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Bifurcation for a Class of Fourth-Order
Stationary Kuramoto-Sivashinsky Equations
under Navier Boundary Condition

Imed Abid ©, Soumaya Saanouni ° & Nihed Trabelsi

Abstract- In this paper, we study the bifurcation of semilinear elliptic problem of fourth-order with Navier boundary
conditions. We discuss the existence and the uniqueness of a positive solution and we also prove the existence of
critical value and the uniqueness of exiremal solutions. We take into account the types of problems of bifurcation for a
class of elliptic problems we also establish the asymptotic behavior of the solution around the bifurcation point.
Keywords: bifurcation, reqularity, stability, quasilinear.

I. INTRODUCTION

Let ©2 be a smooth bounded domain in R™, the Kuramoto-Sivashinsky (KS) equation

Ou+ A*u — yAu+ du — B|Vul* = Af(z,u) in €,
Au =u = 0 on 0f),

arises in many applications from mathematical physics, which are usually used to describe
some phenomena appearing in physics, engineering, and other sciences.

Moreover, the first bifurcation may be subcritical and bistability then occurs. The
features qualitatively agree with the experiments. Finally, wave shapes are compared.
The addition of the lighter order terms leads to better agreement with the experiments.
The (KS) equation was the first non-linear wave equation to be proposed for describing
long interfacial waves of two-layer couette and poiseuille flows. In agreement with previous
studies, it is shown that each higher order term has a ”laminarizing effect”: the solutions
of the (KS) equation simplify the benefit of stationary traveling waves.

In the stationary case and for vy = § = 8 = 0, various authors have studied the existence
of weak solutions for the bifurcation problem

A’u = Af(u) in  Q,
(£3) {Au:u =0 on OS2,
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where  is a bounded open subset of R", n > 2. Abid and al. have proved in [1] that
there exists 0 < A* < 0o, a critical value of the parameter A, such as (E)) has a minimal,
positive, classical solution uy for 0 < A < A\* and does not have a weak solution for A > \*.

t
When tlim & = a < 00, it is proved also there exists a unique classical solution u* of
—00

(E)+) if and only if tl}gloo(f(t) —at) < 0.

When 6 = 8 = 0, several researchers are interested in this type of phenomenon:

A’y —~yAu = Af(z,u) in €,
Au=u = 0 on Of.

In [17, 18], Lazer and Mckenna firstly proposed and studied the problem of periodic
oscillations and traveling waves in a suspension bridge. It was pointed out in [23, 28]
that the problem provides a good model for the study of the static deflection of an elastic
plate in a fluid. Moreover, Ahmed and Harbi in [2] showed that the problem can also be
applied to engineering, such as communication satellites, space shuttles and space stations
equipped with large antennas mounted on long flexible beams. Such problems appear for
example in the micro-electromechanical systems giving the modelization of electrostatic
actuation for membranes deflecting on thin plates in the field of nanotechnology detection
systems in [19, 24] where the parameter v represents the constant tension rising in the
stretching energy sector in the presence of elastic deformation. It arises in mechanics too,
see [11] and in electricity, see [16].

Ben Omrane and Khenissy in [6] show the nonexistence of solutions with Dirichlet
boundary conditions. They prove a dichotomy result giving the positivity preserving
property for a biharmonic equation arising in MEMS models.

When 7 is not constant, other results prove the existence of solutions and study the
bifurcation problem with Navier boundary conditions,

APy — div(y(z)Vu) = A\f(u) in Q.

In [26], Sdanouni and Trabelsi show how the critical problem behaves when it is considered
with the Navier boundary condition. The function v(z) is smooth positive on € and the
L>-norm of its gradient is small enough in order to assure ensure the application of
maximum principle [12].

Our main interest here will be in the study of a bifurcation problem in stationary case
for 5 =0 and 7, d, A > 0, we consider the following problem

A’u—~yAu+du = Af(u) in
(PA) u > 0 in €,
Au=u = 0 on 0f),

where € is a smooth bounded domain in R"; (n > 2) and f is a positive, increasing and
convex smooth function on (0, 400), which verifies

lim @

t—oo

=a € (0,00).

This paper is organized as follows: In next section we state our main results contained
in this work (see Theorems 1, 2 and 3). The content of section 3 is devoted to the proof
of Theorem 1, concerns existence of minimal solutions. It is shown that there exists a
limiting parameter \* such that one has existence of stable regular minimal solutions to
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(Py) for A € (0, A*), while for A > \*, not even singular solutions exist. In Sections 4 and 5,
we devoted to the proofs of Theorems 1 and 2, we take into account the types of problems
of bifurcation for a class of elliptic problems we also establish the asymptotic behavior of
the solution around the bifurcation point. Finally, in Section 6 we also give some hints
on how to proceed for semilinear problems under Dirichlet boundary conditions.

[I. MAIN RESULTS

Throughout our paper, we denote by || - [|2, the L?(2)-norm, whereas we denote by || - ||,
the H?(2) N Hg(2)-norm given by

Julf? = [ 180
Q

Definition 1. We say that w € H*(Q) N Hg(Q) is a weak solution of the problem (Py), if
f(u) € LY(Q) and

/ngu.Ago—Fv/QVu.VgojLé/pr:)\/ﬂf(u)go, Vi € C2(Q) N H2(Q) N HL(Q).

Such solutions are usually known as weak energy solutions. For short, we will refer to
them simply as solutions which is assured by the next lemma.

Remark 1. Since f(t) < at + f(0), if v € H*(Q) N H}(Q) is a weak solution of (Py)
and v € LY (Q), we say that u is reqular solution. It is easily seen by a standard bootstrap
argument that u 1s always a classical solution.

For more detail, see [12, Proposition 7.15]. In the rest of this paper, we denote by a
solution of problem (P,) any weak or classical solution.

Definition 2. We say that uw € H*(Q)NHY(Q) is a supersolution of (Py) if f(u) € L*(Q)
and

Ay — yAu + du > Af(u) in D'(Q).

Reversing the inequality one defines the notion of subsolution.

Next, we recall a version of the Maximum Principle for the biharmonic operator.
Proposition 1.  Let uw € H*(Q) N HY(Q) be a function such that
Au>01inQ, Au=u=0 on 0.
Then
u(z) >0, Au(z) <0 in Q.

We say that a solution uy of problem (P,) is minimal if uy < u in ) for any solution u

of (P)\)

Recall that A; € R, be the first eigenvalue and ¢; the first normalized eigenfunction of
(—A)?2 —yA + ¢ in Q with homogeneous Dirichlet boundary data
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A?pr —YApr +0p1 =M in Q,
Apr=¢; =0 in 0N (1)
lealla = 1.
an eigenvalue A\; which is positive and that can be characterized as follows

(IAsOI2 +9|Vel|* + 5902>
Al = min 0 :

pe H2(QNHA (2)\{0} / o2 ’
Q

(2)

there exists a non-negative function ¢; € H?*(Q) N H}(Q), which is an eigenfunction
corresponding to A;, attaining the minimum in (2), that is ||¢1]|2 = 1 and

>\1=/ <|A901|2+7|V%01|2+5<P%>‘
Q

A solution u of problem (Py) is stable if and only if the first eigenvalue of the linearized
operator

v Ly (v) = A% 0 — yA v + 6v — A (u)v,
given by

A u) = inf A 1) (v),
A= ety )

where for any v € H*(Q) N Hg(Q2) \ {0}

/(]Av|2+7|VU\2+5v2) —)\/f’(u)vzdx
0 0

V13

mAu)(v) =

is non negative. In other words,
)\/ f(u)vidr < / <|A o> + |V ol]* + 5112>, for any v € H*(Q)N Hy(Q).  (3)
Q Q

If n(A,u) < 0, the solution u is said to be unstable.
Next, we let

A :={\> 0] (Py) admits a solution} and A\* :=sup A < +ooc.

and

t
ro := inf &
t>0 ¢
The two values a and r that we have already defined will be important in the bifurcation

phenomena. More precisely, in the frame of the critical value A\*.

We propose to show the following results, first main statement asserts the existence of
the critical value \*.

Theorem 1.  There exists a critical value \* € (0,00) such that the following properties
hold:

(i) For any X\ € (0,\*), problem (Py\) has a minimal solution uy, which is the unique
stable solution of (Py).
(ii) For any A € (0,\1/a), uy is the unique solution of problem (Py).
(iii) The function X\ — uy is a C', convex, increasing function.
(iv) If (Py+) has a solution, then u* := limy_, = uy and n (A", u*) = 0.
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The next natural obvious object of study gives us more precise information for \*.
An important role in our arguments will be played by

[ := lim (f(t) —at).

t—o00

We distinguish two different situations strongly depending on the sign of .

Theorem 2. Assume that | > 0. We have three equivalent assertions:
i) \* =\ /a.
Notes (1) 1/a :
(ii) problem (Py+) has no solution.
(iii) /\lin)\l uy = oo uniformly on compact subsets of €.
% *
Again the question arises as to what happens when [ < 0. The following was proved.
Theorem 3. Assume that | < 0. Then we have.
(i) the critical value \* belongs to (A1/a, \1/T0)

(ii) (Py+) has a unique solution u*.

(iii) The problem (Py) has an unstable solution vy for any A € (A\/a,\*) and the
sequence (vy)x satisfies:

(a) lim vy = oo uniformly on compact subsets of €,
)\—))\1/(1

(b) lim vy = u* uniformly in €.
A A*
[[I. PROOF OF THEOREM 1

We say that a solution uy of problem (Py) is minimal if uy < u in Q for any solution u
of (P)\)
Lemma 1. Problem (Py) has no solution for any X\ > \i/rg, but has at least one solution

provided A is positive and small enough.

Proof: First, to show that (Py) has a solution, we use the barrier method.
Since f(0) > 0, u = 0 is a strict subsolution of (Py) for every A > 0. To this aim, let
w € H*(Q)) which satisfies

AW —~yAw+ow = 1 in €,
Aw=w = 0 in 0ON.

The choice of w implies that w is a bounded supersolution of (P,) for small A\, more
precisely whenever A < 1/ f(||7]|oo)-

Notice that for any A > 0, the function w = 0 is a sub-solution of (P,) since f(0) > 0.
Next, we define a sequence w,, € H*(Q) by

{ AWy — YAWp 1 + Wy = Af(w,) in Q (@)

Awpip = wpyr = 0 on 0.
The maximum principle (see [7]) implies that
w < w, < w,y; < wforallnéeN,

so that the sequence (wy,),>¢ is increasing and bounded, then it converges. It follows that
problem (P,) has a solution.
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Assume now that w is a solution of (Py) for some A > 0. Using ¢; given in (1) as a test
function and integrating by parts, we get

A1/s01u = /(Azsol—7A901+5901)u=/ﬁ2uwl—v/Aus01+5/us01
Q Q Q Q Q

= A/Qf(U)soleo/Qusol-

This yields No tes
()\1 — )\7”0) / Y1u 2 0
Q

Since ¢ > 0 and u > 0, we conclude that the parameter A should belong to (0, A1 /7).
As a consequence we have that \* is a real. Another useful result is stated in what
follows.

Lemma 2. Assume that (Py) is resolvable, then a minimal solution uy exists. Moreover,
(Py) is resolvable for any X € (0, A).

Proof: Fix A € (0,\*) and let u be a solution of (Py). As above, we use the barrier
method to obtain a minimal solution of (Py). The basic idea is to prove by induction that
the sequence (wy,)n>o defined in (4) is increasing and bounded by wu, so it converges to
some solution uy. Since u) is independent of the choice of u, then it is a minimal solution.

Now, if u is a solution of (P)), then u is a super-solution for the problem (Py/) for any
X in (0, A) and 0 can be used always as a sub-solution.

Remark 2.  Thanks to lemmas 1 and 2, the set A is an interval not empty and bounded.

a) Proof of Theorem 1.

i. Proof of (i). First, we claim that w, is stable. Indeed, arguing by contradiction, i.e.
the first eigenvalue n;(\, uy) is negative. Then, there exists an eigenfunction € H*(Q)
such that

AP —yAY + 0 = Af'(w)p =my in Q,
Y >0 in Q
AY= 9P =0 on 0.

Consider uf := uy — € 1. Hence, by linearity, we have

A (uy) — e(A%Y — yAY + 59) — Nf (uy — ev)
Af(un) —e(Af'(un) Y+ mp) — Af (un — ev)
= A [Flwn) = fln —ev) = =f (w)y] — = my

A o:(ev) —e my
P (Ao(l) —m).

Since 71 (A, uy) < 0, for £ > 0 small enough, we have

A%uF — yAUE + duf — \f(uf) =

A2uf — yAuF + 6uf — Af(uf) >0 in Q.

Then, for € > 0 small enough, we use the strong maximum principle (Hopf’s lemma, see
[14]) to deduce that u® > 0 is a super-solution of (P,). As before, we obtain a solution u
such that v < u® and since u® < uy, then we contradict the minimality of u,.

Now, we show that (Py) has at most one stable solution. Assume the existence of another
stable solution v # wy of problem (P,). Let w := v — uy, then by maximum principle
w > 0 and from (3) taking w as a test function, we have

© 2018 Global Journals
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)\/f’(v)w2 < /|Aw|2+7/\Vw|2+§/w2
Q Q Q Q
< /A2ww—7/Aww+5/ww
Q Q Q

/ [A2U — YAV + 6v — A%uy + yAuy — (5u,\] w
Q

IN

IN

A/Q [f(v) —f(uA)} w.

Therefore

100 = 1) = £ @)@ - un)]w = o
Q
Thanks to the convexity of f, the term in the brackets is nonpositive, hence

f) = flux) = f'(v)(v —ux) =0 in Q,

which implies that f is affine over [uy, v] in . So, there exists two real numbers « and
such that

flz)=azx+p in [O,mng].

Finally, since uy and v are two solutions to A?w —yAw + dw = Aaw + A3, we obtain that

0:/Q<u,\ AQU—UAQU,\>—7/Q<U,\ Av—v AU,\>+5/Q<U)\U—"UU,\> :)\B/Q(u,\—v)

This is impossible since § = f(0) > 0 and w = v — u,, is positive in €.

3.1.2. Proof of (ii). Recall that \; is defined in (1). By the convexity of f, we deduce
that a = supg, f'(t). Let u be a solution to (Py) for A € (0, A1/a), we suppose that u is

unstable. Then, we can take p = 1 € H?(2) N H}(Q) which satisfy

Aa/som/f W) >/!A90I2+7/|V90|2+5/90 —Al/go,

which shows that
()\a—)\l)/g02>().
Q

Impossible for A € (0, \;/a). Then, n;(A,u) > 0, so we obtain the uniqueness of w.
For the existence, we consider the minimization problem

min Tn(u),

wEH2(Q)NHL(Q)
where

T(u) = %/ <|Au|2 + | Vul® + 5u2) - )\/ F(u), forall ue H*(Q)N Hi(Q)
Q Q
with
u’ :=max (u,0) and F(u / f(s

If X € (0,A1/a), there exist ¢ > 0 and A > 0 depending on A such that
AF(t) < (M —e)t* + A, VteR
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Standard arguments imply that Jy(u) is coercive, bounded from below and weakly
lower semi-continuous in H?(Q) N H () (see propositions 2.2 and 2.3 in [29]). It is easy
to see that the minimum of 7, is attained by some function v € H?(2) N H}(2). So, the
critical point u of Jy gives a solution of (Py).

3.1.3. Proof of (ii1). By sub- and super-solution method, see Lemma 2 we obtain that
the mapping A — wu,, is increasing and this proves (iii).

3.1.4. Proof of (iv). Now Consider the nonlinear operator

G:(0,+00) x C**(Q)NE — CO(Q)
(A, u) — A%y — yAu + 0u — \f(u),
where a € (0,1) and E is the function space defined by
E:={ueW*?Q)| Au = u = 0on 90} (5)

Assume that (Py-) has a solution u. Then for any A € (0, \*), uy < u in .
Then for every A € (0, \*) we have uy, < u* in . Using the monotonicity of u,, we
deduce that the function

u* = lim uy
A= A*

is well defined in © and is a semi-stable solution of problem (Py.). Assuming that the
first eigenvalue 7;(\*, u*) is positive, we can apply the implicit function theorem to the
operator GG. For any A in a neighborhood of \* and u in a neighborhood of u*, we have
G(\,u) = 0, which proves that the problem (P,) has a solution for A in a neighborhood
of \*. But this contradicts the definition of A*. So, 7;(A\*,u*) = 0 and this completes the
proof of Theorem 1.

[V. PrROOF OF THEOREM 2

Remark 3. Thanks to Lemma 1 and (i) of Theorem 1, the critical value \* satisfies:
/\1/a S A S /\1/7’0.

To prove this theorem, we show that the three assertions are equivalent. And finally, we
prove that one hoolds. We shall use the following auxiliary result which is a reformulation
of Theorem due to Hérmander [15].

Lemma 3. Let S be an open bounded subset of R™, n > 2 with smooth boundary. Let (u,)
be a sequence of super-harmonic nonnegative functions defined on 2. Then the following
alternative holds:

: (i) either im w, = oo uniformly on compact subsets of €2,
n—oo
: (i) or (uy,) contains a subsequence which converges in L}, () to some function u.

Remark 4. The result by Hormander is also true if (u,) is a sequence of a super-harmonic
nonnegative functions.

4.1. Proof. (i)=(ii). By contradiction. We assume that A* = 2L_If (P)-) has a solution
u* then, as we have already observed in (iv) of Theorem 1, n;(A\*,u*) = 0. Thus, there
exists € H*(Q) satisfying:

A*Y— AP+ — N f(u)p =0  inQ
Y >0 inQ
AYy=19Y =0 on 0f).
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Using 1, given in (1), as a test function and integrating by parts, we obtain

/ (A2<p1 — 7Ap; + 5@@1) -\ / fu™) 1 =0
Q Q
therefore

/Q(/\l - /\*f,<U*>> Y1 =0.

o1 >0, ¥ >0, \* =2 and a = sup,., f'(t), we have \; — \*f/(u*) > 0, the above

equation forces \; — X“f;l(u*) = 0. Hence

fwWy=a in Q.
This implies that f(¢) = at + b in |0, max u*] for some scalar b > 0. But there is no

positive function in €2 such that ©« = Au = 0 on 02 and
A%u — yAu + du = XNau+ \*b in .

If not, using ¢; and integrating by parts, we have

/AQusol—’y/AusolJré/usmZA*a/usolJr)\*b/wl
Q Q Q Q Q
/(AQSOI_’VASDl‘{‘(;(Pl) u:)\l/ug01+)\*b/cp1
Q Q Q

0=\ / 1 which is impossible.
Q

then
1.e.

Hence, problem (Py+) has no solution and (i) implies (ii).
4.2. Proof (ii) =(iii). We assume that (i7) occurs and we claim that I;m/\ Uy = 00
— *

uniformly on compact subsets of (2. By contradiction, suppose that (iii) doesn’t hold. By
Lemma 4 and up to a subsequence, (uy) converges locally in L*(2) to u* as A — A\*.

Lemma 4. The minimal solution uy of the problem (Py) is bounded in L*(Q).

Proof. 1f not, we define
uy 1= kawy,
with
lwrlo =1 and ky— +oo0 as A — A"

Since f(t) < at+ f(0), We have

/|AM|2 < /|Aw,\|2+7/|VwA|2+5/w/2\
Q Q Q Q

= /AQw)\w,\—’y/Aw,\w,\—i—(s/w,\wA:/)\f(uA)w
Q Q Q o ka

f(0) /
)\*/ aw? + Z—w < XNa—c | w
Q< Yk A> 0

< Na—ce/]9Q|,

IN

where c is a positive constant independent on A.
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Af (kawy)
ko
facts imply that (wy) is bounded in H*(€2). Hence, up to a subsequence, we have

Recall that wy satisfies A%wy — yAwy + dwy = and f is quasilinear. These

wy — w weakly in H*(Q) and wy — w strongly in H?(Q2) as A — \*.
Moreover, by the trace theorem, w = Aw = 0 on 9€). We deduce that

A
JO) 0 in IL () as A A%

" N
L v . i otes
This implies A?w — yAwy + dwy = 0 in D' (Q). So, by Navier boundary condition, we
deduce that w = 0 in . This contradicts the fact that ||wl|ls = hm |wall2 = 1. This
complete the proof of lemma.

Hence, (uy) is bounded in L?*(2) and by the same arguments as above, it is bounded
in H*(Q) and up to a subsequence, we have

Azw)\ — ’)/Aw)\ —|— (5”[1))\ —

uy — u weakly in H*(Q) and uy — u in L*(Q) as A — \*.

A’u—~yAu+du = N f(u) in
Au=u = 0 on 0f)

and this impossible by the hypothesis (i7). This shows that (i7) implies (iii). Moreover,
this simply shows that (i7) and (iii) are equivalent.

4.3. Proof (iii)=-(i). if (P\+) has a solution u* then the sequence (u,) converges to u* as
A tends to™A , which cannot happen in the case where )\hn; uy = oo. Hence, (iii) implies (i).
— *

Indeed, clearly if (ii) and (iii) occur, we have )\h_g\l* l|urlle = co. Set
uy = ky wy with [Jwylls = 1.
Then, up to a subsequence, we obtain
wy —w weakly in H*(Q)) and wy — w strongly in H*(Q) as A — \*.
Moreover,
A*wy — yAwy + dwy, — A%w — yAw + 6w in D'(Q) as A — \*

and

A
k—f(k,\w,\) — Maw in L*(Q) as A — A%
A

Then,

A2w —yAw+dw = Naw in Q,
Avw=w = 0 on 0f2.

Multiplying by 1, which is defined in (1), we obtain

/)\*awwl = /A2w<p1 /Aw<p1+5/w<p1
Q
= /A2¢1w—7/AU1w+5/<p1w:/x\1golw.
Q Q Q Q
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This proves (i). To finish the proof of Theorem 2, we need only to show that (Py,/,) has
no solution. Indeed, assume that w is a solution of (P, /). Since f(t) —at > 0, we have

A
A% —yAu+6u =L f(u) > Mu in Q.
a
Multiplying the previous equation by ¢; and integrating by parts, we get f(u) = aw in

2, which contradicts f(0) > 0. This concludes the proof of Theorem 2.

Remark 5. Observe that the equivalence of the assertions of Theorem 2 does not depend
on the sign of [.

V. PROOF OF THEOREM 3

5.1. Proof (i). For the first part of Theorem 3, we have already seen in Remark 3 that
A/a < X < Aj/rg. Hence it suffices to prove that \* # A\;/a and \* # A\ /rg. First,
assume that A* = \;/a. By Remark 5, we have

)\lirg\l uy) = oo uniformly on compact subsets of €.
_> *

Let uy be the minimal solution to (Py). Then, multiplying (Py) by ¢; and integrating,
we obtain

and then

)\/ng(f(u,\)—au,\) > 0.

Passing to the limit in the last inequality as A tends to A\*, we find

OSZ/\*/QO1<0,
Q

which is impossible and then \* # %a.
Now, assume that \* = A\;/r¢ and let u be a solution of problem (Py+). Multiplying
(Pyx+) by o1 and integrating by parts, we have

A
A1 / uwp = - f(u)%
Q To Ja

that is
@ = rowgr =0
Q
which forces f(u) = row in €2, so that f(t) = rot in [0, maxq u]. As above, this contradicts
the fact that f(0) > 0.

5.2. Proof (ii). Since A* > \j/a, the existence of a solution to (Py«) is assured by

Remark 5. Then, it remains to prove the uniqueness. Assume that u is another solution

to (Py+) and let w := u — u*. Since uy < u and /\hH)\l uy = u*, we have w > 0. Then by
4) *

convexity of f we have

A*w — yAw + dw = \* (f(u) — f(u*)) > N f'(u)w in Q.
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Recall that n;(A*,u*) = 0, so let  be the corresponding eigenfunction. Multiplying the
last inequality by  and integrating by parts, we find

0= / 3 (F) = ) — Furyw) =0

Therefore, we must have equality f(u) — f(u*) = f'(v*)w in Q, which implies that f is
linear in [0, max u] and this leads a contradiction as in the proof of Theorem 1.

5.3. Proof (iii). concerning the existence of a non stable solution vy of (Py) will be
proved by using the mountain pass theorem of Ambrosetti and Rabinowitz [3] in the fol-
lowing form:

Theorem 4. Let E be a real Banach space and J € C*(E,R). Assume that J satisfies
the Palais-Smale condition and the following geometric assumptions:
(%) there exist positive constants R and p such that

J(u) > J(ug) + p, for allu e E with ||u — u|| = R.
(x%) there exists vg € E such that ||vg — uo|| > R and J(vy) < J(up).

Then the functional J possesses at least a critical point. The critical value is charac-
terized by

c:=inf max J(u),
9€T ueg([0,1])

where

I = {g € C([0.1], B 9(0) = uo, (1) = vo |
and satisfies

c > J(up) + p.
In our case,

I E — R
1 2 2 2\ _
u |Aul® + ~|Vul® + du F(u),
2\ Jq Q
where
¢
F(t):/\/ f(s)ds, forallt > 0.
0

We take ug as the stable solution u, for each A € (A;/a, \*).

Remark 6. The energy functional Jy belongs to C*(E,R) and

(T3 (u),v) Z/AUAU+’}//VUVU+5/UU—)\/f(u)vd%, for allu, v e E.
Q Q Q Q

Since ;1 (A, uy) > 0, the function wy is a strict local minimum for 7y, we apply the
mountain pass theorem for 7,. We show in the next lemma that 7, satisfies the Palais-
Smale compactness condition.

© 2018 Global Journals

Notes



Notes

Lemma 5. Let (u,) C E be a Palais-Smale sequence; that is,

sup | I (uy,)| < 400, (6)
neN
| T (un)|| e — 0 asn — oco. (7)

Then (uy) is relatively compact in E.

Proof: Since any subsequence of (u,,) verifies (6) and (7) it is enough to prove that
(uy,) contains a convergent subsequence. It suffices to prove that (u,) contains a bounded
subsequence in E. Indeed, suppose we have proved this. Then, up to a subsequence,
u, — u weakly in E, strongly in L?(Q2). Now (7) gives

A2u, — yAuy, 4 Suy — Af(u,) — 0 in D'(Q)
Note that f(u,) — f(u) in L*(Q) because |f(u,) — f(u)| < a|u, — u|. This shows that

AP, — yAu, + Su, — Af(u) in D'(Q).

That is
Ay — yAu + du — Af(u) = 0.

The above equality multiplied by u gives

Aul? +7 [ [VulP+6 | v> =X [ f(u)u=0. (8)
Jylawt e fjrwueo [ [

Now (7) multiplied by (u,,) gives

/|Aun]2+’y/|Vun]2+5/ui—)\/f(un)un—>0 (9)
Q Q Q Q

in view of the boundedness of (u,) and the L?(2)-convergence of u,, and f(u,), we have

)\/Qf(un)un —>)\/Qf(u)u
Hence, (8) and (9) give

|Aun|2—>/|Au|2 and 7/|Vun|2—>7/|Vu|2
Q Q Q Q

which insures us that u,, — v in F.

Actually, it is enough to prove that (u,) is (up to a subsequence) bounded in L*(12).
Indeed, the L?(Q2)-boundedness of (u,) implies that E-boundedness of (u,,) as it can be
seen by examining (6).

We shall conclude the proof obtaining a contradiction from the supposition that |ju, |2 —
oo. Let u, = k,w, with k, > 0, k,, = 0o and ||w,||2 = 1. Then

T\ (7 R | 2 7 2, 0 g 1
O—nh_)rgo 2 —nh_)rglo [§/Q|Awn| +g Q|an| t3 an—ﬁ QF(un)}

n

However, since | f(t)| < alt| + b, we have

|F(uy,)| = |F(kpwy)| < %kiwi + bA|kpwy,|.
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This shows that

1 a\ bA
— | F <= 24 )
iz, (un)_Q/an—i-kn/ﬂwn<oo

We claim that

A*w — yAw + dw = adw’  where w' := max{0, w}. (10)

Indeed, (7) divided by k,, gives
/Awn-Av+'y/an-Vv+5/wnv—)\/Mv—ﬂ) (11)
Q Q Q o kn

for each v € E. Now

/Awn-Av+7/an-Vv+5/wnU—>/Aw-Av+7/Vw-Vv—l—5/wv
Q Q Q Q Q Q

Hence (10) can be concluded from (11) if we show that 1/k, f(u,) converges (up to a
subsequence) to aw™ in L?(Q). Now 1/k,f(u,) = 1/k,f(k,w,) and it is easy to see that
the required limit is equal to aw in the set {x € Q : w,(z) — w(z) # 0}.

If w(z) =0 and wy(x) = w(x), let € > 0 and ny be such that |w,(z)| < e for n > ny.
Then

@ <ae+ k‘i for such n,

that is the required limit is 0. Thus, f(u,)/k, — aw™ a.e. Here b = f(0). Now w,, — w
in L?(Q) and, thus, up to a subsequence, w, is dominated in L*(Q2) (see [7, Theorem
IV.9]).

Since 1/k, f(u,) < alw,| + 1/k,b, it follows that 1/k, f(u,) is also dominated. Hence
(10) is now obtained. Now (10) and the maximum principle imply that w > 0 and (10)
becomes

A —yAw+ 6w = daw in €,
w >0 i Q (12)
lwlls = 1 in Q.
Thus from (1), we have Aa = \; and w = ¢, which contradicts the fact that X\ # A\;/a.
This contradiction finishes the proof of the lemma 5.
Now, we need only to check that the two geometric assumptions of theorem 4 are

fulfilled.
First, since u, is a local minimum of 7y, there exists R > 0 such that for all u € E

satisfying ||lu — uy|| = R, we have Jy(u) > Jx(uy) . Then
In(u) — Ta(uy) = T (ur)(u — uy,u — uy) + p  where p > 0.

This makes uy becomes a strict local minimal for J, which proves (x).
Recall that lim;, . (f(t) — at) is finite, then there exists § € R such that

f(t) >at+p, Vt>D0.
Hence

F(t) > %tQ + BAt, V> 0.
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This yields, using the definition of ¢; mentioned in (1),
Al — a
Tiltor) =258 [ t-pxt [
Q Q

since ||¢1]|2 = 1, then we have

I(ter) A —al 5)\/
¥1

2 2t

which implies

1 AL — aA
limsup — J(tp1) < 2 2 < 0, VA>\/a.
t—too 12 2
Therefore
tLlErnoo Tiltpr) = —oo.

So, there exists vy € E such that J)(vo) < Ja(uy) and (%) is proved.

Finally, let © (respectively ¢) be the critical point (respectively critical value) of Jy, we
recall that the function v belongs to E and satisfies

A?D — AT+ 00 = Af(0) inQ and Jy(9) =¢&
The next lemma states that the limit of a sequence of unstable solutions is also unstable.

Lemma 6. Let u, — u in H*(Q)NHY(Q) and p, — p be such that ny(tin, u,) < 0. Then,
m(p,u) <O0.

Proof: The fact that n;(u,, u,) < 0 is equivalent to the existence of a ¢, € H*(2) N
H{ () such that

/ Apl? +7 / Venl? 46 / 2 / ) with / Z=1  (14)
Q Q Q Q Q

Since f’ < a, (14) shows that (p,) is bounded in H?*(Q2) N H} (). Let ¢ € E be such
that, up to a subsequence, ¢, — ¢ in H*(Q2) N Hj (). Then

/fun %u/f

This can be seen by extracting from (p,) a subsequence dominated in L?(2)) as in [7,
Theorem IV.9]. Now we have

/|A<p|2 gliminf/ |Ap,|* and /|Vg0|2 gliminf/ IVeon |
Q Q Q Q

finally, since ||¢|l2 = 1, we obtain

[1aer+ [ 19645 [ & <u [ re
Q Q Q Q

Obviously, the fact that the function v belongs to C*(Q) N E follows from a bootstrap
argument.

Actually, the next paragraph said a good deal more, giving additional information on
precisely the comportment of the instable solution v,.
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5.4. Proof (iii) (a). By contradiction, thanks to Lemma 3, there is a sequence of posi-
tives scalars (\,) and a sequence (v,,) of unstable solutions to (Py,) such that v, — v in

L. (Q) as A\, = \1/a for some function v.

We first claim that (v,) cannot be bounded in E. Otherwise, let w € E be such that,
up to a subsequence,

v, —w weakly in & and v, — w strongly in L*(12).

Therefore,
A?v, — yAv, + 0v, — A*w — yAw + dw in D'(Q),

fvn) = f(w) in L*(Q),

which implies that A%w — yAw + dw = % f(w) in Q. It follows that w € E and solves
(Py) with A;/a in stead of A. From Lemma 6, we deduce that

771(%7?0) <0. (15)

Relation (15) shows that w # wu,,,, which contradicts the fact that (Py) with A;/a
in stead of A has a unique solution. Now, since A?v, — yAv, + dv, = \.f(v,), the
unboundedness of (v,) in E implies that this sequence is unbounded in L?*(f2), too. To
see this, let

vy = kpwy,, where k, >0, |wy|z=1 and &k, — co.
Then

A .
A, — yAw, + dw, = k—f(vn) —0 in Llloc(Q).

n

So, we have convergence also in the sense of distributions and (w,,) is seen to be bounded
in £ with standard arguments. We obtain

A*w —yAw + 0w =0 and |lw|y=1.
The desired contradiction is obtained since w € E.

5.5. Proof (iii) b. We end the proof by showing that v, tends to «* uniformly in {2 when
A tends to \*.

As before, it is sufficient to prove the L?(2) boundedness of vy near \* and to use the
uniqueness property of u*. Assume that [|v,|s — oo as A\, — A*, where v,, is a solution
to (P,). We write again v, = k,w,. Then,

Aw, — yAw, + dw, = %f(vn) (16)

n

The fact that the right-hand side of (16) is bounded in L*(Q2) implies that (w,,) is bounded
in E. Let (w,) be such that (up to a subsequence)

w, — w weakly in £ and w, — w strongly in L*(12).
A computation already done shows that
A*w — yAw + 0w = Naw, w >0 and ||w|, =1,

which forces \* to be A\;/a. This contradiction concludes the proof.
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In conclusion, all these results give us a rather clear schema of solutions for the
quasilinear case a € (0,+00). An important role in our arguments has played by [ :=

tlirn ( ft)— at). We distinguish two different situations strongly depending on the sign of
— 00

Uy Uy
A I A I

|
h I
[ |
I I
I I
I I
I I
I 7 T
I I I
I I I

0 v A 0 N v a A
)\ a )\ T0

Fig. 1: Behavior of the minimal solution, 1 > 0  F7g. 2: Bifurcation branches, | < 0

© N
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