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Abstract- The authors establish a set of presumably new results, which provide Fourier transform of power series. So in
this paper the author try to evaluate Fourier transform of some challenging functions by expressing them as a sum of
infinitely terms. Hence, the method is useful to find the Fourier transform of functions that difficult to obtain their Fourier
transform by ordinary method or using definition of Fourier transformations.
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I. INTRODUCTION

The Fourier transform is one of the most important integral transforms. Be-cause
of a number of special properties, it is very useful in studying linear differential equations.

Fourier analysis has its most important applications in mathematical modeling,
physical and engineering and solving partial differential equations (PDEs) related to
boundary and initial value problems of Mechanics, heat flow, electro statistics and other
fields. Daniel Bernoulli (1700-1782) and Leonhard Euler (1707-1783), Swiss
mathematicians, and Jean-Baptiste D Alembert (1717-1783), a French mathematician,
physicist, philosopher, and music theorist, were all prominent in the ensuing mathematical
music debate. In 1751, Bernoullis memoir of 1741-1743 took Rameaus findings into
account, and in 1752, DAlembert published Elements of theoretical and practical music
according to the principals of Monsieur Rameau, clarified, developed, and simplified.
DAlembert was also led to a differential equation from Taylors problem of the vibrating
string,
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The current widespread use of the transform (mainly in engineering) came about

during and soon after World War II, although it had been used in the 19th century by
Abel, Lerch, Heaviside, and Bromwich.

Joseph Fourier’s method of Fourier series for solving the diffusion equation could
only apply to a limited region of space because those solutions were periodic. In 1809,
Laplace applied his transform to find solutions that diffused indefinitely in space.

a) Definition
The Fourier transform of the function f(x) is given by:

F(f(x)) = & | e

b) Definition
A Power series is a series defined of the form:
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fx) = EiZoan(z — )"
=ap+ai(r—c)+ay(z—c)? +as(x—c)+ ... +ay(xr —c)"
where c¢ is any constant ¢ € R

¢) Definition
If f(x) has a power series expansion at c,where ¢ is any constant ¢ € . It’s
Taylor’s series expansion is: |\ otes

0o n (ZL‘ B C)n
flz) = En:Oan( )(C)T
d) Definition
Maclaurin Series expansion of the function f(x) is:

() = 520 0)
F0) o, £

= f(0)+ £ (0)z + T + T + ...

e) Definition
The gamma function, whose symbol I'(s) is defined when s > 0 by the
formula

F:/ e T tdr
0

[I. FOURIER TRANSFORM OF POWER SERIES

Theorem 1: (Fourier Transform of power series)

Iff(z) has a Power series expansion at ¢,where c¢ is any constant ¢ € R.
fz) = Sl pan(z — )"

then the Fourier transform of f(z) is given in the form of power series as:

F(f(2)) = F(ErZoan(r = ¢)")

1 ~ 1 T'(n+1)
= X o0nT-
v/ 2 etew (lw)n—i—l Sn+1
Proof
Suppose f(z) has a Power series expansion at ¢,where ¢ is any constant
ceR.
1.e

f(x) = B3 oan(x — )"
Then, By using the definition of Fourier transforms,
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F(f(x)) = F(EZ0an(x — ¢)")
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Let,r =t+c<=dr =dt
So,

F(f(x)) = F(EZoan(x = ¢)")
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Let, v = itw <=t = = édtzidv
Hence,
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In particular, for n =1,2,3, ...
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Such that,

2 1 n!
F(XX jan(x —0)") = —3 apn————
( n=0 ( ) ) \/2_1—[61»0“) 0 [Zw]nJrl gn+l
Theorem 2:) (Fourier Transform of Taylor’s Series)
If f(x) has a power series expansion at ¢,where ¢ is any constant ¢ € . It’s
Taylor’s series expansion is:

Notes

(@) = g ()

then the Fourier transform of f(z) is given in the form of power series as:

(33 — C)n]

P(f(@)) = FIZZgan/ ™ (0~

Suppose f(z) has a Power series expansion at ¢,where ¢ is any constant
ce R
Hence, the Taylor’s series expansion of f(x) is:

(z —o)"

fla) = T qanf (0

Then, By using the definition of Fourier transforms,

(z = o)

(/@) = P ganf ()"
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Let,xr =t+c<=dr =dt

So,

(x — )"

n!

F(f(2)) = F(Z30anf"™(c)
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Theorem 3:) (Fourier Transform of Maclaurin Series)
In particular if f(x) has a power series expansion at 0, then, the power
series expansion of f(x) is given by:

fx) =X ganz”

which is known as Maclaurin series, then the Fourier transform of f(x) is
defined by:

F(f(x)) = F(XiZoant")

(n) " 1 TI'(n+1)
\/—f ( ) =0 n( )n+1 gn+l
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proof

suppose f(x) has the power series expansion at 0
le
flx) = Elgana”
By using the definition of Fourier transforms,
F(f(x)) = F(EZ0ant")
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Note: In particular, for n =1, 2, 3,
I'(n+1)=n!
Hence,
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[11. CONCLUSION

The results on Fourier transform of power series are summarized as follows;

sint

Some functions like et2, =~ and son on are difficult to get their Fourier transform.

Hence it is possible to find Fourier transform such functions by expanding them into power

series, Taylor’s series and Maclaurin series form as:

2 . 1 TI'(n+1
F(f(z)) = V2lleicw X0 Gn [iw]r (:n+1 :

where
flz) =X gan(z —c)",ceR
2.
2 . .. 1 1 T(n+l)
F(f(r)) = WZO a, f! )(C>E P
where ( n
e
3.
2 . 1 T+l
F(f(z)) = \/2—1-[20 Qn ]+t snl
where

f(x) = Bz oant”
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