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[. INTRODUCTION

Harmonic functions are famous for their use in the study of minimal surfaces and also play
important roles in a variety of problems in applied mathematics (e.g. see Choquet [2], Dorff
[4], Duren [5]). A continuous complex-valued function f = u + iv defined in a domain ¥ C C
is a harmonic in & if u and v are real harmonic in &. We call & the analytic part and g the
co-analytic part of f. In any simply connected domain we can write f = h+ g, where g and h
are analytic and g denotes the function z — @ Clunie and Sheil-Small [3] pointed out that

a necessary and sufficient condition for f to be locally univalent and sense preserving in & is

that |1/ (z)| > |¢'(z)| in 2. Denote by H the class of functions f of the form

hz)=z+ Y ad, g =Y b, |b|<1, (1)
k=2 k=1

that are harmonic univalent and sense-preserving in the unit disk % = {z:z€ C, |z] < 1} for
which f(0) = £;(0) — 1 =0.

We note that the family H of orientation preserving, normalized harmonic univalent functions
reduces to the well known class S of normalized univalent functions in %/, if the co-analytic part

of f is identically zero, thatis g = 0. For 0 < 8 < 1, Let Ky (3) be the subclass of H consisting

conforme et dfinie au moyen de fonctions harmoniques, Bull. Sci. Math., 89(1945),

156-165.

of harmonic convex functions of order 3. We further denote by K7 () the subclass of Ky ()

2. G. Choquet, Sur un type de transformation analytique gnralisant la reprsentation

such that the functions /4 and g in f = h+ g are of the form
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that are harmonic univalent and sense-preserving in the unit disk = {z:z€ C, |z| < 1} for
which f(0) = f(0) — 1 =0.

We note that the family H of orientation preserving, normalized harmonic univalent functions
reduces to the well known class S of normalized univalent functions in %/, if the co-analytic part
of f is identically zero, that is g = 0. For 0 < 8 < 1, Let Ky () be the subclass of H consisting
of harmonic convex functions of order 3. We further denote by K7 () the subclass of Ky ()

such that the functions 4 and g in f = h+ g are of the form
hz)=z-Y lal, g ==Y |blt, || <1 )
k=2 k=1

Jackson[7] initiated g-calculus and developed the concept of the g-integral and g-derivative.

For a function f € S given by (1) and 0 < g < 1, the g-derivative of f is defined by

Definition 1.1.
f(@)—f(g2)
s 2 #£0,
duf(z)=¢ 79 . where (0<g<1) 3)
f’(O), z=0.

Equivalently (3), may be written as

(o)

(@) =1+ Y Mgad ™, 20

k=2
where
1—qk
=0 q# 1
[k]q = !
k, q=1

Note that as ¢ — 1, [k], — k.

As aright inverse, Jackson[6] presented the g-integral of a function f as

(o)

| rde=2(1-9) Y ¢z
0 k=0

k

provided that the series converges. For a function f(z) = z, we note that

Z [P K+l B
/Of(l‘)dqt—/o thdgt = k1, (k#£—1)

and
k+1

B 2 J i z 71 z J
)d,t = — — £)dt,
Jm J, SOdgt = lim ket 1), k+l /of()
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Notes

where [; f(¢)dt is the ordinary integral.

The Jacobian of f by g-derivative is given by

J1(2) = |94h(2)|” — 1948 (2)|?
The mapping z — f(z) is locally one-to-one if J¢(z) # 0 in % . Also the converse is true for
harmonic mappings, and therefore z — f(z) is locally one-to-one and sense preserving if, and
only if, [9gh(z)| > |9,8(2)|-
[I. MAIN RESULTS

Definition 2.1. Let f : R> — R be a continuous function of two variables and 0 < q < 1, the

partial g-derivatives at (x,y) € R? can be defined as follows

9gf(xy) _ [flgx.y)—f(xy)
d4x x(g—1) ’
9gf (%) _ flrgy)—f(x.y)
Iy yg=1) 7

and

Igf(xy) _ f(gx,qy)—f(gx.y)—f (x,qy)+f(x.y)
Jgxdgy xy(g—1)? ’

()

The function f : R*> — R is said to be partially g-differentiable on R? if % 3y

S
% exist for all (x,y) € R%. We can similarly define higher order partial q-derivatives.

For 0 < B < 1, let Ky(B,q) denote the subclass of H consisting of g-harmonic convex func-

tions of order f3.

Definition 2.2. A function f of the form (1) is said to be in the class Kg(B,q) B,0< B < 1, for
lzZl=r<1if

aj% {e (970 } = 1m { aaqe tog (f(r le))}

R <Aq|lnq|z8qh(z)+lq|lnqzz93h(z)+lq1nq|zc9qg(z)+lq|lnq|z28ng(z)> -5
= RKe —_ —F>
(1—q)zd4h(z) — (1 — q)z0,8(2)

where Ay = Zfzo%!m, Ag—lasqg—17,z=re® 0<0<2n, andd,f = th—i—%.

Theorem 2.3. Let f = h+ g be given by (1). If

i( ¢ [AqlIng|[K];— B(1—q)] aal [Klg [Aq|1nq|[K]g + B (1 —q)] \bk|) <2, 9

AglIng| =B (1—¢q) AglIng| —B(1—q)
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wherexqzz;;o%, Ay —lasg—1",a,=1,0<B<1land0<q<1. Then fis
g-harmonic univalent in %, and f € Ky (B,q).
Proof. Note first that

= [Klg [lﬂlnq[[k]q—ﬁ(l —Q)]

Iyh(z mk ark_1>1—°°ka>1— a

Notes

“ (K], [Ag]Ing|[K]y + B (1 —
Zg 2yl ing| — B(1 5

Aoy > X Kol > Y Klglax ! > 198(2)].
k=1 k=1

So that f is locally univalent and sense-preserving in %/. If g = 0, the univalence of f will
follow from its starlikeness. Otherwise if 71,20 € %, z1 # z2. Since % is simply connected and

convex, we have z(t) = (1 —t)z; +1zp € %, where 0 <t < 1. So we can write

f(z2) = f(z1) = /01 [(Zz—Zl)aqh(z(f))+(22—Zl)aqg(2(f))] dyt.

Therefore
flz2) — f(z1) n-U5 s
ReE2 LA /()Relah(())JrZz_Zl& (())]dqt
6
>/O [Red h(z(1)) — |9,8(2(1))|] dyt. ©
Moreover
Red,h(z }8qg )’ > Red,h(z i k]| bx|
k=1
>1- f[kmm - i[qu\bk\
k=2 k=1
& [Kg [Agling|[kly = B(1—q)] PR - [klg [Aq| Ing|[k]q +B(1—q)]
2L g B9 ¥R Aimg-pa-g
(7

>0, by(5).
Hence (6) and (7) leads to the univalence of f.

Now we show that f € Ky (f3,q). It suffices to show that ;—qe {arg (;—qef(reie)>} >B,0<
q q
B<1,0<60<2mand0<r<I1.

Using the fact that Rew > f if and only if |1 — B+ | > |1 + B — o/, it suffices to show that

[A(z) +(1=B)B(2)| - |A(z) = (1+B)B(2)| = 0, ®)

© 2018 Global Journals



where A(z) = Ay|Ing|z9,h(z) + A4|Inq|2°9; h(z) + Ay|Ing|20,8(2) + Ay|Ing|z202 ¢ (2)

and B(z) = (1 —q)z9,h(z) — (1 — q)zd,g(z). Substituting for A(z) andB(z) in (8), we get

[A(z) + (1= B)B(z)| — |A(z) — (1+ B)B(2)]|

= ‘(;Lq| Ing|+ (1= B)(1—q))29;h(z) + Ag| Ing|z>0; h(z) + (Ag|Ing| + (1 — B)(1 — q)) 2048(z) + Ag| lnq|zzang(z)’

Notes

- ’(/L,I Ing| = (1+B) (1~ ¢))20,h(z) + Ag|Ing|2® 07 h(z) + (Ag|Ing| + (1+ B)(1 — q)) 2048 (2) + Aq| 1nq|z293g(2)}

‘( q+Bq— ﬁ+lllnq|+1z+2 ¢ Ag|Ing|[Kly — g+ Bq— B+ 1)z
k=2

+

[ ngk

k=1

—|(g+Bg— [3+/1|1n61|+1z+2 (AglIng|[Klg+q+Bg—B —1)axd*
k=2

[kl (Aq|Ing|[K]q +q — Bg+ B — 1) biz*

[ agki

+

k=1

=

> (—q+Bg—B+AglIng|+1)[z] = Y [Kly (A Ing|[k]y — g+ Bg— B + 1) |ax||"|

k=2

=)

=Y [Klg (Ag|Ing|[klg +q — Bg+B — 1) [bellk| + (g + Bg — B + Aq|Ing| + 1)[z|
k=1

[Klg (Aq|Ing|[k]g — g — Bg+ B + 1) byz

= o

— Y Ky (Ag|Ing[[klg +q+Bg— B — 1) larl || = Y [Klg (Aq|Ing|[K]lg — g — Bg + B +1) byt

k=2 k=1
e MRy ng,~BO—g)]
~ 203, /tng| - B(1 q>}|z|{1 e e
o [klg [Aq|Ing|[k]g + B(1—g)]
L el

- AglIng| —B(1—q)

2, |Ing| — B(1—q) |z|{ (i aAgIndlikly —FU1 —q)],

Mz

= k|1nq| B(1—q)

The starlike harmonic mappings

o Wy lylnglky B )] & Ky Ulingl Ky + B0 —q)]__
fO =t Y = g =Bl - " TE T Amg-Bli—q ¥

l |lnq|[ ] +B(1—q)] |bk|> } >0, by(5).

)

€))
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where Y17 5 [xk| + X0, [yk| = 1, show that the coefficient bound given by (5) is sharp.

Therefore

Wyl ~ B —)], | Wallnally+BU-0)] N a &
kzl( AqlIng| —B(1—q) ol + Ag|Ing| — B(1—q) |bk|> _1+k§.2‘ k|+k§,2|yk|—2-

Hence f € Ky(B,q).

Note that when 8 = 0 in the above theorem, we get the following corollary

Corollary 2.4. Let f = h+g be given by (1). If

Z (Jax| +[bi]) < (10)

where ay = 1 and 0 < g < 1. Then f is g-harmonic univalent in %, and | € Kg(q).

Special choices, B = b; =0, and as ¢ — 1~ yield the following result, proved by Avci and
Zlotkiewicz [1]

Corollary 2.5. Let f = h+g be given by (1). If

o>}

Z (lax| +1be]) < (1D

where ay = 1 and by =0, Then f is harmonic univalent in %, and f € Kg.

As g — 17 and for we get the following result, proved by J. M. Jahangiri [8]

Corollary 2.6. Let f = h+g be given by (1). If

y (HEZB) ) D) ) <o (12)
¥ (“Fplat+ S ) <2

where a; =1, 0 < B < 1 Then f is g-harmonic univalent in % , and f € Kg(B)..

Theorem 2.7. Let f = h+3 be given by (2). Then f € Kz(B,q) if and only if

|ag | +

= (k] [A,|Ing|[k], — B(1—
Z(Hq[q| ‘IH]q B(1—q)]

[K]g [Aq|Ing][k]g+ B (1—q)]
Ful 4]~ B1 ) ) <2, 13

AglIng|—B(1—q

k=1

wherelq:Zfzo(ie(ilTW,7Lq—>1asq—>1_,a1:1,0§[3<1and0<q<1.

Proof. Since f € Ki(B,q) C Ku(B,q), we only need to prove the necessary part of the theorem.
Assume that f € K(f,q), then by (4) we have

Re lqlnqlzaqh(Z)Mqllnqzzaqzh(Z)Mqllnqzaqg(1)+lq|1HQI1295g(Z)) —B
(1-q)29gh(z)—(1—q)z948(2)
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Ref

with negative coefficients. Ann. Univ. Mariae Curie-Skodowska Sect. A, 52(2) (1998),

8. J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions
57-66.

_ poltalndl =B = q)]z— X35 [Ky [Aq|ng]|[Ky — B(1 — g} |l — £ [Ky [Aq| Ing] K]y + B (1 — )] [B]2*
(1=q)z— (1 — ) Eila Klglax|* + (1 — q) TiZ, (kg |be|Z*

> 0.

The above condition must hold for all values of z € %Z. Upon choosing the values of z on the

positive real axis where 0 < z =r < 1 we must have

[Aq|Ing| — B(1 — q)] = X5 [kly [Ag| Ing|[K]g — B(1 — )] |ax|r*™" — X3 [kl [Aq| Ing] k], + B(1 — g)] [bx| ! > 0. (14)

(1—q) (1= Xip [Klglae| ="+ X [Kg il 1)

If (13) does not hold, then the numerator in (14) is negative for r sufficiently close to 1. There-
fore, there exists a point zg = rg in (0,1) for which the quotient in (14) is negative. This
contradicts our assumption that f € Kz(f,¢). This completes the proof of Theorem.

As g — 17 and for we get the following result, proved by J. M. Jahangiri [8]

Corollary 2.8. Let f = h+g be given by (2). Then f € Kg(B) if and only if

T (Sl ) <2 5

1-p
wherea; =1 and 0 < B < 1.

Now we determine the extreme points of the closed convex hulls of K7 (,¢), denoted by

clcoKg(B,q).

Theorem 2.9. Let f given by (2). Then f € clcoKy(B,q) if and only if

Z (Xich + Yigi) (16)

[A4lIng|—B(1—q)]
[kl [lq| Ing|[k]s—B(1 —Q)]

where hy(z) =z, hg(z) =z— F(k=2,3,.)

o [Amgl-B-q]
and gk (2) =2 i g, B0

(k=1,2,3,...), Yo Xk +Y) =1, X > 0 and Y > 0. In particular, the extreme points of
Ky (B.q) are {h} and {gi}.

Proof. Let f be written as (16). Then we have

i AqlIng| = B(1—q) k

XiZ

= L (et Yig) = DL (2= D G g, —B(1— )]
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_ S AglIng| —B(1—gq) .
kgl [k]g [Aq] Ing|[K] + B (1 _q)]J’kz :

[ [

=z— Zanz"— anZ".

k=2 k=1
Then

= [kly [Aq|ng|[K]y — B(1—q)] Aling|-B1-q)
& Afing[—B(1—gq) (kg [AqlIng[[kl,— B(1—q)] "

> [klg [Aq|Ingl[K]y+B(1—q)] Ag|Ing|—B(1—q)
L Alingl B0 —q) <[k]q[Aqunquﬂqw(l—q)}y")'

= iXkJriYk:l—xl <1
k=2 k=1

and so f € clcoKz(B,q). Conversely, assume that f € clcoKz(B,q). Putting

_ kg [Ag|Ing][[kly — B(1—q)]
¢ Aq|Ing| —B(1—gq)

[Kly [AqlIng|[k]y+ B(1—q)]
AglIng| —B(1—gq)

|ak|, k:2,3,...

Y, = b,  k=1,2,3,...

and

Xi=1-Y Xx— )Y ¥,
k=2 k=1

thenYy (X +Y) =1, 0<X <1(k=2,3,..),0< Y < 1(k=1,2,3,...). Consequently, we
obtain f(z) = Y5 | (Xehi + Yrgx) as required.

Finally we give the distortion bounds for functions in Kz (f3,¢) which yield a covering result
for Ki(B,q).

Theorem 2.10. If f € Kz(B,q) then

L Afing[—B(1—q)  Agllng[+B(1 ) E
’f(z”g(”"’l’)*[2]q([21qaq|lnqr—ﬁ<1—q> [2]qkq|1nq|—ﬁ<1—q>”’”)  l=r<t,

and

L[ glingl-B(-q)  AfngtBU-q) N\, . _
161> (b~ (G P —a7 ~ Bl BT 1) Fi=r<

Proof. Assume that f € Kz(B,q). Then we have

© 2018 Global Journals



F@I< 1+ loa)r+ Y (gl + o)
k=2

< (L [ba)r+ Y (lax] + [bx])r?
k=2

- ) Ag|Ing| —B(1—g)
Rer =P o @ alna—Bi—a) 2

lax| +

s

([Z]q(mqlqlnfﬂ —B(1-49))

2]4 ([2]4A4|Ing| = B(1—q)) |ka> 2
AglIng| —B(1—q)

) AqlIng| —B(1—q)

AglIng|—B(1—q)
2]4 ([2]4A4|Ing| = B (1 —q)) A

([k]qwmq[qu—ﬁu—q))la 4 Myl inglld +B(1=q)) |)r2
AgIng[ —B(1—q) AgIng[ —B(1—q) ¢

 agk

§(1+|b1\)r+
2

_ AglIng|+B(1-9q)
AglIng| —B(1—q)

—

§(1—|—\b1|)r—|— A’q“nq|7ﬁ(17(ﬂ <

2
2]¢ ([2]4Aq|Ing| = B(1—q)) |b1> Y5,

Ag|lng| —B(1-q) Agllng| +B(1—q)

B L .
= (bt gy ([z]qxqunm—ﬁ(l—q) [2}qzq1nq|—ﬁ<1—q>"”'>

and
@)= (1- |b1|)r—;<|ak| el
> (1= bi)r— ¥ (x| + bel)
k=2
i Ralng =B —q) & (Pl (2eAling —BO—g)) . [2ly(Aylingl ~BO ), Y
=(1=1b1]) [21q<[21qzq|1nq|—ﬁ(l—q>>,§< Mg 0“2 g B0 —g) "’k')
Dy allnal=B(1—q) o (Mg (Ag/Ingl[Kly =B =q)), . [My(Aylng|lKlg+B(1=q) N -
=(1=[br]) [z1q<[21qaq|1nq|—ﬁ<1—q»kzz( Aling B0 —q) % A lingl - 1 —a) 'b"'>
by alngl—B(1—4q)  Ag|Ing[+B(1—¢q) 2
> (- = o B gt = (|~ =g 1) 7> o
iy L Palng =Bl —q)  2g|Ing|+B(1—q) 2
= (=lea) [2}q<[2]qlqllnq|—ﬁ(l—q) [21qaq1nq|—ﬁ<1—q>"’"> |

As g — 17 and for we get the following result, proved by J. M. Jahangiri [8]

Corollary 2.11. If f € Kz (B) then

with negative coefficients. Ann. Univ. Mariae Curie-Skodowska Sect. A, 52(2) (1998),

8. J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions

= R e e 20) L T
and
@1z 0= (55 - FEmi) A =<
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The bounds given in Theorem 2.10 for the function f = h+ g of the form (2) also hold for

functions of the form (1) if the coefficient condition (5) is satisfied. The functions

U Afing—B(—q)  Aingl+B(1—q)
([ >"")

Z]q;t|ln9| B(1—q) []qlq“ncﬂ B(1—

f(z)= (1+|b1\)Z+W

and R
f
=1 MZ_L( Jollng|—B(1=q) _ Ayflng|+B(1=q) ‘) :
2] \[2lgAq|Ing| =B(1—q) [2]4Aq|Ing| —B(1—q)
Ag|Ing|—B(1—q) AglIng|+B(1

for |by| < @ ([z}qq,l,,|1‘r]1q|—ﬁ(1zq) A ‘ffuﬂ B 1qq |b1|) show that the bounds given in Theorem .

ﬂ

2.6 are sharp. S

Theorem 2.12. If f € Kz(B,q) then

{w 0] < — 1 Ay|Ing|((2]y =D [([2lg+ D =B(1=q)] 1 A[Ing|([2]y+ D[([2l,—=1)—B(1—¢
2l 2lg24|Ing| = B(1—4q) 2l 2l4Aq|Ing| = B(1—q)

) m} cF@).

a7
Proof. Letting r — 17 in the left hand inequality in Theorem 2.10 and collecting the like terms

we obtain (17).
The condition (17) for B = by = 0 yields the following

Corollary 2.13. if f € K2(0,q) then

215 -
213

As g — 17 and B = b; =0, we get the following result, proved by Jay M. Jahangiri [8]

b .

{o:0<

ON A SUBCLASS OF CERTAIN CONVEX HARMONIC UNIVALENT FUNCTIONS RELATED TO ¢-DERIVATIVE1

Corollary 2.14. if f € K2 (0) then
3
{w:0< 4_1} C f(%).

For harmonic functions f(z) =z+ Y, apzF +Y bzt and g(z) =2+ X0, Ak +Y 0 B,Z*

we define the Hadamard product of f and g as

(fx8)(z) =z+ Y adid+ Y B
k=2 k=1

SUOT}OUNJ OIUOWIIRY IOJ BII)IID 9DUS[BATUN PUR SPUNO(] U0 ‘luSueyer ‘N [ '8

“(866T) (2)gG ‘V "199S B{SMOPOYG-OLIN,) SRIIRIA "ATU[) "UUY "SJUSIONJO0D dATYRIU [IIm

Theorem 2.15. For0<a < B <1, let f € K(B,q) and g € Kz (@, q). Then fxg € Ky(B,q) C

KH((X,q).

© 2018 Global Journals
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Proof. Putting f(z) =z— Y5, x| — Y |bi|7* and g(z) =z — Yo |Ag|Z* + Y |Bi|Z*.

Then the Hadamard product of f and g is
(f*8)(2) =z+ Y la||Al* + Y [bx||BilZ".
k=2 k=1
Since |A;| < 1 and |By| < 1, we can write

= [t} [A/Ing K, ~ B(1 ~q) J[alingl K+ B(1—g)]
g B e+ B e

k=2

= [kl [Aq]Ing|[kl,— B(1—q)] ¥ (kg [Aq]Ing| K]y +B(1—¢
=& Aing|-B(1—q) N & 2gling[—B(1—g)

The right hand side of the above inequality is bounded by 1 because f € Kz (fB,q) .Therefore

fxg€Ku(B,q) CKu(a,q).

Theorem 2.16. The class Kg(B,q) is closed under convex combination.

Proof. Fori=1,2,3,... assume that f; € Kz(B,q) where f; is given by

oo

filz) =z— Z |aik|zk_ Z |bik|zk

k=2 k=1

Then by (13)

o [kl [Aq|Ing]k]g — B (1 — g [AglIng|[kl,+B(1—q)]
& A lingl—B(1—q) |1A|+Z Amg B g al<l

For };2 ¢, =1,0 <t <1, the convex combination of f; may be written as

Y ufiz) =z, ( Zfi\aik\> =Y ( Zfi!bik!) '
i=1 k=2 \ i=1 k=1 \i

Then by (18),
>, [Klg [Aq|Ing]| k], — g [Aq/Ing|[k], + e
iy iblk
L 2,ing - o Zt‘ ’*Z 1y Ing|— e L. tilbil

) | by

(18)

i {i ¢ [Aq|Ing][K], ﬁ(l—Q)]|aik|+i[k]q[lq|lnq|[k]q+ﬁ(1) )}W} itizh
i=1 k=2

AglIng| — B(1—q) = Ayllng|-B(1—¢

and so Y, 1ifi(z) € Kz (B,q).

© 2018 Global Journals

Global ]()urnal of Science Frontier Research (F) Volume XVIII Issue VI Version I E Year 2018



Global Journal of Science Frontier Research (F) Volume XVIII Issue VI Version I E Year 2018

Now, we consider the closer property of the class Kz (3, ) under the Bernardi integral oper-

ator F,(z), which is defined by

@/ il )d;+[ erl] /t“ Vf(0)dyt (a> —1). (19)

Fale) = z° 0

Theorem 2.17. Let f € Kz (B,q). Then F,(z) € Kz (B, q).

Proof. From the representation of F,(z), we have

Fu(z) = i (%) ad + i (Eig;) [ (20)

Now

o [Klg [Ag|Ing|[k], — B(1—q)] ([a+ q > K]y [AglIng|[k], + B (1 —q)] ([a+1],
Y ) ( o |> Z ) ( |bk|) @1

=2 AglIng|—B(1—¢ la+ = AglIng| —B(1—¢ la+Kkl,
=, [K], (| Ingl[K], — ( L Al ingl[K], + B(1 — g)]
Z 2,/ng|— B(1 '”*Z Zingl—B(i—q M=l

Therefore F,(z) € Kz(B,q).
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