Abstract- In this paper, new exact models for Einstein field
equations are generated using a Van der Waals equation of
state. We consider anisotropic stellar objects with no
electromagnetic field distribution. Our models contain previous
results as a special case. Models generalized in our
performance include a familiar uncharged Einstein model with
no pressure anisotropy. It is interesting that our models
indicate that when matter variables vanish, gravitational
potentials remain constant. This condition agrees with
Minkowski spacetime. The physical features of our models
show that the gravitational potentials and matter variables are
well behaved. We also compute relativistic stellar masses and
radii consistent with the stars PSR J1614-2230, Vela X-1, 4U
1538-52, LMC X-4, SMC X-4, Cen X-3, Her X-1, SAX J1808.4-
3658 and EXO 1785-248.

Keywords: einstein field equations; vanishing anisotropy;,
neutral stellar objects; relativistic masses, van der waals
equation of state.

I. INTRODUCTION

odels for gravitating spheres in general relativity
are generated by utilizing the Einstein-Maxwell

system of equations. In doing so some
conditions may be imposed for physical acceptability.
The Einstein Maxwell field equations are equations
generated by equating the energy momentum tensor
and the Einstein tensor involving gravitating stellar
bodies with or without electric field distribution. In
relativistic models, matter distribution can either be
isotropic or anisotropic as Chaisi and Maharaj [1] in their
work assumed that the matter distribution is isotropic so
that the radial pressure is the same as the transverse
pressure. A strong case can be made to study matter
distributions which are anisotropic in which the radial
component of the pressure is not the same as the
transverse pressure.

The electric field is one of the ingredient that
can be included in some of the relativistic models for
charged stellar spheres. Charged models include the
performance by Chattopadhyay et al [2], Maharaj and
Thirukkanesh [3], Ivanov [4], Mehta et al [5], Murad and
Fatema [6], Pant and Negi [7], Malaver [8],
Thirukkanesh and Maharaj [9] and Maharaj and
Komathiraj [10]. Mafa Takisa and Maharaj [11] obtained
charged compact objects with anisotropic pressures in
a core envelope setting.

Author a ;. School of Mathematical sciences, University of Dodoma, P.
O. Box 338, Dodoma, Tanzania. e-mail: jefta@aims.ac.za

Bijalwan [12] indicated that the mass of a stellar
star with electric field present is maximized with all
degree of suitability. It was investigated the maximum
mass of charged star to be 1:512Me with linear
dimension 14:964 km. Maurya and Gupta [13]
generated exact solutions for the Einstein's field
equations for fluid spheres with pressure anisotropy. On
the other hand, Mak and Harko [14] showed that strong
magnetic fields could result into pressure anisotropy
within stellar objects. Gupta and Maurya [15] found that
the presence of electric field have effect on the
gravitational collapse due to Colombian repulsive force
and the pressure gradient. Neutral stellar models include
results generated by Maharaj and Komathiraj [10],
Sunzu [16] and Pant et al [17].

Relativistic models with linear equation of state
have been found in the past. These include models
performed by Esculpi and Aloma [18], Sharma and
Maharaj [19], and Zdunik [20]. Aktas and Yilmaz [21]
found linear models for Einstein field equations for
spherical symmetric space-time via conformal motions.
Sharma and Maharaj [22] found new exact models with
linear equation of state by assuming a particular mass
function. Maharaj and Chaisi [23] generated new
models with linear barotropic equation of state. Kalam et
al [24] proposed a relativistic model for strange quark
stars within the framework of MIT bag model. Mak and
Harko [14] presented exact anisotropic models
consistent to stellar objects with a quark matter.
Thirukkanesh and Maharaj [25] on physical grounds
imposed a barotropic equation of state for the existence
of strange matter. Exact anisotropic models for a
charged relativistic spheres with linear equation of state
were found by Maharaj and Mafa Takisa [26], Kileba
Matondo and Maharaj [27], Maharaj et al [28] and
Sunzu et al [29,30] and Sunzu and Danford [31]. Yilmaz
and Baysal [32] investigated that quark stars are being
formed during the collapsing of the core of a massive
star after supernova explosion.

There are several anisotropic models generated
using a quadratic equations of state for charged stellar
spheres. These include the work by Maharaj and Mafa
Takisa [33], Feroze and Siddiqui [34], Thirukkanesh and
Maharaj [25] and Malaver [35]. Relativistic stellar
models with polytropic equation of state were performed
by Herrera and Barreto [36] and Dev and Gleiser [37]. It
is often indicated that polytropes describe low or high
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pressure regimes especially for white dwarfs and
neutron stars. Shibata [38] determined secular stability
against a quasi-radial oscillation for rigidly rotating
stellar objects. Lai and Xu [39] indicated that a
theoretical polytropic quark star model could be tested
by observations. Thirukkanesh and Ragel [40] indicated
that a polytropic model is more stiffer than the
conventional bag model. This is regarded more
essential for modeling stars with realistic matter such as
ideal gas, photon gas, degenerated Fermi gas and in
particular quark matter. Other papers with polytropic
equation of state include the work performed by Nilsson
and Uggla [41], Spaans and Silk [42] and Mafa Takisa
and Maharaj [43].

Relativistic stellar models with Van der Waals
equations of state include models by Lobo [44], and
Malaver [45, 46]. Thirukkanesh and Ragel [47] used Van
der waals equation to generated compact anisotropic
stellar models. Most of the anisotropic models with Van
der waals equation have anisotropy always present and
can not regain isotropic models. This is not physical. On
the other hand, many of charged treatments in this
direction have the electric field always present and can
not regain neutral models. This is also not realistic.
Uncharged anisotropic  models  with  vanishing
anisotropy using Van der waals equation of state are
necessary.

ds® =

—e2/ (g% 4 2 gr2 42 (d62 + sin0de?)

The objective of this paper is to find new
uncharged anisotropic models with vanishing anisotropy
using Van der waals equation of state. In order to
achieve this objective we arrange this paper in the
following manner: In Sec. 2, we give the Einstein-
Maxwell field equations for a neutral matter with
anisotropic pressures. In Sect.3, we transform the field
equations according to Durgapal and Bannerji [48]. In
Sect. 4, we formulate the general differential equation
governing the model. In Sect. 5, we generate solutions
for nonsingular model | with Van derWaals equation of
state. The model in this section generalizes earlier
Einstein neutral model and obeys the phenomenon of
Minkowski space-times. In Sect. 6, we find solutions for
nonsingular model Il with Van der Waals equation of
state. In Sect. 7, we perform the physical analysis to
indicate that the gravitational potentials and matter
variables in our models are well behaved. We also
generate relativistic stellar masses consistent with
observations in this section. In Sect. 8 we give the
conclusion.

[I.  THE ANISOTROPIC MODEL
We generate neutral anisotropic star models in

a spacetime that is static and spherically symmetry. The
line element in standard form is given by

(1)

where v(r)and A(r) are functions for gravitational potentials. The Schwarzschild [49] line element describing the

exterior space time is given as

20 oM\ !
ds? = — <1 - r> dt? + <1 - r) dr? +r* (df° + sin*0d¢?) ,

where M represents the total mass. The energy
momentum tensor for neutral anisotropic matter is given
by

Tij - diag(_p7p7‘)pt7pt)7 (3)

where the energy density 2, the radial pressure pr and
the tangential pressure p:;, are variables measured
relative to a vector u. The vector u® is comoving, unit
and timelike.

According to Krasinski [50], the Einstein-
Maxwell field equations for a neutral matter with
anisotropic pressures can be written in the form

1 _ 2N _
ﬁ(lfe 2>\)+T€ 2= P, (4a)
1 _ 200 _
-5 (1-e) + e = (@)
NN
672/\ (l/// + V’2 _ V//\/ + 7 _ r) = pq. (40)
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Where primes in the system (4) stand for differentiation
with respect to the radial coordinate r. The mass
contained within the neutral sphere is given by

1 T
m(r) = 2/0 w?pdw.

We use the Van der Waals equation of state
relating the radial pressure and the energy density for
the stellar object which is given as

2 Bp
=« —_—
Pr p-+ T+p 6)

It is important to note that Eq. (6) becomes
quadratic when Y= 0. ltis in linear form when a=7 = 0.

)

[1I. TRANSFORMATION OF THE FIELD
EQUATIONS
In order to obtain the exact solutions for the

Einstein field equations, we transform the system (4) to
an equivalent form by introducing independent variable



x and new metric functions y and Z. These are defined as

z = Cr?,

Z(z) = e 2

621/(1")

"), A%y* (z) = , (7)

In the above A and C are arbitrary real constants. From Eq. (7) the line element (1) becomes

ds* = —A%y*(x)dt* + (1)4Cd:r; +G Z (d6® + sin® 0dg?) . (8)
Then the mass function (5) becomes
M(x / Vwpdw. ®)
40 2
The transformed  Einstein-Maxwell  field The metric function (12) is convenient to be

equations (4) with Van der Waals equation of state can
be written as

p = (122 _2z)c (10a)
x b
2 Bp

- n , (10b)
p AR
e = prtA, (10c)

y —Z (10d)
A = |daZ= + +2x Z+ C.

Y Y T

In the above, A= pt—pr. The system (10) above
consists of six variables (p;Pr,pt, Z,y, A) in four
equations. The system can be solved if we specify any
two variables. We have specified the following variables:

A = Agz+ A1£E2 + AQ.CL‘3, (11
1—ax™

= — 12

Y 1+ ban’ 12

where a, b, Ay, A1, Ao, m and n are arbitrary real
constants.

used in modeling the stellar objects due to the fact that
it is continuous, regular and finite. Similar choice of
measure of anisotropy and metric function was made by
Sunzu et al [29] in a model with electric field and a linear
equation of state. However our model contain no electric
field and we are using Van der waals equation of state.
This choice of metric function and measure of
anisotropy allows us to regain stellar models generated
by Sunzu [16]. When the variable A= 0, we generate the
isotropic model. The condition of isotropic pressure is
satisfied when A, = A, = A, =0.

IV. THE GENERAL DIFFERENTIAL EQUATION
FOR THE MODEL

In this section we formulate the master
differential equation governing our models. The
differential equation is generated by using the measure
of anisotropy and the metric function in Eqg. (11) and Eq.
(12) respectively. Substituting these equations into Eq.
(10d) we have

54 |TN@ —aP@) — (1 —aa™) A +ba)’) ) (2 =) Rla) (13)
2 (1+ ba) (R(z) + Q) GO
where for convenience we have set

N(z) = (1+bz") [dab(n® —m?+m —n) 2™
o (2 — ) & — 40 o — )]

P(z) = [8ab* (n® —nm) 2™ "1 — 8abnma™ "1 — 8b*n?a* 1],

Q(x) = 2ab(n—m)z™" —2amz™ — 2bnz",

R(z) = (1—az™)(1+0b2").

We observe that Eq.

(13) is in general a nonlinear differential equation in the potential Z which when

integrated we obtain the function Z. We can therefore expressions for the matter variables. The general exact

solution for Eq. (13) does not exist. However, we can find
(13) by specifying the values for the constants. By doing so

the exact solution for the nonlinear differential equation
the nonlinear differential equation (13) can be linear and

hence tractable. The choice for the constants should be made carefully so that the resulting model is physically well
behaved and possible to regain other previous exact models.
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V.  SOLUTION FOR NONSINGULAR MODEL | WITH VAN DER WAALS EQUATION OF STATE

In this section we use Van der waals equations of state to generate a nonsingular model for specific values
of constants. Settingm = 1,n = 1,a = 0 and b = 0 we generate the first class of exact solutions for the differential
equation (13) with metric function y = 1. Doing so Eqg. (13) becomes

Solving Eg. (14) we obtain

become

2v

2

pbr

b

A

ds®
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VA N A()SU + A1x2 + A2x3

1
x C x

GA().TQ + 3A1.T3 + 2A2$4 + 62Ck + 6C

Then the mass function (9) becomes

—A%dt? +

6C ’

A?,
6C
x (61401‘ + 3A1:L‘2 + 2142{[33 + GC]C) +6C"

—5A01‘ — gAliL‘2 — 3A21‘3 — 3Ck‘,

2
« <5A0x + gAlxz + 3A02° + BC’k)

,8 (5140{[) + %A1£E2 + 31421’3 + 30]6‘)
11—~ (5A0$ + %A1$2 4+ 34523 + 3C’k)

)

2
« <5A0:L‘ + gAl:L‘Q + 3A2.§E3 + 3Ck>

,8 (5140{[) + %Allz + 3A2£L’3 + 30]6‘)
1— v (5A0z + LA122 + 3A223 + 3Ck)

—i—AOm + A1$2 + A2x3,

Aoz + A1$2 + A2$3.

3
xr2

4C"2

The line element for the exact model in the system (16) becomes

6dz2

2
; <2A0x + Arz® + §A2x3 - 2Ck> :

4o [z (6Aoz + 3A122 + 24223 + 6Ck) + 6C]

+ (d6? + sin0dg?)

(14)

(15)

where k is a constant of integration. Therefore the gravitational potentials and matter variables in system (10)

(16a)

(16b)

(16c¢)

(16d)

(16€)

(16f)

For isotropic pressure (A= 0), we have A, = A, = A, = 0. The gravitational potentials and matter variables in

B the system (16) becomes

© 2018 Global Journals
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36Ck (19d)
= = 3Ck)? — =
pr=pe = aBCR) -0 Ay
The mass function (17) becomes
3
M(z) = 228, (20)
2C2
with the line element
daz? T
ds? = A2 + ———— + = (6 + sin0d¢?) . @1
s T e Ge ) o W sint0de)
The line element (21) can be presented as
2\ 7 22
ds? = — A%t + <1 - W) dr? + 12 (d6° + sin0dg?) , 22)
where I'? = —& and k <0. The line element (21) becomes a well known neutral isotropic Einstein model. This
shows that our model contains other previous models as a special case. Taking k= 0 and A= 0 we have
62V:A2762>\:Lp:Ova:pt:OaM:O' (23)

We see that the matter variables vanish and the gravitational potentials are constant. This agrees with

Minkowski space-times.

VI. SOLUTION FOR NONSINGULAR MODEL [I wiTH VAN DER WAALS EQUATION OF STATE

We consider different values for the parameters m, n, a and b given in Eq. (13). We find other exact solutions
when the metric function y is not constant. We choose m = 1,n =1, a #0 and b = 0. The metric function (12)

becomes
y=1—ax,

and the differential equation (13) becomes

- 1—ax [1’ (Aol’ + A1LE2 + AQ(L‘S) — C] (1—azx)
Z <x : ) z |

1 — 3ax) Cz (1 — 3ax)

Solving Eg. (25) we obtain

1 2 1 1
+ <55 + gax + ﬁa2x2 — Ha3x3> Asz — a®C

B Cka’z
(1-— Bax)g

Hence the gravitational potentials and matter variables become

¥ = A2(1—ax)?,

(24)

(26)

(27a)
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3 3 1
- <— — —azx + a2332> Ajazx

1 2 1 1
+ < + —ax + —a2m2 a3m3> Asx — a®C

55 ' 55 11
-1
_ Cka’z
(1—3a$)% ’
1 6 23 2o\ . o
= (22 A
& (1= 3az) [( 5 5ax+3ax> 0a
S ar -2 = A
<4o+40x gUT T gar )
3 1 Loy 30 54 27 4,
(55 BT Tt Tt

Ca3k( — 5aa:)]
(1 —3ax)3

« ; —§—§ax+3a2x
a3 (1 — 3ax) 5 5

9 3 25 21
— < + —ar — —a?r? + =a3 3> Aja

40 40 8 8"
30
a3a3

55 55 11 11

C’a3k( - 5(1:5)])2 _ Bp
(1 —3ax)3 L—9p’

1 6 23 .o
al—=————|—-=— —azx+3az
a3 (1 — 3ax) 5 5

2
7+ =

7
4,4
11

9 3 25 21
— ( + —ax — —a’z? + a3 3) Aia

40 40 8 8"
<55 + 55&:5—1— a’z” — 170

Ca3k( —5aa:)])2_ Bp
(1 —3azx)3 L=p

+Apx + A1w2 + Agxg,

Aoz + A1332 + A2$3.

_|_

11

)

2) A0a2

) s

2> A0a2

) 4.

(27D)

(27c)

(27d)

(27¢)

27f)



The mass function (9) becomes

3
x2? 1 7 3
M _ 17 2222\ A2
(@) a3 (1 — 3ax) C2 [(5 10a$+ O ) o
3 3 23 5, 3 44
R = A
< 80 T80t R0 16" " )l
1 1 L 99 2 33 44
g a2 A
* <110 0™ 10" Tt Tt )
14 1
— 50 Ck(1- 3aac)3] : (28)
The line element for the model in the system (27) becomes
2 1
ds? = —A*(1—az)® - Cd® [(5 - 5aaj) Aga’x

3 3
— <—40 — —ax + a2x2) Ajax

1 2 I 59 1 334 3
el il _ = Aox —
+<55+55ax+11ax Ha:v ox —a’C
Cka’x - dx? x
- - + = (d6* + sin*0de?) . (29)
(1—3az)s| 42C C

Settinga <0, o= 0and v = 0in the system (27)
we regain the exact model given by Sunzu [16].

For isotropic pressure (A= 0) we have A, = A,
= A, = 0, and the gravitational potentials and matter
variables in (27) become

e = A?(1- a:L')2 , (30a)
1 — 3az)5
o = (173 (300)
kx + (1 — 3ax)3
p = _CkB=5az) (300)
(1 —3ax)3
(Ck (3-— 5aac)>2
Pr=pt = Q| ———— 5
(1 —3ax)3
B BCk (3 — bax) 300)

(1-— ?)cwl:)g —vCk (3 — 5ax)'
The mass function (28) becomes
z3k

20z (1-— 3a:1;)%

M () : (31)

with the line element
(1-— 3a:):)% dz?

ds? = —A%(1 — ax)*dt®> + 3
4xC [lm +(1- 3am)§}

+ (d6? + sin®0de?) (32)

Taking k = 0 and A= 0 we have

=AY (1—az)% e?=1,p=0,p, = pr=0, M= 0.(33)

We see that the matter variables vanish and the
gravitational potentials are constant at the centre. This
condition agrees with Minkowski space-times.

VII. DisCussION

In this section, we indicate that the exact
solutions for the field equations given in the system (27)
of Sect. (6) are well behaved. The gravitating potentials
and the matter variables obtained are finite, regular and
continuous. We see that isotropic results are contained
in our nonsingular models as a special case. This is
possible when the measure of anisotropy A = 0, the
case when parameters A,, A, and A, are set to zero. Of
interest is to indicate that the physical analysis is
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possible. We do this by generating graphical plots for
the gravitational potentials, matter variables using the
model in the system (27) and mass function (28) in Sect.
(6). Python programming language was used to
generate these plots for the particular choices a = -3:3,
A=10, =05 a=0:187= 01, C= 1.0, k= 03,
Ag=-1.5, A;1=-0.6 and As = 1:0. The graphical plots
generated are for the potential €2” (Fig.1), potential e**
(Fig. 2), energy density P (Fig. 3), radial pressure Pr
(Fig. 4), tangential pressure Pt (Fig. 5), measure of
anisotropy A (Fig. 6) and the mass M (Fig. 7). All figures
are plotted against the radial coordinate r. These
quantities are regular and well behaved in the stellar
interior.

The potentials in Fig.(1) and Fig. (2) are
increasing functions with radial distance. They are finite,
regular and continuous similar to those in Komathiraj
and Maharaj [52], Sunzu [16] and Sunzu et al [29]. The
energy density p in Fig. (3), the radial pressure prin Fig.
(4) and the tangential pressure Pt in Fig. (5) are
decreasing functions with the radial coordinate. These
profiles are similar to to the one in Kalam et al [24],
Sunzu [16] and Thirukkanesh and Maharaj [25]. We

1.8

observe in Fig. (6) that the measure of anisotropy Ais a
decreasing function from the centre to the region near
the surface. This is similar to the findings in Sunzu et al
[29] and Kalam et al [24]. The mass M in Fig. (7)
increase with radial distance similar to that in Sunzu
[16], Sunzu et al [29] and Malaver [45, 46].

We also generate relativistic stellar masses
using the transformations Ag = AgR%, Ay = AR?,
Ay = A3R?, C = CR? and @ = aR?. We are using
the mass function (28) of Sect. (6) to generate masses
consistent with observations. We generated stellar
masses consistent with the one observed by Demorest
et al [53] for a star PSR J1614-2230, Rawls et al [54] for
stars Vela X-1, 4U 1538-52, LMC X-4, SMC X-4 and Cen
X-3, Abubekerov et al [565] for a star Her X-1, Elebert et
al [56] for a star SAX J1808.4-3658 and Ozel et al [57]
for a star EXO 1785-248. Computation is done by
choosing different values for the constants a, Ao,
Ay and A,. Conveniently, for computation purposes
we have set R = 55.00. Therefore our exact model
produce finite masses consistent with astronomical
objects. The parameters producing these relativistic
masses are indicated in Table (1).

1.7r

1.6r

1.5

& l4r

1.3f

1.21

1.1p

195

Figure 1: The gravitational potential 2 against the radial distance

n n
0.6 0.8 1.0

Figure 2: The gravitational potential e against the radial distance
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Figure 3: Energy density p against the radial distance

10r

Figure 4: Radial pressure p,- against the radial distance

0.2 0.4 0.6 0.8 1.0

o
=}

Figure 5: Tangential pressure p; against the radial distance
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Figure 6: Measure of anisotropy A against the radial distance
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Figure 7: Mass M against the radial distance

Table 1: Particular stellar star masses obtained for various parameter values

a C Ay A Ay k R(Km) M(Mpy) Star References
95 2.0 20 30 19 1.0 9.69 1.97 PSR J1614 — 2230  Demorest et al [53]
95 20 20 13 1.8 1.0 9.56 1.77 Vela X — 1 Rawls et al [54]
99 20 20 13 1.8 1.0 7.866 0.87 4U 1538 — 52 Rawls et al [54]
99 20 11 35 1.8 1.0 8&.301 1.04 LMCX -4 Rawls et al [54]
9.8 20 1.1 35 1.8 1.0 8.831 1.29 SMCX —4 Rawls et al [54]
9.7 20 11 3.0 18 1.0 9.178 1.49 cen X — 3 Rawls et al [54]
9.7 20 11 20 15 1.0 8.1 0.85 Her X —1 Abubekerov et al [55]
9.7 20 11 20 1.7 1.0 7.951 0.9 SAX J1808.4 — 3658 Elebert et al [56]
96 2.0 1.1 25 1.7 1.0 8.849 1.3 EXO1785 — 248 Ozel et al [57]
VIII. CONCLUSION function showing that P+<< Pr. We have indicated that for
specific conditions our models agree with earlier
We have generated new exact relativistic Einstein isotropic neutral model and Minkowski

models for neutral anisotropic stars using Einstein-
Maxwell field equations. We have used a Van der Waals
equation of state relating the energy density and the
radial pressure. In our new models, the energy density p,
the radial pressure p» and the tangential pressure p; are
finite decreasing functions. The mass M and the
gravitational potentials  e*, e** are increasing
functions, continuous and finite inside the stellar interior.
The measure of anisotropy A is a decreasing negative

© 2018 Global Journals

spacetime. In this paper neutral relativistic models
described are physically reasonable and have
astrophysical significance. We have generated masses
consistent with observations. The masses generated are
those consistent with the star PSR J1614-2230, Vela X-1,
4U 1538-52, LMC X-4, SMC X-4, Cen X-3, Her X-1, SAX
J1808.4-3658 and the star EXO 1785-248. Our models
are significant for studies of relativistic compact neutral
stellar objects in astrophysics. For further research,



these models could be used to study the interior
structures of the stellar objects by considering new
choice of measure of anisotropy, metric functions and
equation of states.
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