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Let Ω be a smooth bounded domain in Rn, the Kuramoto-Sivashinsky (KS) equation

∂tu+ ∆2u− γ∆u+ δu− β|∇u|2 = λf(x, u) in Ω,
∆u = u = 0 on ∂Ω,

arises in many applications from mathematical physics, which are usually used to describe
some phenomena appearing in physics, engineering, and other sciences.

Moreover, the first bifurcation may be subcritical and bistability then occurs. The
features qualitatively agree with the experiments. Finally, wave shapes are compared.
The addition of the lighter order terms leads to better agreement with the experiments.
The (KS) equation was the first non-linear wave equation to be proposed for describing
long interfacial waves of two-layer couette and poiseuille flows. In agreement with previous
studies, it is shown that each higher order term has a ”laminarizing effect”: the solutions
of the (KS) equation simplify the benefit of stationary traveling waves.

In the stationary case and for γ = δ = β = 0, various authors have studied the existence
of weak solutions for the bifurcation problem

(Eλ)

{
∆2u = λf(u) in Ω,

∆u = u = 0 on ∂Ω,

Notes



Bifurcation for a Class of Fourth-Order Stationary Kuramoto-Sivashinsky Equations under Navier 
Boundary Condition

where Ω is a bounded open subset of Rn, n ≥ 2. Abid and al. have proved in [1] that
there exists 0 < λ∗ <∞, a critical value of the parameter λ, such as (Eλ) has a minimal,
positive, classical solution uλ for 0 < λ < λ∗ and does not have a weak solution for λ > λ∗.

When lim
t→∞

f(t)

t
= a < ∞, it is proved also there exists a unique classical solution u∗ of

(Eλ∗) if and only if lim
t→+∞

(f(t)− at) < 0.

When δ = β = 0, several researchers are interested in this type of phenomenon:

∆2u− γ∆u = λf(x, u) in Ω,
∆u = u = 0 on ∂Ω.

In [17, 18], Lazer and Mckenna firstly proposed and studied the problem of periodic
oscillations and traveling waves in a suspension bridge. It was pointed out in [23, 28]
that the problem provides a good model for the study of the static deflection of an elastic
plate in a fluid. Moreover, Ahmed and Harbi in [2] showed that the problem can also be
applied to engineering, such as communication satellites, space shuttles and space stations
equipped with large antennas mounted on long flexible beams. Such problems appear for
example in the micro-electromechanical systems giving the modelization of electrostatic
actuation for membranes deflecting on thin plates in the field of nanotechnology detection
systems in [19, 24] where the parameter γ represents the constant tension rising in the
stretching energy sector in the presence of elastic deformation. It arises in mechanics too,
see [11] and in electricity, see [16].

Ben Omrane and Khenissy in [6] show the nonexistence of solutions with Dirichlet
boundary conditions. They prove a dichotomy result giving the positivity preserving
property for a biharmonic equation arising in MEMS models.

When γ is not constant, other results prove the existence of solutions and study the
bifurcation problem with Navier boundary conditions,

∆2u− div(γ(x)∇u) = λf(u) in Ω.

In [26], Sâanouni and Trabelsi show how the critical problem behaves when it is considered
with the Navier boundary condition. The function γ(x) is smooth positive on Ω and the
L∞-norm of its gradient is small enough in order to assure ensure the application of
maximum principle [12].

Our main interest here will be in the study of a bifurcation problem in stationary case
for β = 0 and γ, δ, λ > 0, we consider the following problem

(Pλ)

 ∆2u− γ∆u+ δu = λf(u) in Ω,
u > 0 in Ω,

∆u = u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn; (n ≥ 2) and f is a positive, increasing and
convex smooth function on (0,+∞), which verifies

lim
t→∞

f(t)

t
= a ∈ (0,∞).

This paper is organized as follows: In next section we state our main results contained
in this work (see Theorems 1, 2 and 3). The content of section 3 is devoted to the proof
of Theorem 1, concerns existence of minimal solutions. It is shown that there exists a
limiting parameter λ∗ such that one has existence of stable regular minimal solutions to
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(Pλ) for λ ∈ (0, λ∗), while for λ > λ∗, not even singular solutions exist. In Sections 4 and 5,
we devoted to the proofs of Theorems 1 and 2, we take into account the types of problems
of bifurcation for a class of elliptic problems we also establish the asymptotic behavior of
the solution around the bifurcation point. Finally, in Section 6 we also give some hints
on how to proceed for semilinear problems under Dirichlet boundary conditions.

Throughout our paper, we denote by ‖ ·‖2, the L2(Ω)-norm, whereas we denote by ‖ ·‖,
the H2(Ω) ∩H1

0 (Ω)-norm given by

‖u‖2 =

∫
Ω

|∆u|2.

We say that u ∈ H2(Ω)∩H1
0 (Ω) is a weak solution of the problem (Pλ), if

f(u) ∈ L1(Ω) and∫
Ω

∆u.∆ϕ+ γ

∫
Ω

∇u.∇ϕ+ δ

∫
Ω

uϕ = λ

∫
Ω

f(u)ϕ, ∀ϕ ∈ C2(Ω) ∩H2(Ω) ∩H1
0 (Ω).

Such solutions are usually known as weak energy solutions. For short, we will refer to
them simply as solutions which is assured by the next lemma.

Since f(t) ≤ at + f(0), if u ∈ H2(Ω) ∩ H1
0 (Ω) is a weak solution of (Pλ)

and u ∈ L1(Ω), we say that u is regular solution. It is easily seen by a standard bootstrap
argument that u is always a classical solution.

For more detail, see [12, Proposition 7.15]. In the rest of this paper, we denote by a
solution of problem (Pλ) any weak or classical solution.

We say that u ∈ H2(Ω)∩H1
0 (Ω) is a supersolution of (Pλ) if f(u) ∈ L1(Ω)

and

∆2u− γ∆u+ δu ≥ λf(u) in D′(Ω).

Reversing the inequality one defines the notion of subsolution.

Next, we recall a version of the Maximum Principle for the biharmonic operator.

Let u ∈ H4(Ω) ∩H1
0 (Ω) be a function such that

∆2u ≥ 0 in Ω, ∆u = u = 0 on ∂Ω.

Then

u(x) ≥ 0, ∆u(x) ≤ 0 in Ω.

We say that a solution uλ of problem (Pλ) is minimal if uλ ≤ u in Ω for any solution u
of (Pλ).

Recall that λ1 ∈ R, be the first eigenvalue and ϕ1 the first normalized eigenfunction of
(−∆)2 − γ∆ + δ in Ω with homogeneous Dirichlet boundary data

II. Main Results

Definition 1. 

Remark 1. 

Definition 2. 

Proposition 1. 

    

                  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
 V
er

sio
n 

1
V
III

Y
ea

r
20

18

27

  
 

( F
)

© 2018   Global Journals

Notes



  
 

  
  

Bifurcation for a Class of Fourth-Order Stationary Kuramoto-Sivashinsky Equations under Navier 
Boundary Condition ∆2 ϕ1 − γ∆ϕ1 + δϕ1 = λ1 ϕ1 in Ω,

∆ϕ1 = ϕ1 = 0 in ∂Ω
‖ϕ1‖2 = 1.

(1)

an eigenvalue λ1 which is positive and that can be characterized as follows

λ1 = min
ϕ∈H2(Ω)∩H1

0 (Ω)\{0}

∫
Ω

(
|∆ϕ|2 + γ|∇ϕ|2 + δϕ2

)
∫

Ω

|ϕ|2
; (2)

there exists a non-negative function ϕ1 ∈ H2(Ω) ∩ H1
0 (Ω), which is an eigenfunction

corresponding to λ1, attaining the minimum in (2), that is ‖ϕ1‖2 = 1 and

λ1 =

∫
Ω

(
|∆ϕ1|2 + γ|∇ϕ1|2 + δϕ2

1

)
.

A solution u of problem (Pλ) is stable if and only if the first eigenvalue of the linearized
operator

v 7→ Lλ,u(v) := ∆2 v − γ∆ v + δv − λf ′(u)v,

given by
η1(λ, u) := inf

v∈H2(Ω)∩H1
0 (Ω)\{0}

η1(λ, u)(v),

where for any v ∈ H2(Ω) ∩H1
0 (Ω) \ {0}

η1(λ, u)(v) =

∫
Ω

(
|∆ v|2 + γ|∇ v|2 + δ v2

)
− λ

∫
Ω

f ′(u)v2dx

‖v‖2
2

is non negative. In other words,

λ

∫
Ω

f ′(u)v2dx ≤
∫

Ω

(
|∆ v|2 + γ|∇ v|2 + δ v2

)
, for any v ∈ H2(Ω) ∩H1

0 (Ω). (3)

If η(λ, u) < 0, the solution u is said to be unstable.

Next, we let

Λ := {λ > 0 | (Pλ) admits a solution} and λ∗ := sup Λ ≤ +∞.
and

r0 := inf
t>0

f(t)

t
.

The two values a and r0 that we have already defined will be important in the bifurcation
phenomena. More precisely, in the frame of the critical value λ∗.

We propose to show the following results, first main statement asserts the existence of
the critical value λ∗.

There exists a critical value λ∗ ∈ (0,∞) such that the following properties
hold:

(i) For any λ ∈ (0, λ∗), problem (Pλ) has a minimal solution uλ, which is the unique
stable solution of (Pλ).

(ii) For any λ ∈ (0, λ1/a), uλ is the unique solution of problem (Pλ).
(iii) The function λ 7−→ uλ is a C1, convex, increasing function.
(iv) If (Pλ∗) has a solution, then u∗ := limλ→λ∗ uλ and η1(λ∗, u∗) = 0.

Theorem 1. 
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The next natural obvious object of study gives us more precise information for λ∗.
An important role in our arguments will be played by

l := lim
t→∞

(
f(t)− at

)
.

We distinguish two different situations strongly depending on the sign of l.

Assume that l ≥ 0. We have three equivalent assertions:

(i) λ∗ = λ1/a.

(ii) problem (Pλ∗) has no solution.

(iii) lim
λ→λ∗

uλ =∞ uniformly on compact subsets of Ω.

Again the question arises as to what happens when l < 0. The following was proved.

Assume that l < 0. Then we have.

(i) the critical value λ∗ belongs to (λ1/a, λ1/r0)

(ii) (Pλ∗) has a unique solution u∗.

(iii) The problem (Pλ) has an unstable solution vλ for any λ ∈ (λ1/a, λ
∗) and the

sequence (vλ)λ satisfies:

(a) lim
λ→λ1/a

vλ =∞ uniformly on compact subsets of Ω,

(b) lim
λ→λ∗

vλ = u∗ uniformly in Ω.

We say that a solution uλ of problem (Pλ) is minimal if uλ ≤ u in Ω for any solution u
of (Pλ).

Problem (Pλ) has no solution for any λ > λ1/r0, but has at least one solution
provided λ is positive and small enough.

Proof: First, to show that (Pλ) has a solution, we use the barrier method.
Since f(0) > 0, u ≡ 0 is a strict subsolution of (Pλ) for every λ > 0. To this aim, let

w ∈ H4(Ω) which satisfies{
∆2w − γ∆w + δw = 1 in Ω,

∆w = w = 0 in ∂Ω.

The choice of w implies that w is a bounded supersolution of (Pλ) for small λ, more
precisely whenever λ < 1/f(‖u‖∞).

Notice that for any λ > 0, the function w ≡ 0 is a sub-solution of (Pλ) since f(0) > 0.
Next, we define a sequence wn ∈ H4(Ω) by{

∆2wn+1 − γ∆wn+1 + δwn+1 = λf(wn) in Ω
∆wn+1 = wn+1 = 0 on ∂Ω.

(4)

The maximum principle (see [7]) implies that

w ≤ wn ≤ wn+1 ≤ w for all n ∈ N,

so that the sequence (wn)n≥0 is increasing and bounded, then it converges. It follows that
problem (Pλ) has a solution.

Theorem 2. 

Theorem 3. 

III. Proof of Theorem 1

Lemma 1. 
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Assume now that u is a solution of (Pλ) for some λ > 0. Using ϕ1 given in (1) as a test
function and integrating by parts, we get

λ1

∫
Ω

ϕ1 u =

∫
Ω

(∆2ϕ1 − γ∆ϕ1 + δϕ1)u =

∫
Ω

∆2u ϕ1 − γ
∫

Ω

∆u ϕ1 + δ

∫
Ω

u ϕ1

= λ

∫
Ω

f(u) ϕ1 ≥ λ r0

∫
Ω

u ϕ1.

This yields

(λ1 − λr0)

∫
Ω

ϕ1u ≥ 0.

Since ϕ1 > 0 and u > 0, we conclude that the parameter λ should belong to (0, λ1/r0).
As a consequence we have that λ∗ is a real. Another useful result is stated in what

follows.

Assume that (Pλ) is resolvable, then a minimal solution uλ exists. Moreover,
(Pλ′) is resolvable for any λ′ ∈ (0, λ).

Proof: Fix λ ∈ (0, λ∗) and let u be a solution of (Pλ). As above, we use the barrier
method to obtain a minimal solution of (Pλ). The basic idea is to prove by induction that
the sequence (wn)n≥0 defined in (4) is increasing and bounded by u, so it converges to
some solution uλ. Since uλ is independent of the choice of u, then it is a minimal solution.

Now, if u is a solution of (Pλ), then u is a super-solution for the problem (Pλ′) for any
λ′ in (0, λ) and 0 can be used always as a sub-solution.

Thanks to lemmas 1 and 2, the set Λ is an interval not empty and bounded.

Proof of (i). First, we claim that uλ is stable. Indeed, arguing by contradiction, i.e.
the first eigenvalue η1(λ, uλ ) is negative. Then, there exists an eigenfunction ∈ H4(Ω)
such that

∆2 − γ∆ + δ − λf ′(uλ) = η1 in Ω,
> 0 in Ω

∆ = = 0 on ∂Ω.

Consider uε := uλ − ε ψ. Hence, by linearity, we have

∆2uε − γ∆uε + δuε − λf(uε) = λf(uλ)− ε(∆2 − γ∆ + δψ)− λf(uλ − εψ)
= λf(uλ)− ε(λf ′(uλ) + η1 )− λf(uλ − εψ)

= λ
[
f(uλ)− f(uλ − εψ)− εf ′(uλ)

]
− ε η1

= λ oε(εψ)− ε η1

= ε ψ (λ oε(1) − η1).

Since η1(λ, uλ) < 0, for ε > 0 small enough, we have

∆2uε − γ∆uε + δuε − λf(uε) ≥ 0 in Ω.

Then, for ε > 0 small enough, we use the strong maximum principle (Hopf’s lemma, see
[14]) to deduce that uε ≥ 0 is a super-solution of (Pλ). As before, we obtain a solution u
such that u ≤ uε and since uε < uλ, then we contradict the minimality of uλ.
Now, we show that (Pλ) has at most one stable solution. Assume the existence of another
stable solution v 6= uλ of problem (Pλ). Let w := v − uλ, then by maximum principle
w > 0 and from (3) taking w as a test function, we have

i.

Lemma 2. 

Remark 2. 

a) Proof of Theorem 1.

ψ ψ
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λ

∫
Ω

f ′(v)w2 ≤
∫

Ω

|∆w|2 + γ

∫
Ω

|∇w|2 + δ

∫
Ω

w2

≤
∫

Ω

∆2w w − γ
∫

Ω

∆w w + δ

∫
Ω

w w

≤
∫

Ω

[
∆2v − γ∆v + δv −∆2uλ + γ∆uλ − δuλ

]
w

≤ λ

∫
Ω

[
f(v)− f(uλ)

]
w.

Therefore ∫
Ω

[
f(v)− f(uλ)− f ′(v)(v − uλ)

]
w ≥ 0.

Thanks to the convexity of f , the term in the brackets is nonpositive, hence

f(v)− f(uλ)− f ′(v)(v − uλ) = 0 in Ω,

which implies that f is affine over [uλ, v] in Ω. So, there exists two real numbers α and β
such that

f(x) = αx+ β in [0,max
Ω

v].

Finally, since uλ and v are two solutions to ∆2w−γ∆w+ δw = λαw+λβ, we obtain that

0 =

∫
Ω

(
uλ ∆2v−v ∆2uλ

)
−γ

∫
Ω

(
uλ ∆v−v ∆uλ

)
+δ

∫
Ω

(
uλ v−v uλ

)
= λβ

∫
Ω

(uλ−v).

This is impossible since β = f(0) > 0 and w = v − uλ is positive in Ω.

3.1.2. Proof of (ii). Recall that λ1 is defined in (1). By the convexity of f , we deduce
that a = supR+

f ′(t). Let u be a solution to (Pλ) for λ ∈ (0, λ1/a), we suppose that u is

unstable. Then, we can take ϕ = ϕ1 ∈ H2(Ω) ∩H1
0 (Ω) which satisfy

λ a

∫
Ω

ϕ2 ≥ λ

∫
Ω

f ′(u)ϕ2 >

∫
Ω

|∆ϕ|2 + γ

∫
Ω

|∇ϕ|2 + δ

∫
Ω

ϕ2 = λ1

∫
Ω

ϕ2,

which shows that

(λ a− λ1)

∫
Ω

ϕ2 > 0.

Impossible for λ ∈ (0, λ1/a). Then, η1(λ, u) ≥ 0, so we obtain the uniqueness of u.
For the existence, we consider the minimization problem

min
u∈H2(Ω)∩H1

0 (Ω)
Jλ(u),

where

Jλ(u) :=
1

2

∫
Ω

(
|∆u|2 + γ|∇u|2 + δu2

)
− λ

∫
Ω

F (u), for all u ∈ H2(Ω) ∩H1
0 (Ω)

with

u+ := max (u, 0) and F (u) :=

∫ u+

0

f(s)ds.

If λ ∈ (0, λ1/a), there exist ε > 0 and A > 0 depending on λ such that

2λF (t) ≤ (λ1 − ε)t2 + A, ∀ t ∈ R.
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Standard arguments imply that Jλ(u) is coercive, bounded from below and weakly
lower semi-continuous in H2(Ω) ∩H1

0 (Ω) (see propositions 2.2 and 2.3 in [29]). It is easy
to see that the minimum of Jλ is attained by some function u ∈ H2(Ω)∩H1

0 (Ω). So, the
critical point u of Jλ gives a solution of (Pλ).

3.1.3. Proof of (iii). By sub- and super-solution method, see Lemma 2 we obtain that
the mapping λ 7→ uλ is increasing and this proves (iii).

3.1.4. Proof of (iv). Now Consider the nonlinear operator

G : (0,+∞)× C4,α(Ω) ∩ E −→ C0,α(Ω)
(λ, u) 7−→ ∆2u− γ∆u+ δu− λf(u),

where α ∈ (0, 1) and E is the function space defined by

E := {u ∈ W 4,2(Ω) | ∆u = u = 0 on ∂Ω}. (5)

Assume that (Pλ∗) has a solution u. Then for any λ ∈ (0, λ∗), uλ ≤ u in Ω.
Then for every λ ∈ (0, λ∗) we have uλ ≤ u∗ in Ω. Using the monotonicity of uλ, we

deduce that the function

u∗ = lim
λ→λ∗

uλ

is well defined in Ω and is a semi-stable solution of problem (Pλ∗). Assuming that the
first eigenvalue η1(λ∗, u∗) is positive, we can apply the implicit function theorem to the
operator G. For any λ in a neighborhood of λ∗ and u in a neighborhood of u∗, we have
G(λ, u) = 0, which proves that the problem (Pλ) has a solution for λ in a neighborhood
of λ∗. But this contradicts the definition of λ∗. So, η1(λ∗, u∗) = 0 and this completes the
proof of Theorem 1.

Thanks to Lemma 1 and (ii) of Theorem 1, the critical value λ∗ satisfies:

λ1/a ≤ λ∗ ≤ λ1/r0.

To prove this theorem, we show that the three assertions are equivalent. And finally, we
prove that one hoolds. We shall use the following auxiliary result which is a reformulation
of Theorem due to Hörmander [15].

Let Ω be an open bounded subset of Rn, n ≥ 2 with smooth boundary. Let (un)
be a sequence of super-harmonic nonnegative functions defined on Ω. Then the following
alternative holds:

: (i) either lim
n→∞

un =∞ uniformly on compact subsets of Ω,

: (ii) or (un) contains a subsequence which converges in L1
loc(Ω) to some function u.

The result by Hörmander is also true if (un) is a sequence of a super-harmonic
nonnegative functions.

4.1. (i)⇒(ii). By contradiction. We assume that λ∗ = λ1
a
. If (Pλ∗) has a solution

u∗ then, as we have already observed in (iv) of Theorem 1, η1(λ∗, u∗) = 0. Thus, there
exists ∈ H4(Ω) satisfying:

∆2 − γ∆ + δ − λ∗f ′(u∗) = 0 in Ω

> 0 in Ω

∆ = = 0 on ∂Ω.
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Using ϕ1, given in (1), as a test function and integrating by parts, we obtain∫
Ω

(
∆2ϕ1 − γ∆ϕ1 + δϕ1

)
− λ∗

∫
Ω

f ′(u∗) ψ ϕ1 = 0

therefore ∫
Ω

(
λ1 − λ∗f ′(u∗)

)
ψ ϕ1 = 0.

ϕ1 > 0, ψ > 0, λ∗ = λ1
a

and a = supt>0 f
′(t), we have λ1 − λ∗f ′(u∗) ≥ 0, the above

equation forces λ1 − λ∗f ′(u∗) = 0. Hence

f ′(u∗) ≡ a in Ω.

This implies that f(t) = at + b in [0,max
Ω

u∗] for some scalar b > 0. But there is no

positive function in Ω such that u = ∆u = 0 on ∂Ω and

∆2u− γ∆u+ δu = λ∗au+ λ∗b in Ω.

If not, using ϕ1 and integrating by parts, we have∫
Ω

∆2u ϕ1 − γ
∫

Ω

∆u ϕ1 + δ

∫
Ω

u ϕ1 = λ∗a

∫
Ω

u ϕ1 + λ∗b

∫
Ω

ϕ1

then ∫
Ω

(
∆2ϕ1 − γ∆ϕ1 + δϕ1

)
u = λ1

∫
Ω

u ϕ1 + λ∗b

∫
Ω

ϕ1

i.e.

0 = λ∗b

∫
Ω

ϕ1 which is impossible.

Hence, problem (Pλ∗) has no solution and (i) implies (ii).

4.2. (ii) ⇒(iii). We assume that (ii) occurs and we claim that lim
λ→λ∗

uλ =∞
uniformly on compact subsets of Ω. By contradiction, suppose that (iii) doesn’t hold. By
Lemma 4 and up to a subsequence, (uλ) converges locally in L1(Ω) to u∗ as λ→ λ∗.

The minimal solution uλ of the problem (Pλ) is bounded in L2(Ω).

Proof. If not, we define

uλ := kλwλ,

with

‖wλ‖2 = 1 and kλ → +∞ as λ→ λ∗.

Since f(t) ≤ at+ f(0), We have∫
Ω

|∆wλ|2 ≤
∫

Ω

|∆wλ|2 + γ

∫
Ω

|∇wλ|2 + δ

∫
Ω

w2
λ

=

∫
Ω

∆2wλ wλ − γ
∫

Ω

∆wλ wλ + δ

∫
Ω

wλ wλ =

∫
Ω

λf(uλ)

kλ
wλ

≤ λ∗
∫

Ω

(
aw2

λ +
f(0)

kλ
wλ

)
≤ λ∗a− c

∫
Ω

wλ

≤ λ∗a− c
√
|Ω|,

where c is a positive constant independent on λ.
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Recall that wλ satisfies ∆2wλ − γ∆wλ + δwλ =
λf(kλwλ)

kλ
and f is quasilinear. These

facts imply that (wλ) is bounded in H4(Ω). Hence, up to a subsequence, we have

wλ ⇀ w weakly in H4(Ω) and wλ → w strongly in H3(Ω) as λ→ λ∗.

Moreover, by the trace theorem, w = ∆w = 0 on ∂Ω. We deduce that

∆2wλ − γ∆wλ + δwλ =
λf(uλ)

kλ
−→ 0 in L1

loc(Ω) as λ→ λ∗.

This implies ∆2w − γ∆wλ + δwλ = 0 in D′(Ω). So, by Navier boundary condition, we
deduce that w ≡ 0 in Ω. This contradicts the fact that ‖w‖2 = lim

λ→λ∗
‖wλ‖2 = 1. This

complete the proof of lemma.
Hence, (uλ) is bounded in L2(Ω) and by the same arguments as above, it is bounded

in H4(Ω) and up to a subsequence, we have

uλ ⇀ u weakly in H4(Ω) and uλ → u in L2(Ω) as λ→ λ∗.{
∆2u− γ∆u+ δu = λ∗f(u) in Ω

∆u = u = 0 on ∂Ω

and this impossible by the hypothesis (ii). This shows that (ii) implies (iii). Moreover,
this simply shows that (ii) and (iii) are equivalent.

4.3. (iii)⇒(i). if (Pλ∗) has a solution u∗ then the sequence (uλ) converges to u∗ as
λ tends to λ∗ , which cannot happen in the case where lim

λ→λ∗
uλ =∞. Hence, (iii) implies (i).

Indeed, clearly if (ii) and (iii) occur, we have lim
λ→λ∗

‖uλ‖2 =∞. Set

uλ = kλ wλ with ‖wλ‖2 = 1.

Then, up to a subsequence, we obtain

wλ ⇀ w weakly in H4(Ω) and wλ → w strongly in H3(Ω) as λ→ λ∗.

Moreover,

∆2wλ − γ∆wλ + δwλ −→ ∆2w − γ∆w + δw in D′(Ω) as λ→ λ∗

and
λ

kλ
f(kλwλ) −→ λ∗aw in L2(Ω) as λ→ λ∗.

Then, {
∆2w − γ∆w + δw = λ∗aw in Ω,

∆w = w = 0 on ∂Ω.

Multiplying by ϕ1, which is defined in (1), we obtain∫
Ω

λ∗a w ϕ1 =

∫
Ω

∆2w ϕ1 − γ
∫

Ω

∆w ϕ1 + δ

∫
Ω

w ϕ1

=

∫
Ω

∆2ϕ1 w − γ
∫

Ω

∆υ1 w + δ

∫
Ω

ϕ1 w =

∫
Ω

λ1 ϕ1 w.
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This proves (i). To finish the proof of Theorem 2, we need only to show that (Pλ1/a) has
no solution. Indeed, assume that u is a solution of (Pλ1/a). Since f(t)− at ≥ 0, we have

∆2u− γ∆u+ δu =
λ1

a
f(u) ≥ λ1u in Ω.

Multiplying the previous equation by ϕ1 and integrating by parts, we get f(u) = a u in
Ω, which contradicts f(0) > 0. This concludes the proof of Theorem 2.

Observe that the equivalence of the assertions of Theorem 2 does not depend
on the sign of l.

5.1. (i). For the first part of Theorem 3, we have already seen in Remark 3 that
λ1/a ≤ λ∗ ≤ λ1/r0. Hence it suffices to prove that λ∗ 6= λ1/a and λ∗ 6= λ1/r0. First,
assume that λ∗ = λ1/a. By Remark 5, we have

lim
λ→λ∗

uλ =∞ uniformly on compact subsets of Ω.

Let uλ be the minimal solution to (Pλ). Then, multiplying (Pλ) by ϕ1 and integrating,
we obtain

0 =

∫
Ω

(
λ1 uλ − λ f(uλ)

)
ϕ1 =

∫
Ω

(
(λ1 − aλ)uλ − λ(f(uλ)− auλ)

)
ϕ1

and then

λ

∫
Ω

ϕ1

(
f(uλ)− auλ

)
≥ 0.

Passing to the limit in the last inequality as λ tends to λ∗, we find

0 ≤ lλ∗
∫

Ω

ϕ1 < 0,

which is impossible and then λ∗ 6= λ1
a
a.

Now, assume that λ∗ = λ1/r0 and let u be a solution of problem (Pλ∗). Multiplying
(Pλ∗) by ϕ1 and integrating by parts, we have

λ1

∫
Ω

uϕ1 =
λ1

r0

∫
Ω

f(u)ϕ1

that is ∫
Ω

(f(u)− r0u)ϕ1 = 0

which forces f(u) = r0 u in Ω, so that f(t) = r0t in [0,maxΩ u]. As above, this contradicts
the fact that f(0) > 0.

5.2. (ii). Since λ∗ > λ1/a, the existence of a solution to (Pλ∗) is assured by
Remark 5. Then, it remains to prove the uniqueness. Assume that u is another solution
to (Pλ∗) and let w := u − u∗. Since uλ < u and lim

λ→λ∗
uλ = u∗, we have w ≥ 0. Then by

convexity of f we have

∆2w − γ∆w + δw = λ∗
(
f(u)− f(u∗)

)
≥ λ∗f ′(u∗)w in Ω.
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Recall that η1(λ∗, u∗) = 0, so let be the corresponding eigenfunction. Multiplying the
last inequality by and integrating by parts, we find

0 =

∫
Ω

λ∗
(
f(u)− f(u∗)− f ′(u∗)w

)
≥ 0.

Therefore, we must have equality f(u) − f(u∗) = f ′(u∗)w in Ω, which implies that f is
linear in [0,max

Ω
u] and this leads a contradiction as in the proof of Theorem 1.

5.3. (iii). concerning the existence of a non stable solution vλ of (Pλ) will be
proved by using the mountain pass theorem of Ambrosetti and Rabinowitz [3] in the fol-
lowing form:

Let E be a real Banach space and J ∈ C1(E,R). Assume that J satisfies
the Palais-Smale condition and the following geometric assumptions:

(∗) there exist positive constants R and ρ such that

J(u) ≥ J(u0) + ρ, for all u ∈ E with ‖u− u0‖ = R.

(∗∗) there exists v0 ∈ E such that ‖v0 − u0‖ > R and J(v0) ≤ J(u0).

Then the functional J possesses at least a critical point. The critical value is charac-
terized by

c := inf
g∈Γ

max
u∈g([0,1])

J(u),

where

Γ :=
{
g ∈ C([0, 1], E) | g(0) = u0, g(1) = v0

}
and satisfies

c ≥ J(u0) + ρ.

In our case,

Jλ : E −→ R

u 7−→ 1

2

(∫
Ω

|∆u|2 + γ|∇u|2 + δu2
)
−
∫

Ω

F (u),

where

F (t) = λ

∫ t

0

f(s)ds, for all t ≥ 0.

We take u0 as the stable solution uλ for each λ ∈ (λ1/a, λ
∗).

The energy functional Jλ belongs to C1(E,R) and

〈J ′λ(u), v〉 =

∫
Ω

∆u∆v + γ

∫
Ω

∇u∇v + δ

∫
Ω

uv − λ
∫

Ω

f(u)vdx, for all u, v ∈ E.

Since η1(λ, uλ) > 0, the function uλ is a strict local minimum for Jλ, we apply the
mountain pass theorem for Jλ. We show in the next lemma that Jλ satisfies the Palais-
Smale compactness condition.
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Let (un) ⊂ E be a Palais-Smale sequence; that is,

sup
n∈N
|Jλ(un)| < +∞, (6)

‖J ′λ(un)‖E∗ → 0 as n→∞. (7)

Then (un) is relatively compact in E.

Proof: Since any subsequence of (un) verifies (6) and (7) it is enough to prove that
(un) contains a convergent subsequence. It suffices to prove that (un) contains a bounded
subsequence in E. Indeed, suppose we have proved this. Then, up to a subsequence,
un → u weakly in E, strongly in L2(Ω). Now (7) gives

∆2un − γ∆un + δun − λf(un)→ 0 in D′(Ω)

Note that f(un)→ f(u) in L2(Ω) because |f(un)− f(u)| ≤ a|un − u|. This shows that

∆2un − γ∆un + δun → λf(u) in D′(Ω).

That is

∆2u− γ∆u+ δu− λf(u) = 0.

The above equality multiplied by u gives∫
Ω

|∆u|2 + γ

∫
Ω

|∇u|2 + δ

∫
Ω

u2 − λ
∫

Ω

f(u)u = 0. (8)

Now (7) multiplied by (un) gives∫
Ω

|∆un|2 + γ

∫
Ω

|∇un|2 + δ

∫
Ω

u2
n − λ

∫
Ω

f(un)un → 0 (9)

in view of the boundedness of (un) and the L2(Ω)-convergence of un and f(un), we have

λ

∫
Ω

f(un)un → λ

∫
Ω

f(u)u

Hence, (8) and (9) give∫
Ω

|∆un|2 →
∫

Ω

|∆u|2 and γ

∫
Ω

|∇un|2 → γ

∫
Ω

|∇u|2

which insures us that un → u in E.

Actually, it is enough to prove that (un) is (up to a subsequence) bounded in L2(Ω).
Indeed, the L2(Ω)-boundedness of (un) implies that E-boundedness of (un) as it can be
seen by examining (6).

We shall conclude the proof obtaining a contradiction from the supposition that ‖un‖2 →
∞. Let un = knwn with kn > 0, kn →∞ and ‖wn‖2 = 1. Then

0 = lim
n→∞

Jλ(un)

k2
n

= lim
n→∞

[1

2

∫
Ω

|∆wn|2 +
γ

2

∫
Ω

|∇wn|2 +
δ

2

∫
Ω

w2
n −

1

k2
n

∫
Ω

F (un)
]

However, since |f(t)| ≤ a|t|+ b, we have

|F (un)| = |F (knwn)| ≤ aλ

2
k2
nw

2
n + bλ|knwn|.
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This shows that

1

k2
n

∫
Ω

F (un) ≤ aλ

2

∫
Ω

w2
n +

bλ

kn

∫
Ω

wn <∞.

We claim that

∆2w − γ∆w + δw = aλw+ where w+ := max{0, w}. (10)

Indeed, (7) divided by kn gives∫
Ω

∆wn ·∆v + γ

∫
Ω

∇wn · ∇v + δ

∫
Ω

wn v − λ
∫

Ω

f(un)

kn
v → 0 (11)

for each v ∈ E. Now∫
Ω

∆wn ·∆v + γ

∫
Ω

∇wn · ∇v + δ

∫
Ω

wn v →
∫

Ω

∆w ·∆v + γ

∫
Ω

∇w · ∇v + δ

∫
Ω

w v

Hence (10) can be concluded from (11) if we show that 1/knf(un) converges (up to a
subsequence) to aw+ in L2(Ω). Now 1/knf(un) = 1/knf(knwn) and it is easy to see that
the required limit is equal to aw in the set {x ∈ Ω : wn(x)→ w(x) 6= 0}.

If w(x) = 0 and wn(x) → w(x), let ε > 0 and n0 be such that |wn(x)| < ε for n ≥ n0.
Then

f(knwn)

kn
≤ aε+

b

kn
for such n,

that is the required limit is 0. Thus, f(un)/kn → aw+ a.e. Here b = f(0). Now wn → w
in L2(Ω) and, thus, up to a subsequence, wn is dominated in L2(Ω) (see [7, Theorem
IV.9]).

Since 1/knf(un) ≤ a|wn| + 1/knb, it follows that 1/knf(un) is also dominated. Hence
(10) is now obtained. Now (10) and the maximum principle imply that w ≥ 0 and (10)
becomes

∆2w − γ∆w + δw = λaw in Ω,

w ≥ 0 in Ω,

‖w‖2 = 1 in Ω.

(12)

Thus from (1), we have λa = λ1 and w = ϕ1, which contradicts the fact that λ 6= λ1/a.
This contradiction finishes the proof of the lemma 5.

Now, we need only to check that the two geometric assumptions of theorem 4 are
fulfilled.

First, since uλ is a local minimum of Jλ, there exists R > 0 such that for all u ∈ E
satisfying ‖u− uλ‖ = R, we have Jλ(u) ≥ Jλ(uλ) . Then

Jλ(u)− Jλ(uλ) = J ′′λ (uλ)(u− uλ, u− uλ) + ρ where ρ > 0.

This makes uλ becomes a strict local minimal for J , which proves (∗).
Recall that limt→+∞(f(t)− a t) is finite, then there exists β ∈ R such that

f(t) ≥ a t+ β, ∀t > 0.

Hence

F (t) ≥ a λ

2
t2 + βλt, ∀t > 0.
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This yields, using the definition of ϕ1 mentioned in (1),

Jλ(tϕ1) =
λ1 − aλ

2
t2
∫

Ω

ϕ2
1 − βλt

∫
Ω

ϕ1,

since ‖ϕ1‖2 = 1, then we have

Jλ(tϕ1)

t2
=
λ1 − aλ

2
− βλ

t

∫
Ω

ϕ1 (13)

which implies

lim sup
t→+∞

1

t2
Jλ(tϕ1) ≤ λ1 − aλ

2
< 0, ∀λ > λ1/a.

Therefore

lim
t→+∞

Jλ(tϕ1) = −∞.

So, there exists v0 ∈ E such that Jλ(v0) ≤ Jλ(uλ) and (∗∗) is proved.

Finally, let ṽ (respectively c̃) be the critical point (respectively critical value) of Jλ, we
recall that the function ṽ belongs to E and satisfies

∆2ṽ − γ∆ṽ + δṽ = λf(ṽ) in Ω and Jλ(ṽ) = c̃.

The next lemma states that the limit of a sequence of unstable solutions is also unstable.

Let un ⇀ u in H2(Ω)∩H1
0 (Ω) and µn → µ be such that η1(µn, un) < 0. Then,

η1(µ, u) < 0.

Proof: The fact that η1(µn, un) < 0 is equivalent to the existence of a ϕn ∈ H2(Ω) ∩
H1

0 (Ω) such that∫
Ω

|∆ϕn|2 + γ

∫
Ω

|∇ϕn|2 + δ

∫
Ω

ϕ2
n ≤ µn

∫
Ω

f ′(un)ϕ2
n with

∫
Ω

ϕ2
n = 1 (14)

Since f ′ ≤ a, (14) shows that (ϕn) is bounded in H2(Ω) ∩ H1
0 (Ω). Let ϕ ∈ E be such

that, up to a subsequence, ϕn ⇀ ϕ in H2(Ω) ∩H1
0 (Ω). Then

µn

∫
Ω

f ′(un)ϕ2
n → µ

∫
Ω

f ′(u)ϕ2

This can be seen by extracting from (ϕn) a subsequence dominated in L2(Ω)) as in [7,
Theorem IV.9]. Now we have∫

Ω

|∆ϕ|2 ≤ lim inf

∫
Ω

|∆ϕn|2 and

∫
Ω

|∇ϕ|2 ≤ lim inf

∫
Ω

|∇ϕn|2

finally, since ‖ϕ‖2 = 1, we obtain∫
Ω

|∆ϕ|2 +

∫
Ω

|∇ϕ|2 + δ

∫
Ω

ϕ2 ≤ µ

∫
Ω

f ′(u)ϕ2.

Obviously, the fact that the function v belongs to C4(Ω̄) ∩ E follows from a bootstrap
argument.

Actually, the next paragraph said a good deal more, giving additional information on
precisely the comportment of the instable solution vλ.
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Lemma 6.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

5.4. (iii) (a). By contradiction, thanks to Lemma 3, there is a sequence of posi-
tives scalars (λn) and a sequence (vn) of unstable solutions to (Pλn) such that vn → v in
L1

loc(Ω) as λn → λ1/a for some function v.
We first claim that (vn) cannot be bounded in E. Otherwise, let w ∈ E be such that,

up to a subsequence,

vn ⇀ w weakly in E and vn → w strongly in L2(Ω).

Therefore,

∆2vn − γ∆vn + δvn → ∆2w − γ∆w + δw in D′(Ω),

f(vn)→ f(w) in L2(Ω),

which implies that ∆2w − γ∆w + δw = λ1
a
f(w) in Ω. It follows that w ∈ E and solves

(Pλ) with λ1/a in stead of λ. From Lemma 6, we deduce that

η1

(λ1

a
, w
)
≤ 0. (15)

Relation (15) shows that w 6= uλ1/a which contradicts the fact that (Pλ) with λ1/a
in stead of λ has a unique solution. Now, since ∆2vn − γ∆vn + δvn = λnf(vn), the
unboundedness of (vn) in E implies that this sequence is unbounded in L2(Ω), too. To
see this, let

vn = knwn, where kn > 0, ‖wn‖2 = 1 and kn →∞.
Then

∆2wn − γ∆wn + δwn =
λn
kn
f(vn)→ 0 in L1

loc(Ω).

So, we have convergence also in the sense of distributions and (wn) is seen to be bounded
in E with standard arguments. We obtain

∆2w − γ∆w + δw = 0 and ‖w‖2 = 1.

The desired contradiction is obtained since w ∈ E.

5.5. (iii) b. We end the proof by showing that vλ tends to u∗ uniformly in Ω when
λ tends to λ∗.

As before, it is sufficient to prove the L2(Ω) boundedness of vλ near λ∗ and to use the
uniqueness property of u∗. Assume that ‖vn‖2 → ∞ as λn → λ∗, where vn is a solution
to (Pλn). We write again vn = knwn. Then,

∆2wn − γ∆wn + δwn =
µn
kn
f(vn). (16)

The fact that the right-hand side of (16) is bounded in L2(Ω) implies that (wn) is bounded
in E. Let (wn) be such that (up to a subsequence)

wn ⇀ w weakly in E and wn → w strongly in L2(Ω).

A computation already done shows that

∆2w − γ∆w + δw = λ∗aw, w ≥ 0 and ‖w‖2 = 1,

which forces λ∗ to be λ1/a. This contradiction concludes the proof.

© 2018   Global Journals

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
 V
er

sio
n 

1
V
III

Y
ea

r
20

18

40

  
 

( F
)

Bifurcation for a Class of Fourth-Order Stationary Kuramoto-Sivashinsky Equations under Navier 
Boundary Condition

Proof

Proof

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In conclusion, all these results give us a rather clear schema of solutions for the
quasilinear case a ∈ (0,+∞). An important role in our arguments has played by l :=

lim
t→∞

(
f(t)− at

)
. We distinguish two different situations strongly depending on the sign of

l.

- λ0 λ∗

6

uλ

- λ0 λ∗λ1
a

λ1
r0

6

uλ

u∗     
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VI. The Dirichlet Problem
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