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In 1844 J. Liouville showed that if for any positive integer m there exists a rational number
p

q
, (p, q) = 1 such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

qm
, then α is a transcendental number (a so-called Liouville

number). In 1962 P. Erdős [1], in particular, gave a simple proof, that any real number can be
represented as a sum of two Liouville numbers. In 1996 his result was essentially generalized by
E.D. Burger [2]. He also mentioned that one can prove the results on Liouville decompositions
for direct products of local fields. In this note, we show, following the lines from [1], how any
polyadic integer can be explicitly expressed as a sum of two polyadic Liouville numbers.

We first supply a brief introduction to the theory of polyadic integers. Let K be a com-
mutative ring. A mapping v of K into non-negative real numbers is called a non-archimedean
pseudo-valuation of K if it has the following properties:

1. v(a) > 0 for all a ∈ K, v(a) = 0 if a = 0 ∈ K.

2. v(ab) 6 v(a)v(b) for all a, b ∈ K.

3. v(a± b) 6 max(v(a), v(b)) for all a, b ∈ K.

If for all a, b ∈ K the stronger condition v(ab) = v(a)v(b) holds, then v is called a valuation.
For a prime p, the p-adic valuation |α|p of an element α ∈ Q is defined as follows. If a ∈ Z is
divisible by pf and is not divisible by pf+1, then |a|p = p−f . For α =

a

b
, a ∈ Z, b ∈ N we have

| α|p =
|a|p
|b|p

. As usual, Qp denotes the corresponding completion of Q. It is the field of p-adic

numbers, and Zp denotes the ring of p-adic integers which satisfy the inequality |α|p 6 1. For
g = pr11 · . . . · prss , where pi are primes and ri are positive integers we can consider the g-adic
pseudo-valuation which is defined in a similar way (cf. [3]). The corresponding completion is
denoted by Qg. A well-known theorem by K. Hensel (cf. [3]) asserts that Qg is a direct sum
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of the fields Qp1 , . . . ,Qps , so any element A ∈ Qg can be expressed as A = (A1, . . . , As) with
Ai ∈ Qpi and for any polynomial P (x) ∈ Z[x] one has P (A) = (P (A1), . . . , P (As)). Recall that
α ∈ K is called algebraic (over Q) if there exists a nonzero polynomial P (x) ∈ Z[x] such that
P (α) = 0. Otherwise it is called transcendental. Therefore A ∈ Qg is algebraic if Ai ∈ Qpi ,
i = 1, . . . , s are algebraic.

We introduce a topology in the ring Z by considering the set of all ideals (m) as the system
of vicinities of zero. Addition and multiplication are continuous with respect to this topology.
The completion of this topological ring is called the ring of polyadic integers. (The detailed
descriptions of the construction of polyadic numbers are presented in [4]). The elements of this
ring have canonical representations of the form

α =
∞∑
n=0

an · n!, an ∈ {0, 1, . . . , n}. (1)

A series of this form converges in any Qp and, for example, in any Qp we have
∞∑
n=1

n · n! = −1.

One can prove that the ring of polyadic integers is a prime product of the rings Zp over all
primes p. Therefore any polyadic integer can be expressed as α = (α1, . . . , αs, . . .) where the
components αs belong to Zps , e.g.

∑∞
n=1 n · n! = (−1, . . . ,−1, . . .). This remark allows us to

give the following definition: a polyadic integer α is called algebraic, if there exists a polynomial
P (x) ∈ Z[x] such that P (α) = 0 (where 0 = (0, . . . , 0, . . .)), in other words, if for any s one has
P (αs) = 0 in Zps . In terms of [5], [6] it means that α satisfies a global relation.

We call the polyadic integer α transcendental, if for any nonzero polynomial P (x) ∈ Z[x]
there exists at least one prime p such that P (αp) 6= 0 in Qp. We call the polyadic integer α
infinitely transcendental, if for any nonzero polynomial P (x) ∈ Z[x] there exist infinitely many
primes p such that P (αp) 6= 0 in Qp. At last, a polyadic integer is globally transcendental, if for
any nonzero polynomial P (x) ∈ Z[x] and for all primes p the inequality P (αp) 6= 0 holds in Qp.
Of course, globally transcendental polyadic integers form a subset of infinitely transcendental
polyadic integers which, in turn, form a subset of transcendental polyadic integers. Hensel’s
theorem mentioned above implies that there exist transcendental polyadic integers, which are
not infinitely transcendental, and there exist infinitely transcendental polyadic integers, which
are not globally transcendental.

The arithmetic properties of polyadic integers are studied in [5]-[12].
We call a polyadic integer α a polyadic Liouville number, if for any positive P,D and any

prime p, p 6 P there exists a positive integer A such that

|α− A|p < A−D. (2)

It is easy that for fixed positive P,D there exist infinitely many positive integers A satisfying
this inequality. One can easily prove that the Liouville number is globally transcendental.

Let τ(k) be any integer-valued function defined on non-negative integers and satisfying

τ(k + 1)

τ(k) ln τ(k)
→ +∞, as k → +∞. (3)

We define the functions l1(n) = 1, l2(n) = 0 for all n with τ(k) 6 n < τ(k + 1) for
k = 0, 2, 4, . . .. We also put l1(n) = 0, l2(n) = 1 for all n with τ(k) 6 n < τ(k + 1) when
k = 1, 3, 5, . . .
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For any polyadic integer (1) we have α = L1 + L2, where

L1 =
∞∑
n=0

l1(n) · an · n!, L2 =
∞∑
n=0

l2(n) · an · n! (4)

are the two polyadic Liouville numbers.

Proof. The equation α = L1 + L2 is evident. We now prove that L1 is a polyadic Liouville
number. The number L2 can be treated in analogy. Let’s denote

A1,k =

τ(k)∑
n=0

l1(n) · an · n!. (5)

Since an ∈ {0, 1, . . . , n}, we have, using (5) and a rough estimate for factorial, the inequality

A1,k < (τ(k) + 1)! 6 e(τ(k)+1) ln((τ(k)+1)) 6 e2τ(k) ln τ(k) (6)

From (4) and (5) we get

L1 − A1,k =
∞∑

n=τ(k+1)

l1 · an · n!

so, for any prime p, p 6 P we obtain

|L1 − A1,k|p 6 |τ(k + 1)!|p = e−
ln p
p−1(τ(k+1)−Sτ(k+1)) 6 e−

1
2 ln p

p−1
(τ(k+1)) (7)

for sufficiently large k. Here for any positive integer N the symbol SN denotes the sum of digits
in the p-adic representation of N and it’s evident that SN 6 (p− 1)(logpN + 1).

For any fixed P,D and for any prime p, p 6 P from (3), (6), (7) we get that if k is sufficiently
large, then

|L1 − A1,k|p 6 e−
1
2 ln p

p−1
(τ(k+1)) 6

(
e2τ(k) ln τ(k)

)−D
6 (A1,k)

−D .

This means that (2) holds and that the theorem is proved.
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