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Abstract- In this study, the wave functions and the energy
spectrum of the PT-Symmetric and non-Hermitian g-deformed
Eckart plus modified Hylleraas potential are studied using
Feyman's Path In-tegral method. The kernel and Green.s
Function for PT-Symmetric and non-Hermitian g-deformed
Eckart plus modified Hylleraas potential is analytically derived
by transforming space-time. The results are discussed for the
different parameters of the potential.
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I. INTRODUCTION

ne of the important problems of quantum
Omeohanics is to obtain the exact analytical

solution of Schrodinger Equation for various
potentials. In recent years, so many methods have been
developed to solve the exact or quasi exactly for various
complicated potentials, such as (SUSY), factorization,
asymptotic iteration, path integral etc. These methods
have been applied to a great variety of quantum
mechanical interactions as analytical methods,
variational methods, numerical approaches, Fourier
analysis, semi-classical estimates, quantum field theory
and Lie group theoretical approaches [1 - 8].

Feynman's Path Integral Method has wide
application in many areas of theoretical physics [9 - 22].
It allows the transition to quantum mechanics from the
Lagrangian formalism via quantization. Duru and
Kleinert calculated Green’s function for H-atom using a
new time parameter and using the transform the
Coulomb path integral into a harmonic oscillator path
integral. The energy spectrum and the normalized s-
state eigenfunctions for the Hulthen Potential and
Woods Saxon potentials are obtained using Green'’s
function [12 -14]. By using path integrals, coherent
states are constructed for various potentials[17, 18, 20].
Feynman’s Path integral Formalism is powerful and
challenging method but it has difficulties for the many of
the quantum mechanical systems. Path integration is an
alternative method to obtain the exact analytical solution
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of Schrodinger Equation. The path integral formulation

builds on the propagator, which is the probability
amplitude for making a transition between the initial

position 7’ at time ¢’ = 0 and the final position z” at
time ¢. It is also called kernel which express the time
evolution of the initial state. The kernel contains all
dynamical information about a quantum mechanical
system [1]. The quantum evolution operator that

generates the propagator is defined as (7(755,75&)
:exp[—zf[(tb,ta)].Here H is Hamiltonian which

determines the evolution over time. In the quantum
theory the Hamiltonian includes the symmetries of the

systems. If the symmetry is represented by an g linear
operator, the g operator comutes to Hamiltonian:

[A,H] = 0. Two important symmetry operators in
guantum mechanics are Parity operator: P and Time
operator 7. When they act on the position and
momentum operators they lead to momentum as P :
— —z,p— —pand T :x — x,p — p,i — —1

Due to the increased interest in PT-Symmetric quantum
mechanics, the cases of real or complex eigenvalues for
the Hermitian and non -Hermitian hamiltonians of various
potentials have been studied [25 - 27].

The object of this paper is to evaluate energy
spectrum and wave functions of the PT-Symmetric the
and non-Hermitian g-deformed Eckart plus modified
Hylleraas potential via Feynman’s path integral method.
The organization of this paper is as follows. In Sec. |l
Kernel and energy-dependent Green’s function of The
g-deformed Eckart plus modified Hylleraas potential
derived using the Duru and Kleinert method. In Sec. lll
energy eigenvalues and the corresponding wave
functions are derived using Green’s function in Sec Il. In
Sec IV Woods-Saxon, Rosen Morse, were discussed
reduced with different parameters than the g-deformed
Eckart plus modified Hylleraas potential.

[I. THE KERNEL

The PT-Symmetric and non-Hermitian g-
deformed Eckart plus modified Hylleraas potential is
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VE) a — 6721'011 6721'0433 6721@33
V)= (——— ) - W __ 4V : 1
(z) (1 — C]e_%‘“) - ge—2iaw M (1 — ge—2iaz)? @

It determines by taking v — 7cx in the g - V, are the depths of the potential well, a, and b
deformed Eckart plus modified Hylleraas potential [28].  Hylleraas parameters and « is the inverse of the range of
The potential satisfies V*(—z) =V () which shows that ~ the potential in Eq. (1). The kernel of one dimension
we obtain PT-Symmetric g-deformed Eckart plus potential between the initial position z’ at time ¢ = 0
modified Hylleraas potential. The parameters V,, V, and  and final position " attime #” is given in Ref. [1] as

- DxDp P’

= K(xy, ty; x4, t,) = exp{t [ dtljpx — — — V(x 2
s (antiata) = [ 25 Lea(i [ atfpi — 2~ Vi)l )
Path integral express in terms of an integral over all paths in configuration space. Kernel is describes as

N+1

N+1 .
K(xp, ty; xa,ty) = hm /Hd Z exp — {Zp]Ax] (3)

‘/0 a — 6721'0196 672ia:p 672ia:p
S N, I v 4V 4
b <1 _ q€—2zax) 1 1— q€—2zaaj 2 (1 _ qe—Qiaa:)Q ( )
The partial action is expressed by
Vb a—e 2w e 20 e 2t
S(a;, A L MUY (N S, I v N 7 5
x] x] 1 Zp] 33'] |: b <1 _ q€22am) 1 1 — qe*Qlax + 2 (1 _ q672iaz)2 ( )

where we shall i = m = 1. To solution via Feynman Path integral method we introduce the new angular variable
fe(0, ) to transform the radial variable x¢(0, 00)

1 1
T= 5 ln(—g cot? ) P = tasin B cos pg (6)

The contribution to Jacobien of this transformation becomes

DxDp
2m

= iasinf,cosl, . (7)

Bydefining Az, =x; —x;1,e=t;—tjq, t' =tg=1t,, t" =ty =1, (n+1)e =T theKemelin
Eqg.(3) can be written as

2

T
K(xp,x,;T) = icavsin 6, cos 0, / D0ODpgy exp i/dt [pgé + a?sin? 6 cos® «92]?—9
0

m
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Voa . oy, 1 V0

(-2 (b + Vi) co 9—%Sin29c0829)]} . (8)

The coordinate transformation in Eqg. (7) the a?sin2 @ cos? @ factor in the kinetic energy term
| produces a factor a?sin? @ cos? @ that is kinetic energy  [12 - 14] as
term. We need a new time parameter s for eliminating

dt 1 ; 1 / ds’ ()
—=— o t=—— | ———.
ds a2 sin? 0 cos? a? | sin?fcos?f
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|f Fourier transformation of §— function

1 1
= [ dS o0(-T — [ ds—————
/ a2 sin? «95 cos2 0, ( / Soﬂ sin? @ cos? 0 )
FE
dsS — (BT — [ ds————— 10
/ / 21 o2 sin 91, cos? 0, expl=i( / 8042 sin? 6 cos2 0 ) (10)

is added to the kernel it becomes

o

. B y
K (@y, 205 T) = . —— / d ZET/CZS/DQDP@ e i(3d)s
0

1avsin 0y, cos 0, 2m
; 2 + —l—
. Do qba2 qa2 ba2 +
X d 0— = — . 11
cxpli / 5 \Po 2 sin® 0 cos? 6 )] (11)

It can be symmetrized according to points a and b the factor in front of the in Eq.(10) that get to from
Jacobian as following

1 2 1 | sin 20,
= exp| —=In
sin#, cos#,  +/sin 20, sin 26, P\72 " sin 20,

s
2 cos 20
= d . 12
\/sin 26, sin 26, P Z/ st sin 29 (12)
0
Thus Eq. (10) takes
i [ dE i
 E) dsei(ai)s K (03,0, S 13
K. / ‘ 27T€ om/sin 20, cos 20, (6 ) (13)
0 —00
Where
; 2 1 ( 1) ( 1) ] 20
, D k(K — vy — ipg COS
K (0y,0,,5)= | DOD d f— 2 - = — - 14
(@ ) / po &P Z/ s[pg 2 2( sin? 6 + cos? 6 ) 2 sin 20 ] (14)
and K and-y are
1 Vo Vi E
— |1 1+8 —_—+ —
T2 +\/ * (qba2 Jrqa2+a2)

(15)

[\DIr—l

v =

Voo FE
1 1
+\/ +8(ba2 +a2>
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If we take the time division of the momentum In the same way if this factor is symmetrized as

variables from j= 0to j=n instead of fromj= 0to j= EQq.(13) which only sign, of imaginary term wil be
n + 1, we have the quantum mechanical contributions change. Therefore the contributions to be kernel
4 ipacos20 Eq. (13) becomes

2sin 26 ' '

03’ — 9]'_1 . ‘9]‘ — 9j—1 + 1 COS 93‘

€ € 2sin0;

(16)

So the problem is reduced the path integral for Poschl - Teller potential which is known exact solution
[13;15]. K (0p,04; S) can be obtained as

K(Hb,Ha;S):/DHngeXp i/sds{m.—p—g—l(n({i_l)vay(ﬁy_l))} o

2 2 sin’ @ cos2 0

Writing the kernel as

K (0,,04;5) = Zexp —ig,S] , (6.) X (6)) (18)

(K +v+2n)° (19)

l\DI»—t

Where

Un(0) = V2(rt7+ 2n)\/r (2?:?5)?(2 121)1)

x (cos ) (sin )" P—1/2771/2) (1 — 25in? 0) (20)

Eq.(12) can be expressed

o0 [e.e]

SV
K" 2,T) = / Soen [ase VK @nss). @
0

y/sin 20 cos 20,

With integrating over dS Greens function for Eq.(1) can be obtained as
[e.@]
e dE 1ET

/ 8ifiq / e .
Q2" 2 B) — i 0, 0 22
& B) = g cov 3y o (20— () 2 (0) (0 (22)

qa?

Therefore the kernel of a physical system is rewritten as

o

K(a" s B) =) e T, (wa)pr(1). (23)

n=0
[1I. ENERGY EIGENVALUES AND WAVE Eckart plus modified Hylleraas potential in Sec.(2). If we

FUNCTIONS can integrate over dE, we can get energy eigenvalues as

We calculated Green’s function and Kernel for
the PT Symmetric and Non-Hermitian g-deformed
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2 2

Voo o2 ) |a — @n1)] — 28+ Bh 4+ 5
Bn=— % = (24)
and normalized wave functions in terms of Jacobi polynoms are
I'(n+1)T (kn+ 7, +n)
r) = 2V2y/(kn + 7, + 2n "
o(r) VI 7 )\/F(%%—n%—%)l“(/{n%—n%-%)
9where we got
1 1 [ Vs 12 (2Vea 2V 2V
n == — (2 1
" +q‘%—(2n+1) | qo? (2n + ) +(a2b +Oz2qb+a2q
1 1 [ Vy 12 2V 2V, 2W;
= — — (2 1 — 25
Tn 9 q‘% —@2n+1) ] g (2n + )_ < a2b + a2qb + a2q (25)
We can write the terms of Hypergeometric functions in Eq.(19)
/ 'n+a+1) 1+ %
Pl =—~— — JF (- "+1,5+1 26
) = a1 ( mutat i+l > (26)

and wave functions can be obtained

Cn+ 1) (kp+7,+n)T (n+ kK, +1/2)
I‘(vn—kn—I—%)

0(x) = v/ (k0 + 7, + 2n)\/

—2iax

L ae™ 1\ (97
2’ 1— qe—oncJ:

Therefore we evaluated energy spectrum and wave functions for the PT-Symmetric and Non-Hermitian g-
deformed Eckart plus modified Hylleraas potential has real energy spectra.

(_iq672iax)7*1/2

X
o (1 _ q672iax)(”n+7n72) (1 + ge~2iox

)1/2F (_n7 Kn—i_’)/n—’_n?/}/n—i_

V. DISCUSSION

(i) Setting Vo =V5=0, a= 0, b= 1 and ¢ = —1 the potential in Eqg. (1) is reduced to PT-Symmetric and Non-
Hermitian Woods-Saxon potential

V'le—Qicxm
1% _ : 28
(I) 1+ e—2iox ( )

Energy eigenvalues of (27) potential can be obtained as
2
2 [ [22 — (2n+1)?

g, - -2 2 -t 7] (29)

8 (2n+1)
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and normalized wave functions can be written as

F'(n+ 1) (kn+7v,+n) T (n+ K, +1/2)

¢@)=v@%+7n+mw¢

(ie—2iax)7*1/2

X
a(l+ e—2iaz)(“n+7n*2) (1

_ e—2iax)1/2 F (—n, Fn + Y + 1 7n

I'(v,+n+3)

1 6—2iax
- 30
+2’1+e—21am> ( )

(i) Choosing Vg = Vo =0,and b=1, a = -1 and ¢ = 1, the potential in Eq. (1) is reduced to PT-Symmetric and
Non-Hermitian Rosen Morse potential

V(z) =

So energy eigenvalues are

062

8

E, =

and normalized wave function is

_%(1 + e—Qiax)

1 _ 6721'04:1: (31)
4Vy — (2n+1)2)?
{ @+ 1) } (32)

¢(x)

y (_Z'e—%a:c)’Y*l/Z

a(l— G—Ziax)(“n+7n*2) (1+e

V. CONCLUSION

In this work, we have investigated the

Schrodinger Equation with The g-deformed Eckart Plus
Modified Hylleraas potential for n quantum states. We

used space-time

transformation to obtain energy

eigenvalues and corresponding wave functions. We
expressed normalized wave functions in terms of Jacobi

polynomials

and Hypergeometric functions. We

obtained exactly the energy eigenvalues and the
corresponding eigenfunctions. We have seen that the
potential has real eigenvalues. The energy eigenvalues
and the eigenfunctions can be computed making
different choices for the Vg, V1,Va, «,¢,b parameters
of the potential. Choosing appropriate parameters for
the potential, we indicated energy spectrum and wave
functions n states for Woods Saxon, Rosen Morse
potentials..
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