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Introduction

 

 

 
 

 

 
 

 
 

The electric field is one of the ingredient that 
can be included in some of the relativistic

 

models for 
charged stellar spheres. Charged models include the 
performance by Chattopadhyay

 

et al [2], Maharaj

 

and 
Thirukkanesh [3], Ivanov [4], Mehta et al [5], Murad and 
Fatema

 

[6], Pant and Negi [7], Malaver [8], 
Thirukkanesh and Maharaj [9] and Maharaj and 
Komathiraj

 

[10]. Mafa Takisa and Maharaj [11] obtained 
charged compact objects with anisotropic

 

pressures

 

in 
a core envelope setting.

 

Bijalwan [12] indicated that the mass of a stellar 
star with electric field present is maximized

 

with all 
degree of suitability. It was investigated the maximum 
mass of charged star

 

to be 1:512 with linear 
dimension 14:964 km. Maurya and Gupta [13] 
generated exact

 

solutions for the Einstein's field 
equations for fluid spheres with pressure anisotropy. On 
the

 

other hand, Mak and Harko [14] showed that strong 
magnetic fields could result into

 

pressure anisotropy 
within stellar objects. Gupta and Maurya [15] found that 
the presence

 

of electric field have effect on the 
gravitational collapse due to Colombian repulsive force

 

and the pressure gradient. Neutral stellar models include 
results generated by Maharaj and

 

Komathiraj [10], 
Sunzu [16] and Pant et al

 

[17].

 

Relativistic models with linear equation of state 
have been found in the past. These

 

include models 
performed by Esculpi and Aloma [18], Sharma and 
Maharaj [19], and Zdunik

 

[20]. Aktas and Yilmaz

 

[21] 
found linear models for Einstein field equations for 
spherical

 

symmetric space-time via conformal motions. 
Sharma and Maharaj [22] found new exact

 

models with 
linear equation of state by assuming a particular mass 
function. Maharaj and

 

Chaisi [23] generated new 
models with linear barotropic equation of state. Kalam et 
al [24]

 

proposed a relativistic model for strange quark 
stars within the framework of MIT bag model.

 

Mak and 
Harko [14] presented exact anisotropic models 
consistent to stellar objects with a

 

quark matter. 
Thirukkanesh and Maharaj [25] on physical grounds 
imposed a barotropic

 

equation of state for the existence 
of strange matter. Exact anisotropic models for a 
charged

 

relativistic spheres with linear equation of state 
were found by Maharaj and Mafa Takisa [26],

 

Kileba 
Matondo and Maharaj [27], Maharaj et al [28] and 
Sunzu et al [29,30] and Sunzu and

 

Danford [31]. Yilmaz 
and Baysal [32] investigated that quark stars are being 
formed during

 

the collapsing of the core of a massive 
star after supernova explosion.

 

There are several anisotropic models generated 
using a quadratic equations of state for

 

charged stellar 
spheres. These include the work by Maharaj and Mafa 
Takisa [33], Feroze and

 

Siddiqui [34], Thirukkanesh and 
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Abstract- In this paper, new exact models for Einstein field 
equations are generated using a Van der Waals equation of 
state. We consider anisotropic stellar objects with no 
electromagnetic field distribution. Our models contain previous 
results as a special case. Models generalized in our 
performance include a familiar uncharged Einstein model with 
no pressure anisotropy. It is interesting that our models 
indicate that when matter variables vanish, gravitational
potentials remain constant. This condition agrees with 
Minkowski spacetime. The physical features of our models 
show that the gravitational potentials and matter variables are 
well behaved. We also compute relativistic stellar masses and 
radii consistent with the stars PSR J1614-2230, Vela X-1, 4U 
1538-52, LMC X-4, SMC X-4, Cen X-3, Her X-1, SAX J1808.4-
3658 and EXO 1785-248.

Maharaj [25] and Malaver [35]. Relativistic stellar 
models with polytropic equation of state were performed 
by Herrera and Barreto [36] and Dev and Gleiser [37]. It 

odels for gravitating spheres in general relativity 
are generated by utilizing the Einstein-Maxwell 
system of equations. In doing so some 

conditions may be imposed for physical acceptability. 
The Einstein Maxwell field equations are equations 
generated by equating the energy momentum tensor 
and the Einstein tensor involving gravitating stellar 
bodies with or without electric field distribution. In 
relativistic models, matter distribution can either be 
isotropic or anisotropic as Chaisi and Maharaj [1] in their 
work assumed that the matter distribution is isotropic so 
that the radial pressure is the same as the transverse 
pressure. A strong case can be made to study matter 
distributions which are anisotropic in which the radial 
component of the pressure is not the same as the 
transverse pressure.

M

is often indicated that polytropes describe low or high 

�M



 
 

pressure regimes

 

especially for white dwarfs and 
neutron stars. Shibata [38] determined secular stability 
against

 

a quasi-radial oscillation for rigidly rotating 
stellar objects. Lai and Xu [39] indicated that

 

a 
theoretical polytropic quark star model could be tested 
by observations. Thirukkanesh

 

and Ragel [40] indicated 
that a polytropic model is more stiffer than the 
conventional bag

 

model. This is regarded more 
essential for modeling stars with realistic matter such as 
ideal

 

gas, photon gas, degenerated Fermi gas and in 
particular quark matter. Other papers with polytropic 
equation of state include the work performed by Nilsson 
and Uggla [41], Spaans

 

and Silk [42] and Mafa Takisa 
and Maharaj [43].

 

Relativistic stellar models with Van der Waals 
equations of state include models by Lobo

 

[44], and 
Malaver

 

[45, 46]. Thirukkanesh and Ragel [47] used Van 
der waals equation to

 

generated compact anisotropic 
stellar models. Most of the anisotropic models with Van 
der

 

waals equation have anisotropy always present and 
can not regain isotropic models. This

 

is not physical. On 
the other hand, many of charged treatments in this 
direction have the

 

electric field always present and can 
not regain neutral models. This is also not realistic.

 

Uncharged anisotropic models with vanishing 
anisotropy using Van der waals equation of

 

state are 
necessary.

 
The objective of this paper is to find new 

uncharged anisotropic models with vanishing

 

anisotropy 
using Van der waals equation of state. In order to 
achieve this objective we arrange

 

this paper in the 
following manner: In Sec. 2, we give the Einstein-
Maxwell field equations

 

for a neutral matter with 
anisotropic pressures. In Sect.3, we transform the field 
equations

 

according to Durgapal and Bannerji [48]. In 
Sect. 4, we formulate the general differential

 

equation 
governing the model. In Sect. 5, we generate solutions 
for nonsingular model I with

 

Van derWaals equation of 
state. The model in this section generalizes earlier 
Einstein neutral

 

model and obeys the phenomenon of 
Minkowski space-times. In Sect. 6, we find solutions

 

for 
nonsingular model II with Van der Waals equation of 
state. In Sect. 7, we perform

 

the physical analysis to 
indicate that the gravitational potentials and matter 
variables in

 

our models are well behaved. We also 
generate relativistic stellar masses consistent with

 
observations in this section. In Sect. 8 we give the 
conclusion.

 II.

 

The

 

Anisotropic Model

 We generate neutral anisotropic star models in 
a spacetime that is static and spherically

 

symmetry. The 
line element in standard form is given by

 

                                                                                                                     
(1)

 
where and are functions for gravitational potentials. The Schwarzschild [49] line

 
element describing the 

exterior space time is given as
 

(2) 

where M represents the total mass. The energy 
momentum tensor for neutral anisotropic matter is given 
by 

(3) 

where the energy density , the radial pressure and 
the tangential pressure , are variables measured 
relative to a vector u. The vector is comoving, unit 
and timelike. 

According to Krasinski [50], the Einstein-
Maxwell field equations for a neutral matter with 
anisotropic pressures can be written in the form 

(4a)
 

(4b)

 

(4c)

 

 

 

Where primes in the system (4) stand for differentiation 
with respect to the radial coordinate r. The mass 
contained within the neutral sphere is given by 

(5) 

We use the Van der Waals equation of state 
relating the radial pressure and the energy

 
density for 

the stellar object which is given as
 

(6)

 

It is important to note that Eq. (6) becomes 
quadratic when = 0. It is in linear form when =  = 0.

 

III.

 

Transformation of the Field

 

Equations 

In order to obtain the exact solutions for the 
Einstein field equations, we transform the system

 

(4) to 
an equivalent form by introducing independent variable 
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ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2θdφ2

)
,

ν(r

(

λ(r (

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2θdφ2

)
,

τij = diag(−ρ, pr, pt, pt),

ρ pr
pt

ua

1

r2

(
1− e−2λ

)
+

2λ′

r
e−2λ = ρ,

− 1

r2

(
1− e−2λ

)
+

2ν ′

r
e−2λ = pr,

e−2λ

(
ν ′′ + ν ′

2 − ν ′λ′ + λ′

r
− λ′

r

)
= pt.

m(r) =
1

2

∫ r

0
ω2ρdω.

pr = αρ2 +
βρ

1 + γρ
,

γ α γ



x and new metric functions y and Z. These are defined as
 

(7) 

 
 

In the above A and C are arbitrary real constants. From Eq. (7) the line element (1) becomes 

(8)
 

Then the mass function (5) becomes
 

(9)

 

The transformed Einstein-Maxwell field 
equations (4) with Van der Waals equation of state

 

can 
be written as

 

(10a)

 

(10b)

 

(10c)

 

(10d)

 

In the above,  . The system (10) above 
consists of six variables in

 

four 
equations. The system can be solved if we specify any 
two variables. We have specified

 

the following variables:

 

(11)

 

(12)

 

where and are arbitrary real 
constants.

 

The metric function (12) is convenient to be 
used in modeling the stellar objects due to

 

the fact that 
it is continuous, regular and finite. Similar choice of 
measure of anisotropy

 

and metric function was made by 
Sunzu et al [29] in a model with electric field and a linear

 

equation of state. However our model contain no electric 
field and we are using Van der

 

waals

 

equation of state. 
This choice of metric function and measure of 
anisotropy allows us

 

to regain stellar models generated 
by Sunzu [16]. When the variable = 0, we generate the

 

isotropic model. The condition of isotropic pressure is 
satisfied when A0 = A1 = A2

 

= 0. 

IV.

 

The

 

General

 

Differential

 

Equation

 

for the Model

 

In this section we formulate the master 
differential equation governing our models. The

 

differential equation is generated by using the measure 
of anisotropy and the metric function

 

in Eq. (11) and

 

Eq. 
(12) respectively. Substituting these equations into Eq. 
(10d) we have

 

(13)

 

where for convenience we have set

 

 

  

 

We observe that Eq. (13) is in general a nonlinear differential equation in the potential

 

Z

 

which when 
integrated we obtain the function Z. We can therefore expressions for the

 

matter variables. The general exact 
solution for Eq. (13) does not exist. However, we can

 

find the exact solution for the nonlinear differential equation 
(13) by specifying the values for

 

the constants. By doing so the nonlinear differential equation (13) can be linear and 
hence

 

tractable. The choice for the constants should be made carefully so that the resulting model

 

is physically well 
behaved and possible to regain other previous exact models.

 

         

Regular Exact Models with Vanishing Anisotropy Generated using Van Der Waals Equation of State

                    

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
 e

rs
io
n 

I
V

I
Y
ea

r
20

18

21

  
 

( A
)

© 2018   Global Journals

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r),

ds2 = −A2y2(x)dt2 +
1

Z(x)

1

4xC
dx2 +

x

C

(
dθ2 + sin2 θdφ2

)
.

M(x) =
1

4C
3
2

∫ x

0

√
ωρdω.

ρ =

(
1− Z
x
− 2Ż

)
C,

pr = αρ2 +
βρ

1 + γρ
,

pt = pr + ∆,

∆ =

[
4xZ

ÿ

y
+

(
1 + 2x

ẏ

y

)
Ż +

1− Z
x

]
C.

= pt−pr
ρ, pr, pt, Z, y, ∆)

)

∆ = A0x+A1x
2 +A2x

3,

y =
1− axm

1 + bxn
,

a, b, A0, A1, A2, m n

Ż +

[
xN(x)− xP (x)− (1− axm) (1 + bxn)2

x (1 + bxn) (R(x) +Q(x))

]
Z =

(
∆
C −

1
x

)
R(x)

R(x) +Q(x)
,

N(x) = (1 + bxn)
[
4ab

(
n2 −m2 +m− n

)
xm+n−1

− 4a
(
m2 −m

)
xm−1 − 4b

(
n2 − n

)
xn−1

]
,

P (x) =
[
8ab2

(
n2 − nm

)
xm+2n−1 − 8abnmxm+n−1 − 8b2n2x2n−1

]
,

Q(x) = 2ab (n−m)xm+n − 2amxm − 2bnxn,

R(x) = (1− axm) (1 + bxn) .

∆

∆



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In this section we use Van der waals equations of state to generate a nonsingular model for

 

specific values 
of constants. Setting m

 

= 1, n

 

= 1, a

 

= 0 and b

 

= 0 we generate the first class

 

of exact solutions for the differential 
equation (13) with metric function y

 

= 1. Doing so Eq.

 

(13) becomes

 

(14)

 

Solving Eq. (14) we obtain

 

(15)
 

where k

 

is a constant of integration. Therefore the gravitational potentials and matter variables

 

in system (10) 
become

 

 
(16a)

 

(16b) 

 (16c) 

(16d)

 

(16e)

 

(16f)

 

Then the mass function (9) becomes

 

(17)

 

The line element for the exact model in the system (16) becomes

 

(18)

For isotropic pressure ( = 0), we have A0 = A1 = A2

 

= 0. The gravitational potentials

 

and matter variables in 
the system (16) becomes

 

(19a)

 

(19b)
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V. Solution for Nonsingular Model I with Van Der Waals Equation of State

Ż − Z

x
=
A0x+A1x

2 +A2x
3

C
− 1

x
.

Z =
6A0x

2 + 3A1x
3 + 2A2x

4 + 6xCk + 6C

6C
,

e2ν = A2,

e2λ =
6C

x (6A0x+ 3A1x2 + 2A2x3 + 6Ck) + 6C
,

ρ = −5A0x−
7

2
A1x

2 − 3A2x
3 − 3Ck,

pr = α

(
5A0x+

7

2
A1x

2 + 3A2x
3 + 3Ck

)2

−
β
(
5A0x+ 7

2A1x
2 + 3A2x

3 + 3Ck
)

1− γ
(
5A0x+ 7

2A1x2 + 3A2x3 + 3Ck
) ,

pt = α

(
5A0x+

7

2
A1x

2 + 3A2x
3 + 3Ck

)2

−
β
(
5A0x+ 7

2A1x
2 + 3A2x

3 + 3Ck
)

1− γ
(
5A0x+ 7

2A1x2 + 3A2x3 + 3Ck
)

+A0x+A1x
2 +A2x

3,

∆ = A0x+A1x
2 +A2x

3.

M(x) = − x
3
2

4C
3
2

(
2A0x+A1x

2 +
2

3
A2x

3 + 2Ck

)
.

ds2 = −A2dt2 +
6dx2

4x [x (6A0x+ 3A1x2 + 2A2x3 + 6Ck) + 6C]

+
x

C

(
dθ2 + sin2θdφ2

)
.

∆

e2ν = A2,

e2λ =
1

kx+ 1
,



The mass function (17) becomes

(20)

with the line element

(21)

The line element (21) can be presented as

(22)

(19c)

(19d)
ρ = −3Ck,

pr = pt = α (3Ck)2 − 3βCk

1− 3γCk
.

M(x) = − x
3
2k

2C
1
2

,

ds2 = −A2dt2 +
dx2

4xC (kx+ 1)
+
x

C

(
dθ2 + sin2θdφ2

)
.

ds2 = −A2dt2 +

(
1− r2

Γ2

)−1

dr2 + r2
(
dθ2 + sin2θdφ2

)
,

where and 0 . The line element (21) becomes a well known neutral isotropic Einstein model. This 
shows that our model contains other previous models as a special case. Taking = 0 and = 0 we have

(23)

We see that the matter variables vanish and the gravitational potentials are constant. This agrees with 
Minkowski space-times.

VI. Solution for Nonsingular Model II with Van Der Waals Equation of State

We consider different values for the parameters m, n, a and b given in Eq. (13). We find other exact solutions 
when the metric function y is not constant. We choose m = 1, n = 1,  0 and b = 0. The metric function (12) 
becomes

                                                       (24)

and the differential equation (13) becomes

                        (25)

Γ2 = − 1
Ck

k <
k ∆

e2ν = A2, e2λ = 1, ρ = 0, pr = pt = 0,M = 0.

y = 1− ax,

Ż −
(

1− ax
x (1− 3ax)

)
Z =

[
x
(
A0x+A1x

2 +A2x
3
)
− C

]
(1− ax)

Cx (1− 3ax)
.

Solving Eq. (25) we obtain

(26)

Z = − 1

Ca3

[(
2

5
− 1

5
ax

)
A0a

2x

−
(
− 3

40
− 3

20
ax+

1

8
a2x2

)
A1ax

+

(
1

55
+

2

55
ax+

1

11
a2x2 − 1

11
a3x3

)
A2x− a3C

− Cka3x

(1− 3ax)
2
3

]
.

Hence the gravitational potentials and matter variables become

(27a)e2ν = A2 (1− ax)2 ,

a 6=

Regular Exact Models with Vanishing Anisotropy Generated using Van Der Waals Equation of State
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e2λ = −Ca3

[(
2

5
− 1

5
ax

)
A0a

2x

−
(
− 3

40
− 3

20
ax+

1

8
a2x2

)
A1ax

+

(
1

55
+

2

55
ax+

1

11
a2x2 − 1

11
a3x3

)
A2x− a3C

− Cka3x

(1− 3ax)
2
3

]−1

,

ρ = − 1

a3 (1− 3ax)

[(
−6

5
− 23

5
ax+ 3a2x2

)
A0a

2

−
(

9

40
+

3

40
ax− 25

8
a2x2 +

21

8
a3x3

)
A1a

−
(

3

55
+

1

55
ax+

1

11
a2x2 − 30

11
a3x3 +

27

11
a4x4

)
A2

+
Ca3k (3− 5ax)

(1− 3ax)
2
3

]
,

pr = α

(
1

a3 (1− 3ax)

[(
−6

5
− 23

5
ax+ 3a2x2

)
A0a

2

−
(

9

40
+

3

40
ax− 25

8
a2x2 +

21

8
a3x3

)
A1a

−
(

3

55
+

1

55
ax+

1

11
a2x2 − 30

11
a3x3 +

27

11
a4x4

)
A2

+
Ca3k (3− 5ax)

(1− 3ax)
2
3

])2

− βρ

1− γρ
,

pt = α

(
1

a3 (1− 3ax)

[(
−6

5
− 23

5
ax+ 3a2x2

)
A0a

2

−
(

9

40
+

3

40
ax− 25

8
a2x2 +

21

8
a3x3

)
A1a

−
(

3

55
+

1

55
ax+

1

11
a2x2 − 30

11
a3x3 +

27

11
a4x4

)
A2

+
Ca3k (3− 5ax)

(1− 3ax)
2
3

])2

− βρ

1− γρ

+A0x+A1x
2 +A2x

3,

∆ = A0x+A1x
2 +A2x

3.
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(27b)

(27c)

(27d)

(27e)

(27f)



 
 

 

 
 

 

 

 
 

 

 

The mass function (9) becomes

 
 
 
 
 
 
 
 
 
 
 

: 
(28)

 

The line element for the model in the system (27) becomes
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M(x) =
x

3
2

a3 (1− 3ax)C
3
2

[(
1

5
− 7

10
ax+

3

10
a2x2

)
A0a

2

−
(
− 3

80
+

3

80
ax+

23

80
a2x2 − 3

16
a3x3

)
A1a

+

(
1

110
− 1

110
ax− 1

110
a2x2 − 2

11
a3x3 +

3

22
a4x4

)
A2

− 1

2
a3Ck (1− 3ax)

1
3

]
.

ds2 = −A2 (1− ax)2 − Ca3

[(
2

5
− 1

5
ax

)
A0a

2x

−
(
− 3

40
− 3

20
ax+

1

8
a2x2

)
A1ax

+

(
1

55
+

2

55
ax+

1

11
a2x2 − 1

11
a3x3

)
A2x− a3C

− Cka3x

(1− 3ax)
2
3

]−1
dx2

4xC
+
x

C

(
dθ2 + sin2θdφ2

)
.

Setting 0, = 0 and = 0 in the system (27) 
we regain the exact model given by Sunzu [16].

For isotropic pressure ( = 0) we have A0
 = A1

= A2 = 0, and the gravitational potentials and matter 
variables in (27) become

(30a)

(30c)

(30d)

The mass function (28) becomes

(31)

with the line element

(32)

(29)

a < α γ

∆

e2ν = A2 (1− ax)2 ,

e2λ =
(1− 3ax)

2
3

kx+ (1− 3ax)
2
3

,

ρ = −Ck (3− 5ax)

(1− 3ax)
5
3

,

pr = pt = α
Ck (3− 5ax)

(1− 3ax)
5
3

)2

− βCk (3− 5ax)

(1− 3ax)
5
3 − γCk (3− 5ax)

.

(30b)

M(x) = − x
3
2k

2C
1
2 (1− 3ax)

2
3

.

ds2 = −A2 (1− ax)2 dt2 +
(1− 3ax)

2
3 dx2

4xC
[
kx+ (1− 3ax)

2
3

]
+
x

C

(
dθ2 + sin2θdφ2

)
.

)

Taking k = 0 and    = 0 we have

e2ν=A2(1−ax)2, e2λ= 1, ρ = 0, pr = pt= 0,M= 0 .(33)

We see that the matter variables vanish and the 
gravitational potentials are constant at the centre. This 
condition agrees with Minkowski space-times.

VII. Discussion 

In this section, we indicate that the exact 
solutions for the field equations given in the system (27) 
of Sect. (6) are well behaved. The gravitating potentials 
and the matter variables obtained are finite, regular and 
continuous. We see that isotropic results are contained 
in our nonsingular models as a special case. This is 
possible when the measure of anisotropy = 0, the 
case when parameters A0, A1 and A2 are set to zero. Of 
interest is to indicate that the physical analysis is 
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possible. We do this by generating graphical plots for 
the gravitational

 

potentials, matter variables using the 
model in the system (27) and

 

mass function (28) in

 

Sect. 
(6). Python programming language was used to 
generate these plots for the particular

 

choices = -3:3, 

 

= 1:0, = 0:5, = 0:18, 

 

= 0:1, = 1:0, = 0:3, 
 = -1.5,  = -0.6  and = 1:0. The graphical plots 

generated are for the potential (Fig.1),

 

potential 
(Fig. 2), energy density (Fig. 3), radial pressure 
(Fig. 4), tangential

 

pressure (Fig. 5), measure of 
anisotropy (Fig. 6) and the mass (Fig. 7). All figures

 

are plotted against the radial coordinate . These 
quantities are regular and well behaved in

 

the stellar 
interior.

 

The potentials in Fig.(1) and Fig. (2) are 
increasing functions with radial distance. They

 

are finite, 
regular and continuous similar to those in Komathiraj 
and Maharaj [52], Sunzu

 

[16] and Sunzu et al [29]. The 
energy density in Fig. (3), the radial pressure in Fig. 
(4)

 

and the tangential pressure in Fig. (5) are 
decreasing functions with the radial coordinate.

 

These 
profiles are similar to to the one in Kalam et al [24], 
Sunzu [16] and Thirukkanesh

 

and Maharaj [25]. We 

observe in Fig. (6) that the measure of anisotropy is a 
decreasing

 

function from the centre to the region near 
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a
A β α γ C k
A0 A1 A2

e2ν e2λ

ρ pr
pt

∆ M
r

ρ pr
pt

∆

               

the surface. This is similar to the findings in Sunzu et al 
[29] and Kalam et al [24]. The mass M in Fig. (7) 
increase with radial distance similar to that in Sunzu 
[16], Sunzu et al [29] and Malaver [45, 46].

We also generate relativistic stellar masses 
using the transformations 

and . We are using 
the mass function (28) of Sect. (6) to generate masses 
consistent with observations. We generated stellar 
masses consistent with the one observed by Demorest 
et al [53] for a star PSR J1614-2230, Rawls et al [54] for 
stars Vela X-1, 4U 1538-52, LMC X-4, SMC X-4 and Cen 
X-3, Abubekerov et al [55] for a star Her X-1, Elebert et 
al [56] for a star SAX J1808.4-3658 and Ozel et al [57] 
for a star EXO 1785-248. Computation is done by 
choosing  different  values for  the  constants 

.  Conveniently,  for computation purposes 
we have set = 55.00. Therefore our exact model 
produce finite masses consistent with astronomical 
objects. The parameters producing these relativistic 
masses are indicated in Table (1).

Ã0 = A0R
2, Ã1 = A1R

2,
Ã2 = A2R

2, C̃ = CR2 a = aR2˜

Ã0,
Ã1

a,˜

Ã2and
R

Figure 1: The gravitational potential against the radial distance
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Figure 2: The gravitational potential against the radial distance
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Figure 3:

 

Energy density against the radial distance
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Figure 4: Radial pressure against the radial distance

Figure 5: Tangential pressure against the radial distance
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Figure 6:

 

Measure of anisotropy     against the radial distance
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Figure 7: Mass M against the radial distance

Table 1: Particular stellar star masses obtained for various parameter values

ã C̃ Ã0 Ã1 Ã2 k̃ R(Km) M(M�) Star References

9.5 2.0 2.0 3.0 1.9 1.0 9.69 1.97 PSRJ1614− 2230 Demorest et al [53]
9.5 2.0 2.0 1.3 1.8 1.0 9.56 1.77 V elaX − 1 Rawls et al [54]
9.9 2.0 2.0 1.3 1.8 1.0 7.866 0.87 4U 1538− 52 Rawls et al [54]
9.9 2.0 1.1 3.5 1.8 1.0 8.301 1.04 LMCX − 4 Rawls et al [54]
9.8 2.0 1.1 3.5 1.8 1.0 8.831 1.29 SMC X − 4 Rawls et al [54]
9.7 2.0 1.1 3.0 1.8 1.0 9.178 1.49 cenX − 3 Rawls et al [54]
9.7 2.0 1.1 2.0 1.5 1.0 8.1 0.85 HerX − 1 Abubekerov et al [55]
9.7 2.0 1.1 2.0 1.7 1.0 7.951 0.9 SAX J1808.4− 3658 Elebert et al [56]
9.6 2.0 1.1 2.5 1.7 1.0 8.849 1.3 EXO 1785− 248 Ozel et al [57]

VIII. Conclusion 

We have generated new exact relativistic 
models for neutral anisotropic stars using Einstein- 
Maxwell field equations. We have used a Van der Waals 
equation of state relating the energy density and the 
radial pressure. In our new models, the energy density  , 
the radial pressure and the tangential pressure are 
finite decreasing functions. The mass and the 
gravitational potentials are increasing 
functions, continuous and finite inside the stellar interior. 
The measure of anisotropy is a decreasing negative 

function showing that . We have indicated that for 
specific conditions our models agree with earlier
Einstein isotropic neutral model and Minkowski 
spacetime. In this paper neutral relativistic models 
described are physically reasonable and have 
astrophysical significance. We have generated masses 
consistent with observations. The masses generated are 
those consistent with the star PSR J1614-2230, Vela X-1, 
4U 1538-52, LMC X-4, SMC X-4, Cen X-3, Her X-1, SAX 

stellar objects in astrophysics. For further research,

J1808.4-3658 and the star EXO 1785-248. Our models 
are significant for studies of relativistic compact neutral 

ρ
pr pt

M
e2ν , e2λ

∆

pt< pr
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these models

 

could be used to study the interior 
structures of the stellar objects by considering new 
choice

 

of measure of anisotropy, metric functions and 
equation of states.
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