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 Harmonic functions are famous for their use in the study of minimal surfaces and also play

important roles in a variety of problems in applied mathematics (e.g. see Choquet [2], Dorff

[4] , Duren [5]). A continuous complex-valued function f = u+ iv defined in a domain D ⊆ C

is a harmonic in D if u and v are real harmonic in D . We call h the analytic part and g the

co-analytic part of f . In any simply connected domain we can write f = h+ ḡ, where g and h

are analytic and ḡ denotes the function z→ g(z). Clunie and Sheil-Small [3] pointed out that

a necessary and sufficient condition for f to be locally univalent and sense preserving in D is

that |h′(z)|> |g′(z)| in D . Denote by H the class of functions f of the form

(1)h(z) = z+
∞

∑
k=2

akzk , g(z) =
∞

∑
k=1

bkzk, |b1|< 1,
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I. Introduction

that are harmonic univalent and sense-preserving in the unit disk U = {z : z ∈ C , |z|< 1} for

which f (0) = fz(0)−1 = 0.

We note that the family H of orientation preserving, normalized harmonic univalent functions

reduces to the well known class S of normalized univalent functions in U , if the co-analytic part

of f is identically zero, that is g≡ 0. For 0≤ β < 1, Let KH(β ) be the subclass of H consisting

of harmonic convex functions of order β . We further denote by KH(β ) the subclass of KH(β )

such that the functions h and g in f = h+g are of the form2.
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that are harmonic univalent and sense-preserving in the unit disk U = {z : z ∈ C , |z|< 1} for

which f (0) = fz(0)−1 = 0.

We note that the family H of orientation preserving, normalized harmonic univalent functions

reduces to the well known class S of normalized univalent functions in U , if the co-analytic part

of f is identically zero, that is g≡ 0. For 0≤ β < 1, Let KH(β ) be the subclass of H consisting

of harmonic convex functions of order β . We further denote by KH(β ) the subclass of KH(β )

such that the functions h and g in f = h+g are of the form

(2)h(z) = z−
∞

∑
k=2
|ak|zk, g(z) =−

∞

∑
k=1
|bk|zk, |b1|< 1.

Jackson[7] initiated q-calculus and developed the concept of the q-integral and q-derivative.

For a function f ∈ S given by (1) and 0 < q < 1, the q-derivative of f is defined by

Definition 1.1.

(3)∂q f (z) =


f (z)− f (qz)

z(1−q) , z 6= 0,

f ′(0), z = 0.
, where (0 < q < 1)

Equivalently (3), may be written as

∂q f (z) = 1+
∞

∑
k=2

[k]qakzk−1, z 6= 0

where

[k]q =


1−qk

1−q , q6= 1

k, q= 1

Note that as q→ 1, [k]q→ k.

As a right inverse, Jackson[6] presented the q-integral of a function f as∫ z

0
f (t)dqt = z(1−q)

∞

∑
k=0

qk f (zqk),

provided that the series converges. For a function f (z) = zk, we note that

∫ z

0
f (t)dqt =

∫ z

0
tkdqt =

zk+1

[k+1]q
(k 6=−1)

and

lim
q→1−

∫ z

0
f (t)dqt = lim

q→1−

zk+1

[k+1]q
=

zk+1

k+1
=
∫ z

0
f (t)dt,
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where
∫ z

0 f (t)dt is the ordinary integral.

The Jacobian of f by q-derivative is given by

J f (z) = |∂qh(z)|2−|∂qg(z)|2

The mapping z→ f (z) is locally one-to-one if J f (z) 6= 0 in U . Also the converse is true for

harmonic mappings, and therefore z→ f (z) is locally one-to-one and sense preserving if, and

only if, |∂qh(z)|> |∂qg(z)|.

Definition 2.1. Let f : R2→ R be a continuous function of two variables and 0 < q < 1, the

partial q-derivatives at (x,y) ∈ R2 can be defined as follows

∂q f (x,y)
∂qx = f (qx,y)− f (x,y)

x(q−1) ,

∂q f (x,y)
∂qy = f (x,qy)− f (x,y)

y(q−1) ,

and

∂q f (x,y)
∂qx∂qy = f (qx,qy)− f (qx,y)− f (x,qy)+ f (x,y)

xy(q−1)2 .

The function f : R2 → R is said to be partially q-differentiable on R2 if ∂q f (x,y)
∂qx , ∂q f (x,y)

∂qy and
∂

f
q (x,y)

∂qx∂qy exist for all (x,y) ∈ R2. We can similarly define higher order partial q-derivatives.

For 0≤ β < 1, let KH(β ,q) denote the subclass of H consisting of q-harmonic convex func-

tions of order β .

Definition 2.2. A function f of the form (1) is said to be in the class KH(β ,q) β , 0≤ β < 1, for

|z|= r < 1 if

∂q

∂qθ

{
arg
(

∂q f (reiθ)
)}

= Im
{

∂q

∂qθ
log
(

f (reiθ )
)}

(4)
=Re

λq| lnq|z∂qh(z)+λq| lnq|z2∂2
q h(z)+λq| lnq|z∂qg(z)+λq| lnq|z2∂ 2

q g(z)

(1− q)z∂qh(z)− (1− q)z∂qg(z)

)
≥β ,

where λq = ∑
∞
k=0

(iθ (1−q))n

(n+1)! , λq→ 1 as q→ 1−, z = reiθ , 0≤ θ < 2π , and ∂q f = ∂qh+∂qg.
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II. Main Results

Theorem 2.3. Let f = h+g be given by (1). If

(5)
∞

∑
k=1

[k]q
[
λq| lnq|[k]q−β(1− q)

]
λq| lnq|−β (1−q)

|ak|+
[k]q
[
λq| lnq|[k]q +β(1− q)

]
λq| lnq|−β(1− q)

|bk|
)
≤ 2,

 

Notes
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where λq = ∑
∞
k=0

(iθ(1−q))n

(n+1)! , λq→ 1 as q→ 1−, a1 = 1, 0 ≤ β < 1 and 0 < q < 1. Then f is

q-harmonic univalent in U , and f ∈ KH(β ,q).

Proof. Note first that

|∂qh(z)| ≥ 1−
∞

∑
k=1

[k]q|ak|rk−1 > 1−
∞

∑
k=1

[k]q|ak| ≥ 1−
∞

∑
k=2

[k]q
[
λq| lnq|[k]q−β (1−q)

]
λq| lnq|−β (1−q)

|ak|

≥
∞

∑
k=1

[k]q
[
λq| lnq|[k]q +β (1−q)

]
λq| lnq|−β (1−q)

|bk| ≥
∞

∑
k=1

[k]q|bk|>
∞

∑
k=1

[k]q|ak|rk−1 ≥ |∂qg(z)|.

So that f is locally univalent and sense-preserving in U . If g ≡ 0, the univalence of f will

follow from its starlikeness. Otherwise if z1,z2 ∈U , z1 6= z2. Since U is simply connected and

convex, we have z(t) = (1− t)z1 + tz2 ∈U , where 0≤ t ≤ 1. So we can write

f (z2)− f (z1) =
∫ 1

0

[
(z2− z1)∂qh(z(t))+(z2− z1)∂qg(z(t))

]
dqt.

Therefore

Re
f (z2)− f (z1)

z2− z1
=
∫ 1

0
Re
[

∂qh(z(t))+
z2− z1

z2− z1
∂qg(z(t))

]
dqt

(6)
>
∫ 1

0

[
Re∂qh(z(t))−

∣∣∂qg(z(t))
∣∣]dqt.

Moreover

Re∂qh(z(t))−
∣∣∂qg(z(t))

∣∣≥ Re∂qh(z(t))−
∞

∑
k=1

[k]q|bk|

≥ 1−
∞

∑
k=2

[k]q|ak|−
∞

∑
k=1

[k]q|bk|

≥ 1−
∞

∑
k=2

[k]q
[
λq| lnq|[k]q−β (1−q)

]
λq| lnq|−β (1−q)

|ak|−
∞

∑
k=1

[k]q
[
λq| lnq|[k]q +β (1−q)

]
λq| lnq|−β (1−q)

|bk|

(7)≥ 0, by(5).

Hence (6) and (7) leads to the univalence of f .
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Now we show that f ∈ KH(β ,q). It suffices to show that ∂q
∂qθ

{
arg
(

∂q
∂qθ

f (reiθ )
)}
≥ β , 0 ≤

β < 1, 0≤ θ < 2π and 0 < r < 1.

Using the fact that Reω ≥ β if and only if |1−β +ω| ≥ |1+β −ω|, it suffices to show that

(8)|A(z)+(1−β )B(z)|− |A(z)− (1+β )B(z)| ≥ 0,
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where A(z) = λq| lnq|z∂qh(z)+λq| lnq|z2∂ 2
q h(z)+λq| lnq|z∂qg(z)+λq| lnq|z2∂ 2

q g(z)

and B(z) = (1−q)z∂qh(z)− (1−q)z∂qg(z). Substituting for A(z) andB(z) in (8), we get

|A(z)+(1−β )B(z)|− |A(z)− (1+β )B(z)|

=
∣∣∣(λq| lnq|+(1−β )(1−q))z∂qh(z)+λq| lnq|z2

∂
2
q h(z)+(λq| lnq|+(1−β )(1−q))z∂qg(z)+λq| lnq|z2∂ 2

q g(z)
∣∣∣

−
∣∣∣(λq| lnq|− (1+β )(1−q))z∂qh(z)+λq| lnq|z2

∂
2
q h(z)+(λq| lnq|+(1+β )(1−q))z∂qg(z)+λq| lnq|z2∂ 2

q g(z)
∣∣∣

=

∣∣∣∣∣(−q+βq−β +λq| lnq|+1)z+
∞

∑
k=2

[k]q (λq| lnq|[k]q−q+βq−β +1)akzk

+
∞

∑
k=1

[k]q (λq| lnq|[k]q +q−βq+β −1)bkzk

∣∣∣∣∣
−

∣∣∣∣∣(q+βq−β +λq| lnq|+1)z+
∞

∑
k=2

[k]q (λq| lnq|[k]q +q+βq−β −1)akzk

+
∞

∑
k=1

[k]q (λq| lnq|[k]q−q−βq+β +1)bkzk

∣∣∣∣∣
≥ (−q+βq−β +λq| lnq|+1)|z|−

∞

∑
k=2

[k]q (λq| lnq|[k]q−q+βq−β +1) |ak||zk|

−
∞

∑
k=1

[k]q (λq| lnq|[k]q +q−βq+β −1) |bk||zk|+(q+βq−β +λq| lnq|+1)|z|

−
∞

∑
k=2

[k]q (λq| lnq|[k]q +q+βq−β −1) |ak||zk|−
∞

∑
k=1

[k]q (λq| lnq|[k]q−q−βq+β +1)bkzk

= 2 [λq| lnq|−β (1−q)] |z|

{
1−

∞

∑
k=2

[k]q [λq| lnq|[k]q−β (1−q)]
λq| lnq|−β (1−q)

|ak||z|k−1

−
∞

∑
k=1

[k]q [λq| lnq|[k]q +β (1−q)]
λq| lnq|−β (1−q)

|bk||z|k−1

}
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≥ 2 [λq| lnq|−β (1−q)] |z|

{
1−

∞

∑
k=2

[k]q [λq| lnq|[k]q−β (1−q)]
λq| lnq|−β (1−q)

|ak|

+
∞

∑
k=1

[k]q [λq| lnq|[k]q +β (1−q)]
λq| lnq|−β (1−q)

|bk|

)}
≥ 0, by(5).

The starlike harmonic mappings

(9)f (z) = z+
∞

∑
k=2

[k]q [λq| lnq|[k]q−β (1−q)]
λq| lnq|−β (1−q)

xkzk +
∞

∑
k=1

[k]q [λq| lnq|[k]q +β (1−q)]
λq| lnq|−β (1−q)

ȳk z̄k,

 

Notes

                  

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
er

sio
n 

I
V

V
I

  
 

( F
)

(



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where ∑
∞
k=2 |xk|+∑

∞
k=2 |yk|= 1, show that the coefficient bound given by (5) is sharp.

Therefore

∞

∑
k=1

(
[k]q [λq| lnq|[k]q−β (1−q)]

λq| lnq|−β (1−q)
|ak|+

[k]q [λq| lnq|[k]q +β (1−q)]
λq| lnq|−β (1−q)

|bk|
)
= 1+

∞

∑
k=2
|xk|+

∞

∑
k=2
|yk|= 2.

Hence f ∈ KH(β ,q).

Note that when β = 0 in the above theorem, we get the following corollary

Corollary 2.4. Let f = h+g be given by (1). If

(10)
∞

∑
k=1

[k]2q (|ak|+ |bk|)≤ 2,

where a1 = 1 and 0 < q < 1. Then f is q-harmonic univalent in U , and f ∈ KH(q).

Special choices, β = b1 = 0, and as q→ 1− yield the following result, proved by Avci and

Zlotkiewicz [1]

Corollary 2.5. Let f = h+g be given by (1). If

(11)
∞

∑
k=1

k2 (|ak|+ |bk|)≤ 2,

where a1 = 1 and b1 = 0, Then f is harmonic univalent in U , and f ∈ K0
H .

As q→ 1− and for we get the following result, proved by J. M. Jahangiri [8]

Corollary 2.6. Let f = h+g be given by (1). If

(12)
∞

∑
k=1

(
k(k−β )

1−β
|ak|+

k(k+β )

1−β
|bk|
)
≤ 2,

where a1 = 1, 0≤ β < 1 Then f is q-harmonic univalent in U , and f ∈ KH(β )..
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Theorem 2.7. Let f = h+g be given by (2). Then f ∈ KH(β ,q) if and only if

(13)
∞

∑
k=1

(
[k]q [λq| ln q|[k]q− β(1−q)]

λq| lnq|−β(1− q)
|ak |+

[k]q [λq| lnq|[k]q+β (1−q)]
λq| lnq|−β (1−q)

|bk|
)
≤ 2,

where λq = ∑
∞
k=0

(iθ (1−q))n

(n+1)! , λq→ 1 as q→ 1−, a1 = 1, 0≤ β < 1 and 0 < q < 1.

Proof. Since f ∈KH(β ,q)⊂KH(β ,q), we only need to prove the necessary part of the theorem.

Assume that f ∈ KH(β ,q), then by (4) we have

Re
(

λq| lnq|z∂qh(z)+λq| lnq|z2∂ 2
q h(z)+λq| lnq|z∂qg(z)+λq| lnq|z2∂ 2

q g(z)

(1−q)z∂qh(z)−(1−q)z∂qg(z)

)
−β

1.
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= Re
[λq| lnq|−β (1−q)]z−∑

∞
k=2[k]q [λq| lnq|[k]q−β (1−q)] |ak|zk−∑

∞
k=1[k]q [λq| lnq|[k]q +β (1−q)] |bk|z̄k

(1−q)z− (1−q)∑
∞
k=2[k]q|ak|zk +(1−q)∑

∞
k=1[k]q|bk|z̄k

≥ 0.

The above condition must hold for all values of z ∈U . Upon choosing the values of z on the

positive real axis where 0≤ z = r < 1 we must have

(14)[λq| lnq|−β (1−q)]−∑
∞
k=2[k]q [λq| lnq|[k]q−β (1−q)] |ak|rk−1−∑

∞
k=1[k]q [λq| lnq|[k]q +β (1−q)] |bk|rk−1

(1−q)(1−∑
∞
k=2[k]q|ak|rk−1 +∑

∞
k=1[k]q|bk|rk−1)

≥ 0.

If (13) does not hold, then the numerator in (14) is negative for r sufficiently close to 1. There-

fore, there exists a point z0 = r0 in (0,1) for which the quotient in (14) is negative. This

contradicts our assumption that f ∈ KH(β ,q). This completes the proof of Theorem.

As q→ 1− and for we get the following result, proved by J. M. Jahangiri [8]

Corollary 2.8. Let f = h+g be given by (2). Then f ∈ KH(β ) if and only if

(15)
∞

∑
k=1

(
k(k−β )

1−β
|ak|+

k(1+β )

1−β
|bk|
)
≤ 2,

where a1 = 1 and 0≤ β < 1.

Now we determine the extreme points of the closed convex hulls of KH(β ,q), denoted by

clcoKH(β ,q).

Theorem 2.9. Let f given by (2). Then f ∈ clcoKH(β ,q) if and only if

(16)f (z) =
∞

∑
k=1

(Xkhk +Ykgk)
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where h1(z)= z, hK(z)= z− [λq| lnq|−β (1−q)]
[k]q[λq| lnq|[k]q−β (1−q)]

zk (k= 2,3, ...)

and gK(z)= z− [λq| lnq|−β (1−q)]
[k]q[λq| lnq|[k]q+β (1−q)]

z̄k

(k = 1,2,3, ...), ∑
∞
k=1(Xk +Yk) = 1, Xk ≥ 0 and Yk ≥ 0. In particular, the extreme points of

KH(β ,q) are {hk} and {gk}.

Proof. Let f be written as (16). Then we have

f (z) =
∞

∑
k=1

(Xkhk +Ykgk) =
∞

∑
k=1

(Xk +Yk)z−
∞

∑
k=2

λq| lnq|−β (1−q)
[k]q
[
λq| lnq|[k]q−β (1−q)

]xkzk
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−
∞

∑
k=1

λq| lnq|−β (1−q)
[k]q
[
λq| lnq|[k]q +β (1−q)

] ȳkz̄k.

= z−
∞

∑
k=2

anzn−
∞

∑
k=1

bnz̄n.

Then
∞

∑
k=2

[k]q
[
λq| lnq|[k]q−β (1−q)

]
λq| lnq|−β (1−q)

λq| lnq|−β (1−q)
[k]q
[
λq| lnq|[k]q−β (1−q)

]xk

)

+
∞

∑
k=2

[k]q
[
λq| lnq|[k]q +β (1−q)

]
λq| lnq|−β (1−q)

λq| lnq|−β (1−q)
[k]q
[
λq| lnq|[k]q +β (1−q)

]yk

)
.

=
∞

∑
k=2

Xk +
∞

∑
k=1

Yk = 1−X1 ≤ 1

and so f ∈ clcoKH(β ,q). Conversely, assume that f ∈ clcoKH(β ,q). Putting

Xk =
[k]q
[
λq| lnq|[k]q−β (1−q)

]
λq| lnq|−β (1−q)

|ak|, k = 2,3, ...

Yk =
[k]q
[
λq| lnq|[k]q +β (1−q)

]
λq| lnq|−β (1−q)

|bk|, k = 1,2,3, ...

and

X1 = 1−
∞

∑
k=2

Xk−
∞

∑
k=1

Yk,

then ∑
∞
k=1(Xk +Yk) = 1, 0≤ Xk ≤ 1(k = 2,3, ...),0≤ Yk ≤ 1(k = 1,2,3, ...). Consequently, we

obtain f (z) = ∑
∞
k=1 (Xkhk +Ykgk) as required.

Finally we give the distortion bounds for functions in KH(β ,q) which yield a covering result

for KH(β ,q).
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Theorem 2.10. If f ∈ KH(β ,q) then

| f (z)| ≤ (1+|b1|)r+
1
[2]q

(
λq| lnq|−β (1−q)

[2]qλq| lnq|−β (1−q)
−

λq| lnq|+β (1−q)
[2]qλq| lnq|−β (1−q)

|b1|
)

r2, |z|= r < 1,

and

| f (z)| ≥ (1−|b1|)r−
1
[2]q

(
λq| lnq|−β (1−q)

[2]qλq| lnq|−β (1−q)
−

λq| lnq|+β (1−q)
[2]qλq| lnq|−β (1−q)

|b1|
)

r2, |z|= r < 1.

Proof. Assume that f ∈ KH(β ,q). Then we have
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| f (z)| ≤ (1+ |b1|)r+
∞

∑
k=2

(|ak|+ |bk|)rk

≤ (1+ |b1|)r+
∞

∑
k=2

(|ak|+ |bk |)r2

=(1+|b1|)r+
λq| lnq|−β (1−q)

[2]q ([2]qλq| lnq|−β (1−q))

∞

∑
k=2

(
[2]q ([2]qλq| lnq|−β (1−q))

λq| lnq|−β (1−q)
|ak|+

[2]q ([2]qλq| lnq|−β (1−q))
λq| lnq|−β (1−q)

|bk|
)

r2

≤ (1+|b1|)r+
λq| lnq|−β (1−q)

[2]q ([2]qλq| lnq|−β (1−q))

∞

∑
k=2

(
[k]q (λq| lnq|[k]q−β (1−q))

λq| lnq|−β (1−q)
|ak|+

[k]q (λq| lnq|[k]q +β (1−q))
λq| lnq|−β (1−q)

|bk|
)

r2

≤ (1+ |b1|)r+
λq| lnq|−β (1−q)

[2]q ([2]qλq| lnq|−β (1−q))

(
1−

λq| lnq|+β (1−q)
λq| lnq|−β (1−q)

|b1|
)

r2, by(5),

= (1+ |b1|)r+
1
[2]q

(
λq| lnq|−β (1−q)

[2]qλq| lnq|−β (1−q)
−

λq| lnq|+β (1−q)
[2]qλq| lnq|−β (1−q)

|b1|
)

r2.

and

| f (z)| ≥ (1−|b1|)r−
∞

∑
k=2

(|ak|+ |bk|)rk

≥ (1−|b1|)r−
∞

∑
k=2

(|ak|+ |bk|)r2

=(1−|b1|)r−
λq| lnq|−β (1−q)

[2]q ([2]qλq| lnq|−β (1−q))

∞

∑
k=2

(
[2]q ([2]qλq| lnq|−β (1−q))

λq| lnq|−β (1−q)
|ak|+

[2]q ([2]qλq| lnq|−β (1−q))
λq| lnq|−β (1−q)

|bk|
)

r2

≥(1−|b1|)r−
λq| lnq|−β (1−q)

[2]q ([2]qλq| lnq|−β (1−q))

∞

∑
k=2

(
[k]q (λq| lnq|[k]q−β (1−q))

λq| lnq|−β (1−q)
|ak|+

[k]q (λq| lnq|[k]q +β (1−q))
λq| lnq|−β (1−q)

|bk|
)

r2

≥ (1−|b1|)r−
λq| lnq|−β (1−q)

[2]q ([2]qλq| lnq|−β (1−q))

(
1−

λq| lnq|+β (1−q)
λq| lnq|−β (1−q)

|b1|
)

r2, by(5),

= (1−|b1|)r−
1
[2]q

(
λq| lnq|−β (1−q)

[2]qλq| lnq|−β (1−q)
−

λq| lnq|+β (1−q)
[2]qλq| lnq|−β (1−q)

|b1|
)

r2.
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As q→ 1− and for we get the following result, proved by J. M. Jahangiri [8]

Corollary 2.11. If f ∈ KH(β ) then

| f (z)| ≤ (1+ |b1|)r+
1
2

(
1−β

2−β
− 1+β

2−β
|b1|
)

r2, |z|= r < 1,

and

| f (z)| ≥ (1−|b1|)r−
1
2

(
1−β

2−β
− 1+β

2−β
|b1|
)

r2, |z|= r < 1.
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The bounds given in Theorem 2.10 for the function f = h+ ḡ of the form (2) also hold for

functions of the form (1) if the coefficient condition (5) is satisfied. The functions

f (z) = (1+ |b1|)z̄+
1
[2]q

(
λq| lnq|−β (1−q)

[2]qλq| lnq|−β (1−q)
−

λq| lnq|+β (1−q)
[2]qλq| lnq|−β (1−q)

|b1|
)

z̄2

and

f (z) = (1−|b1|)z−
1
[2]q

(
λq| lnq|−β (1−q)

[2]qλq| lnq|−β (1−q)
−

λq| lnq|+β (1−q)
[2]qλq| lnq|−β (1−q)

|b1|
)

z2

for |b1| ≤ 1
[2]q

(
λq| lnq|−β (1−q)

[2]qλq| lnq|−β (1−q) −
λq| lnq|+β (1−q)

[2]qλq| lnq|−β (1−q) |b1|
)

show that the bounds given in Theorem

2.6 are sharp.

Theorem 2.12. If f ∈ KH(β ,q) then

(17)

{
ω : |ω|< 1

[2]q

λq| lnq|([2]q−1) [([2]q +1)−β (1−q)]
[2]qλq| lnq|−β (1−q)

− 1
[2]q

λq| lnq|([2]q +1) [([2]q−1)−β (1−q)]
[2]qλq| lnq|−β (1−q)

|b1|
}
⊂ f (U ).

Proof. Letting r→ 1− in the left hand inequality in Theorem 2.10 and collecting the like terms

we obtain (17).

The condition (17) for β = b1 = 0 yields the following

Corollary 2.13. if f ∈ K0
H(0,q) then

{ω : ω <
[2]2q−1
[2]2q

} ⊂ f (U ).

As q→ 1− and β = b1 = 0, we get the following result, proved by Jay M. Jahangiri [8]
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Corollary 2.14. if f ∈ K0
H(0) then

{ω : ω <
3
4
} ⊂ f (U ).

For harmonic functions f (z)= z+∑
∞
k=2 akzk+∑

∞
k=1 bkzk and g(z)= z+∑

∞
n=2 Akzk+∑

∞
k=1 Bnzk

we define the Hadamard product of f and g as

( f ∗g)(z) = z+
∞

∑
k=2

akAkzk +
∞

∑
k=1

bkBkzk.

Theorem 2.15. For 0≤α ≤ β < 1, let f ∈KH(β ,q) and g∈KH(α,q). Then f ∗g∈KH(β ,q)⊂

KH(α,q).
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Proof. Putting f (z) = z−∑
∞
k=2 |ak|zk −∑

∞
k=1 |bk|zk and g(z) = z−∑

∞
k=2 |Ak|zk +∑

∞
k=1 |Bk|zk.

Then the Hadamard product of f and g is

( f ∗g)(z) = z+
∞

∑
k=2
|ak||Ak|zk +

∞

∑
k=1
|bk||Bk|zk.

Since |Ak| ≤ 1 and |Bk| ≤ 1, we can write

∞

∑
k=2

[k]q
[
λq| lnq|[k]q−β (1−q)

]
λq| lnq|−β (1−q)

|ak||Ak|+
∞

∑
k=1

[k]q
[
λq| lnq|[k]q +β (1−q)

]
λq| lnq|−β (1−q)

|bk||Bk|

≤
∞

∑
k=2

[k]q
[
λq| lnq|[k]q−β (1−q)

]
λq| lnq|−β (1−q)

|ak|+
∞

∑
k=1

[k]q
[
λq| lnq|[k]q +β (1−q)

]
λq| lnq|−β (1−q)

|bk|.

The right hand side of the above inequality is bounded by 1 because f ∈ KH(β ,q) .Therefore

f ∗g ∈ KH(β ,q)⊂ KH(α,q).

Theorem 2.16. The class KH(β ,q) is closed under convex combination.

Proof. For i = 1,2,3, ... assume that fi ∈ KH(β ,q) where fi is given by

fi(z) = z−
∞

∑
k=2
|aik |z

k−
∞

∑
k=1
|bik |z

k.

Then by (13)

(18)
∞

∑
k=2

[k]q [λq| lnq|[k]q−β (1−q)]
λq| lnq|−β (1−q)

|aik |+
∞

∑
k=1

[k]q [λq| lnq|[k]q +β (1−q)]
λq| lnq|−β (1−q)

|bik | ≤ 1.

For ∑
∞
i=1 ti = 1, 0≤ ti ≤ 1, the convex combination of fi may be written as

∞

∑
i=1

ti fi(z) = z−
∞

∑
k=2

∞

∑
i=1

ti|aik |

)
zn−

∞

∑
k=1

∞

∑
i=1

ti|bik |

)
zn.
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Then by (18),

∞

∑
k=2

[k]q
[
λq| lnq|[k]q−β (1−q)

]
λq| lnq|−β (1−q)

∣∣∣∣∣ ∞

∑
i=1

ti|aik |

∣∣∣∣∣+ ∞

∑
k=1

[k]q
[
λq| lnq|[k]q +β (1−q)

]
λq| lnq|−β (1−q)

∣∣∣∣∣ ∞

∑
i=1

ti|bik |

∣∣∣∣∣
∞

∑
i=1

ti

{
∞

∑
k=2

[k]q
[
λq| lnq|[k]q−β (1−q)

]
λq| lnq|−β (1−q)

|aik |+
∞

∑
k=1

[k]q
[
λq| lnq|[k]q +β (1−q)

]
λq| lnq|−β (1−q)

|bik |

}
≤

∞

∑
i=1

ti = 1,

and so ∑
∞
i=1 ti fi(z) ∈ KH(β ,q).
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Now, we consider the closer property of the class KH(β ,q) under the Bernardi integral oper-

ator Fa(z), which is defined by

(19)Fa(z) =
[a+1]q

za

∫ z

0
ta−1 f (t)dqt +

[a+1]q
za

∫ z

0
ta−1 f (t)dqt (a >−1).

Theorem 2.17. Let f ∈ KH(β ,q). Then Fa(z) ∈ KH(β ,q).

Proof. From the representation of Fa(z), we have

(20)Fa(z) =
∞

∑
k=1

(
[a+1]q
[a+n]q

)
akzk +

∞

∑
k=1

(
[a+1]q
[a+ k]q

)
bkzk

Now

(21)
∞

∑
k=2

[k]q [λq| lnq|[k]q−β (1−q)]
λq| lnq|−β (1−q)

(
[a+1]q
[a+ k]q

|ak|
)
+

∞

∑
k=1

[k]q [λq| lnq|[k]q +β (1−q)]
λq| lnq|−β (1−q)

(
[a+1]q
[a+ k]q

|bk|
)

≤
∞

∑
k=2

[k]q [λq| lnq|[k]q−β (1−q)]
λq| lnq|−β (1−q)

|ak|+
∞

∑
k=1

[k]q [λq| lnq|[k]q +β (1−q)]
λq| lnq|−β (1−q)

|bk| ≤ 1.

Therefore Fa(z) ∈ KH(β ,q).
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