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Abstract-

  

A significantly large number of earlier works on the subject of fractional calculus give the interesting account of 
the theory and applications of fractional calculus operators in many different areas of mathematical analysis (such as 
ordinary and partial differential equations, integral equations, special functions, the summation of series, etc.). The 
object of the present paper is to study and develop the Saigo-Maeda operators. First, we establish four results that give 
the images of the product of two multivariable Gimel-functions and a general class of multivariable polynomials in Saigo-
Maeda operators. On account of the general nature of the Saigo-Maeda operators, multivariable Gimel-functions and a 
class multivariable polynomials a large number of new and known theorems involving Riemann-Liouville and Erdelyi-
Kober fractional integral operators and several special functions. 
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I.

 

Introduction And Preliminaries

 

The fractional integral operator involving various special functions has found 
significant importance and applications in Various subfields of applicable mathematical 
analysis. Since the last four decades, some workers like Love [17], McBride [20], Kalla 
[8,9], Kalla and Saxena [10,11], Saxena et al. [29], Saigo [24,25], Kilbas [12], Kilbas and 
Sebastian [14] and Kiryakova [16,17] have studied in depth the properties, applications 
and different extensions of Various hypergeometric operators of fractional integration. A 
detailed account of such operators along with their properties and applications can be 
found in the research monographs by Samko, Kilbas, and Marichev [26], Miller and Ross 
[22], Kilbas, Srivastava, and Trujillo [15] and Debnath and Bhatta [6]. A useful 
generalization of the hypergeometric fractional integrals, including the Saigo operators 
[23,24], has been introduced by Marichev [18], see  Samko et al.

 

[28] and also see Kilbas 
and Saigo [13] for more details. The generalized fractional integral operator of arbitrary 
order, involving Appell function 

 

in the kernel defined and studied by Saigo and 
Maeda [27, p. 393, Eq (4.12)] and (4.13)] in the following manner:

 

Let  

 

be complex numbers and,  , we have, see  Saigo and 
Maeda [28, p. 393, Eq (4.12)]
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                                               (1.1)

and 

                                                (1.2)

Definition 2



 

Definition 4

 

Lemma 1.

 

Lemma 2.

 

Lemma 3.

 

Lemma 4.

 

 

Recently, Gupta et al. [7] have obtained the images of the product of two H-
functions in Saigo operator given by (1.3) and (1.4) and thereby generalized several  
results obtained earlier by Kilbas, Kilbas and Sebastian [14] and Saxena et al. [29] as 
mentioned in this paper cited above. It has recently become a subject of interest for 
many researchers in the field of fractional calculus and its applications. Motivated by 
these avenues of applications, a number of workers have made use of the fractional 
calculus operators to obtain the image formulas. The aim of this paper is to obtain four 
results that give the theorems of the product of two multivariable Gimel functions and 
a general class of multivariable polynomials [30] in Saigo-Maeda operators and Saigo 
operators. 
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We have the following two results due to Saigo [25] where 

                                                                          (1.3)

                                                                 (1.4)

F is the Gaussian hypergeometric function. We obtain the following lemmas.

                                                 

(1.5)

where 

                              (1.6)

where 

                                                                                                   
 (1.7)

                                                                                             (1.8)

where 

II. Multivariable Gimel-Function

We throughout this paper, let       , and   be set of complex numbers, real 
numbers and positive integers respectively. Also.            . We define a generalized 
transcendental function of several complex variables.
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with  
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The  contour  is in the - plane and runs from  to  where  if is a real number with 

loop, if necessary to ensure that the poles of  

,  to

the right of the contour  and the poles of   lie to the left  of the

contour . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.1) can be obtained of the
corresponding conditions for multivariable H-function given by as 

 where 

                           (2.4)

Following the lines of Braaksma ([4] p. 278), we may establish the asymptotic expansion in the following convenient
form 

     ,     

    ,      where   : 

 and 

Remark 1.

If   .  
,  then the multivariable Gimel-function reduces in multivariable Aleph- function defined by

Ayant [3]. 

Remark 2.  
If  .   

,  then the multivariable Gimel-function reduces in multivariable I-function  defined by Prathima et al.
[23]. 

Remark 3.

Remark 4.

If  .  
, then the generalized multivariable Gimel-function reduces in  multivariable I-function  defined by

Prasad [22]. 

If the three above conditions are satisfied at the same time, then the generalized multivariable Gimel-function reduces in
the   H-function of several  defined by Srivastava and Panda [32,33].  About the simplified notations, see Ayant ([4],
page 248-255)

Now, we define the second Gimel function of  s variables,  the parameters  are identical  to the Gimel  function of r
variables with the prim sign  and the validities conditions are equivalent.
The generalized polynomials of multivariable defined by Srivastava  [30], is given in the following manner:

 

     (2.5)

Ref
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III. Main Results

 

                                                                                                                               
where  are arbitrary positive integers and the coefficients   are arbitrary constants,
real or complex. 

We shall note  

 We shall note  

                                                                                                (3.1)

                                                 (3.2)

                          (3.3)

                (3.4)

Theorem 1.

 

                   (3.5)

where       
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,    

                                                                           

                             

                                                                 (3.12)

In our investigation, we will use these simplified notations cited above.

Provided

  

                   

 and  is defined by (2.4), ; 

Proof
To prove (3.1), we first express the class of multivariable polynomials   in  series with the help
of (2.13), the multivariable Gimel-functions regarding Mellin-Barnes type integrals contour with the help of (2.1). Now
interchange the order of summations and two multiple Mellin-Barnes integrals contour, respectively and taking the
fractional integral operator inside ( which is permissible under the stated conditions) and make simplifications. Next, we
express the terms   in terms of Mellin-Barnes  integrals contour (Srivastava et al.
[31], page 18, (2.6.3) and after algebraic manipulations, we obtain 

L.H.S = 

    

                                             

Now using the lemma 1. Finally interpreting the resulting Mellin-Barnes  integrals contour as a multivariable  Gimel-
function of -variables, we obtain the desired result (3.1).

Let

                  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

V
II

Y
ea

r
20

18

39

  
 

( F
)

© 2018   Global Journals

  

Ref

31
.

H
. 

M
. 

S
ri

v
as

ta
v
a
, 

K
.C

. 
G

u
p
ta

 a
n
d
 S

. 
P

. 
G

o
y
al

, 
T

h
e 

H
-f
u
n
ct

io
n
 o

f 
O

n
e 

an
d
 T

w
o 

V
ar

ia
b
le

s 
w

it
h
 A

p
p
li
ca

ti
o
n
s,

 S
o
u
th

 A
si

a
n
 P

u
b
li
ca

ti
o
n
s,

 N
ew

 D
el

h
i,
 M

a
d
ra

s,
 1

98
2
. 
[3

2]
.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fractional Integration of the Product of Two Multivariable Gimel-Functions and A General  
Class of Polynomials

   (3.13)

    (3.14)

We have the following resulting

Theorem 2.

 

                 (3.14)

Provided

  

                   

 and  is defined by (2.4), ; 
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To prove the formula (3.17), we use the similar method that the  theorem 1 by using the lemma 3.

Let
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We have the formula.

Theorem 4.
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Provided

  

                   

 and  is defined by (2.4), ; 

Provided

  

                   

 and  is defined by (2.4), ; 

To prove the theorem 4, we use the similar method that the equation (3.5) by using the lemma 4.

IV. Particular Cases

In this section, we shall see four particular cases.

If we put  in the theorem three, we get

Corollary 1.
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  where 
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  (4.3)

under the same existence  conditions that formula (3.17) with. .

If  in theorem three, we have 

Corollary 2. 
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provided that

  

                   

 and  is defined by (2.4), ; 

If we put  in the equation (3.20), we get

 

Corollary 3. 

                   (4.7)

                  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

V
II

Y
ea

r
20

18

45

  
 

( F
)

© 2018   Global Journals

 

Notes

  

 



 
 

 
 

 
 
 
 
 
 
 
 
 
 

© 2018   Global Journals

        

Fractional Integration of the Product of Two Multivariable Gimel-Functions and A General  
Class of Polynomials

where

               (4.8)
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If  in theorem four, we have 

Let
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under the same existence conditions that equation (3.20) with. .

 By the similar procedure, the results of this document can be extended to the product of any finite number of
multivariable Gimel-functions and a class of multivariable polynomials defined by Srivastava [30]. 
Agarwal [1,2] has studied the fractional integration about the multivariable H-function.

Remark:

V. Conclusion

In this paper, we have obtained several theorems of the generalized fractional integral operators given by Saigo-Maeda
and Saigo. The images have been developed regarding the product of the two multivariable Gimel-functions and a
general class of multivariable polynomials in a compact and elegant form with the help of Saigo-Maeda and Saigo
operators.  Most  of  the  results  obtained  in  this  paper  are  useful  in  deriving  the  composition  formulae  involving
Riemann–Liouville, Erdelyi–Kober fractional calculus operators and multivariable Gimel functions. The findings of this
paper provide an extension of the results given earlier by Kilbas [12], Kilbas and Saigo [13], Kilbas and Sebastain [14],
Saxena et al.[29] and Gupta et al.[7] as mentioned earlier.  
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