Interesting Theta Function Identities Related to Jacobi Triple-Product

By Getachew Abiye Salilew
Madda Walabu University

Abstract- In this article, the author provide elementary proof for two (presumably new) theta function identities.

Keywords and Phrases: infinite series, theta function identities.

GJSFR-F Classification: FOR Code: MSC 2010: 03G12

© 2018. Getachew Abiye Salilew. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Interesting Theta Function Identities Related to Jacobi Triple-Product

Getachew Abiye Salilew

Abstract: In this article, the author provide elementry proof for two (pre-sumably new) theta function identities.

Keywords and Phrases: infinite series, theta function identities.

I. Introduction

Since Jacobi introduce the so-called theta functions, they have been extensively investigated and have many applications in diverse areas for example number theory, quantum physics, quadratic forms and elliptic functions (see the references here and references cited therein). We recall the well known Jacobi triple product (see, e.g., [4]; see also 1, 2, 3, 5, 6, 7, 8, 9, 10] as follows:

\[\sum_{i=-\infty}^{\infty} y^i x^{2i} = \prod_{i=1}^{\infty} (1 - x^{2i})(1 + yx^{2i-1})(1 + y^{-1}x^{2i-1}) \quad (|x| < 1, y \neq 0) \tag{1} \]

We define the following three fundamental theta functions (see, e.g., [2, 3, 7]):

\[f(-x) = \sum_{n=-\infty}^{\infty} (-1)^n x^{n(3n-1)/2} = \prod_{i=1}^{\infty} (1 - x^i) \tag{2} \]

\[\phi(x) = \sum_{n=-\infty}^{\infty} x^{n^2} = \prod_{i=1}^{\infty} (1 + x^{2i+1})(1 + x^{2i-1})(1 - x^{2i}) \tag{3} \]

\[\psi(x) = \sum_{n=0}^{\infty} x^{n(n+1)/2} = \prod_{i=1}^{\infty} \frac{(1 - x^{2i})}{(1 - x^{2i-1})} \tag{4} \]

The main object of the present article is to prove two (presumably new) identities involving the three functions given in (2), (3) and (4) in elementray way.

II. The Main Results

In this section, we begin by expressing the functions \(f(-x), \phi(x) \) and \(\psi(x) \) in rising powers of \(x \) as follows:

\[f(-x) = 1 + \sum_{n=1}^{\infty} (-1)^n \left(x^{n(3n-1)/2} + x^{n(3n+1)/2} \right) \]

\[= 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} - \cdots \; ; \tag{5} \]

Author: Department of Mathematics, College of Natural and Computational Science Madda Walabu University, Bale Robe, Ethiopia. e-mail: getachewmerto@gmail.com
\[\phi(x) = 1 + 2 \sum_{n=1}^{\infty} x^{n^2} = 1 + 2x + 2x^4 + 2x^9 + 2x^{16} + \cdots ; \] (6)

and

\[\psi(x) = 1 + \sum_{n=1}^{\infty} x^{\frac{n(n+1)}{2}} = 1 + x + x^3 + x^6 + x^{10} + x^{15} + \cdots . \] (7)

Now the main results state in the following Theorem.

Theorem. Each of the following relationships holds true:

\[f(-x^3)[\psi(x) - x\psi(x^9)] = f(-x^6)\phi(-x^9) \] (8)

and

\[[\phi(x^2) - \phi(x^{18})][\phi(x^6) - \phi(x^{54})][\psi(x^4) - x^4 (x^{36})][\psi(x^{12}) - x^{12} (x^{108})] \]

\[= x^5[\psi^2(x^{37})\{\psi(x) - x\psi(x^3)\}^2 - \psi^2(-x^{37})\{\psi(-x) + x\psi(-x^3)\}^2] \] (9)

where the functions \(f(-x) \), \(\phi(x) \) and \(\psi(x) \) are given by (2), (3), (4), respectively.

Proof. First of all, we shall prove our first identity (8). Let \(\eta_1 \) and \(\xi_1 \) denote the left-hand and the right-hand sides of the identity (8), respectively. Then, in order to compute the value for \(\eta_1 \), by using (5) [for \(x \mapsto x^3 \)] and (7) [for \(x \mapsto x^9 \)] respectively, we have:

\[\eta_1 = (1 - x^3 - x^6 + x^{15} + x^{21} - x^{36} - \psi \cdot [(1 + x^{36}) + x^3 + x^6 + x^{10} + x^{15} + \cdots] \]

\[- x(1 + x^3 + x^6 + x^{10} + x^{15} + \cdots)] \]

which, after multiplication and further simplification, yields

\[\eta_1 = 1 - x^6 - 2x^9 - x^{12} + 2x^{15} + 2x^{21} + x^{30} + 2x^{36} - 2x^{39} - x^{42} \]

\[- 2x^{48} - 2x^{51} + 2x^{66} - x^{72} + 2x^{78} + 2x^{87} - x^{90} + 2x^{93} + 2x^{99} \]

\[- 2x^{108} - 2x^{111} - 2x^{123} - \cdots \] (10)

In a similar way, we can compute the value for \(\xi_1 \), by applying (5) [for \(x \mapsto x^6 \)] and (6) [for \(x \mapsto -x^9 \)] as follows:

\[\xi_1 = (1 - x^6 - x^{12} + x^{30} + x^{42} - x^{72} - x^{90} + x^{132} + \cdots) \times \]

\[(1 - 2x^9 + 2x^{36} - 2x^{81} + 2x^{144} - 2x^{225} + 2x^{324} - \cdots) \]

after simplifications and using little algebra, we obtain:

\[\xi_1 = 1 - x^6 - 2x^9 - x^{12} + 2x^{15} + 2x^{21} + x^{30} + 2x^{36} - 2x^{39} - x^{42} \]

\[- 2x^{48} - 2x^{51} + 2x^{66} - x^{72} + 2x^{78} + 2x^{87} - x^{90} + 2x^{93} + 2x^{99} - \]

\[- 2x^{108} - 2x^{111} - 2x^{123} - 2x^{126} + \cdots \] (11)

By comparing equations (10) and (11), we readily arrive at the identity (8).

We next prove the second identity (9). Let \(\eta_2 \) and \(\xi_2 \) denote the left-hand
and the right-hand sides of the identity (9), respectively. Then, in order to compute the value for \(\eta_2 \), by using (6) [for \(x \mapsto x^2 \), \(x \mapsto x^6 \), \(x \mapsto x^{18} \) and \(x \mapsto x^{34} \)] and (7) [for \(x \mapsto x^4 \), \(x \mapsto x^{12} \), \(x \mapsto x^{36} \) and \(x \mapsto x^{108} \)], as follows:

\[
\eta_2 = [2x^2 + 2x^8 + 2x^{32} + 2x^{50} + 2x^{98} + 2x^{128} + 2x^{200} + \cdots] [2x^6 + 2x^{24} + 2x^{96} + 2x^{150} + 2x^{294} + \cdots] [1 + x^{12} + x^{24} + x^{60} + x^{84} + x^{144} + x^{180} + \cdots] \]

which, after simplification and by using algebraic manipulation, yields

\[
\eta_2 = 4x^8 [1 + x^6 + x^{12} + 2x^{18} + 2x^{24} + 3x^{30} + 2x^{36} + 3x^{42} + 4x^{48} + 3x^{54} + 5x^{60} + 5x^{66} + 4x^{72} + 5x^{78} + 6x^{84} + 6x^{90} + 5x^{96} + 5x^{102} + x^{104} + \cdots] \quad (12)
\]

Now we have to compute the value \(\xi_2 \), using (7) [for \(x \mapsto -x^{27} \), \(x \mapsto -x^9 \), \(x \mapsto -x \), \(x \mapsto x^9 \) and \(x \mapsto x^{27} \)] as follows:

\[
\xi_2 = x^5 [(1 + 2x^3 + 3x^6 + 2x^9 + x^{12} + 2x^{15} + 2x^{18} + 4x^{21} + 2x^{24} + 4x^{27} + 5x^{30} + 6x^{33} + 8x^{36} + 4x^{39} + 7x^{42} + 6x^{45} + 10x^{48} + 8x^{51} + x^{54} + 6x^{57} + \cdots) - (1 - 2x^3 + 3x^6 - 2x^9 + x^{12} - 2x^{15} + 2x^{18} - 4x^{21} + 2x^{24} - 4x^{27} + 5x^{30} - 6x^{33} + 8x^{36} - 4x^{39} + 7x^{42} - 6x^{45} + 10x^{48} - 8x^{51} + x^{54} - 6x^{57} + \cdots)]
\]

after simplifications, we have:

\[
\xi_2 = 4x^8 [1 + x^6 + x^{12} + 2x^{18} + 2x^{24} + 3x^{30} + 2x^{36} + 3x^{42} + 4x^{48} + 3x^{54} + 5x^{60} + 5x^{66} + 4x^{72} + 5x^{78} + 6x^{84} + 6x^{90} + 5x^{96} + 5x^{102} + x^{104} + \cdots] \quad (13)
\]

The identity (9) now follows upon comparing the equations (12) and (13).

References Références Referencias
2. H. Schroter, De Aequationibus Modularibus, Dissertatio Inauguralis, Albertino, Litterarum University, Regiomonti, 1829.
This page is intentionally left blank