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The Cauchy-Euler equation is often one of the first higher order differential
equations with variable coefficients (see [1], p. 281, see also [2, 3, 4, 5]).
If the independent variable is changed from x to t (via the transformation
x = et), then the resulting equation becomes a linear constant coefficient
ODE. The standard technique for solving a linear constant coefficient ODE
is to look for exponential solutions. A special class of homogeneous second
order Cauchy-Euler ODE has the form

x2
d2y

dx2
+ ax

dy

dx
+ by = 0, (1.1)

for constants a and b. This equation actually has what it called a singular
point at x = 0 which yields trivial solution but we are focus to find non-trial
solutions. To solve the equation, alternatively, a solution of the form y = xm

can be tried directly into (1.1) and deduce the characteristic (or auxiliary
or indicial) equation

m2 + (a− 1)m+ b = 0. (1.2).

The general solution of (1.1) depends on the nature of the roots of (1.2)
(see, e.g., [6, 7, 8, 9]). That is, if (1.2) has two distinct real roots say
m1 and m2, then the general solution of (1.1) is y = c1x

m1 + c2x
m2 . If

(1.2) has double real roots (or the unique real root) m, then the general
solution of (1.1) is y = c1x

m + c2x
m lnx. And also, if (1.2) has com-

plex conjugates roots m1,2 = α ± iβ, then the general solution of (1.1)
is y = xα(c1 sin(β lnx)+ c2 cos(β lnx)), where c1 and c2 are some constants.
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The linear none-homogeneous Cauchy-Euler equation has the form

x2
d2y

dx2
+ ax

dy

dx
+ by = r(x). (1.3)

Let r(x) be a piecewise continuous function on I and let y1 and
y2 be two linearly independent solutions of (1.1) on I. Then a particular
solution yp of (1.3), [7, 10, 11, 12] is given by

yp = −y1

∫

y2r(x)

x2W (x; y1, y2)
dx+ y2

∫

y1r(x)

x2W (x; y1, y2)
dx, (1.4)

where W (x; y1, y2) is the Wronskian of y1 and y2.

Proof. Let u(x) and v(x) be continuously differentiable functions (to be
determined) for some x in I such that

yp = uy1 + vy2, (1.5)

is a particular solution of (1.3). Differentiation of (1.5) leads to

dyp

dx
= u

dy1

dx
+ y1

du

dx
+ v

dy2

dx
+ y2

dv

dx
. (1.6)

We choose u and v so that

y1
du

dx
+ y2

dv

dx
= 0. (1.7)

Using (1.7) in (1.6), we have

dyp

dx
= u

dy1

dx
+ v

dy2

dx
and

d2yp

dx2
= u

d2y1

dx2
+ v

d2y2

dx2
+

du

dx

dy1

dx
+

dv

dx

dy2

dx
. (1.8)

Since yp is a particular solution of (1.3), y1 and y2 are solutions of (1.1),
using (1.5) and (1.8) in (1.3), we obtain the condition

du

dx

dy1

dx
+

dv

dx

dy2

dx
=

r(x)

x2
. (1.9)

Thus from (1.7) and (1.9), we have system of equations as

{

y1
du
dx

+ y2
dv
dx

= 0
du
dx

dy1
dx

+ dv
dx

dy2
dx

= r(x)
x2

(1.10)

Applying Cramer’s rule for (1.10) and after simplification, we get

u = −

∫

y2r(x)

x2W (x; y1, y2)
dx and v =

∫

y1r(x)

x2W (x; y1, y2)
dx. (1.11)

So (1.5) and (1.11) yield the desired results. We complete proof of lemma.

In the next section, we have showed that a general solution of the gen-
eralized second order nonlinear Cauchy-Euler equation and examples are
presented to clarify the results.

Lemma:
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Let f(y(x)) be continuously differentiable function. The second
order nonlinear homogeneous ordinary differential equation of the form

x2
(

p(y)
d2y

dx2
+ q(y)

(

dy

dx

)2)

+ axp(y)
dy

dx
+ bf(y) = 0, (2.1)

has the general solution f(y) = c1x
m1 + c2x

m2 if (1.2) has two distinct real
roots. And also (2.1) has the general solution f(y) = c1x

m + c2x
m lnx

if (1.2) has double real roots; and (2.1) has the general solution f(y) =
xα(c1 sin(β lnx)+c2 cos(β lnx)) whenever (1.2) has complex conjugates roots,
where a, b, c1 and c2 are real constants, p(y) =

d
dy
(f(y)) and q(y) = d

dy
(p(y)).

If r(x) be a piecewise continuous function and f1(y(x)) and f2(y(x)) be
two linearly independent solutions of (2.1), then the second order nonlinear
non-homogeneous ODE of the form

x2
(

p(y)
d2y

dx2
+ q(y)

(

dy

dx

)2)

+ axp(y)
dy

dx
+ bf(y) = r(x), (2.2)

has a particular solution fp(y(x)) which is given by

fp(y(x)) = −f1(y)

∫

f2(y)r(x)

x2W (x; f1, f2)
dx+ f2(y)

∫

f1(y)r(x)

x2W (x; f1, f2)
dx. (2.3)

Where a, b are real constants, p(y) = d
dy
(f(y)), q(y) = d

dy
(p(y)), and

W (x; f1(y), f2(y)) 6= 0 is the Wronskian of f1(y) and f2(y).

Proof. To prove the first identity (2.1), let ξ = f(y), so that dξ
dx

= p(y)dy
dx

and d2ξ

dx2 = q(y)(dy
dx
)2 + p(y)d

2y

dx2 . Then, we have

x2
d2ξ

dx2
+ ax

dξ

dx
+ bξ = 0. (2.4)

To solve the equation, plug ξ = xm into (2.4) and we get the characteristic
equation (1.2). Applying (1.1), (1.2) and after simplification, we obtain the
general corresponding solutions of (2.1). Hence we complete proof of (2.1).

Next, to prove the second identity (2.2), let ξ = f(y), then we obtain

x2
d2ξ

dx2
+ ax

dξ

dx
+ bξ = r(x). (2.5)

Let ξ1 = f1(y) and ξ2 = f2(y) be two linearly independent solutions of (2.4)
so that they are also solutions for (2.1). Let u(x) and v(x) be continuously
differentiable functions (to be determined) such that

ξp = fp(y) = uξ1 + vξ2, (2.6)

II. The Main Results

Theorem. 
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Using (1.11) and (2.7) after simplification with little algebra, we get

u = −

∫

ξ2r(x)

x2W (x; ξ1, ξ2)
dx and v =

∫

ξ1r(x)

x2W (x; ξ1, ξ2)
dx;

u = −

∫

x−2f2(y)r(x)

W (x; f1(y), f2(y))
dx and v =

∫

x−2f1(y)r(x)

W (x; f1(y), f2(y))
dx. (2.8)

Using (2.6) and (2.8), we arrive at (2.2).

Now let us show the usefulness of the theorem through some examples.

Example 3.1. Solve the following nonlinear ODE for x ∈ (0, π2 ).

2x2
(

1

1 + 4y2
d2y

dx2
−

8y

(1 + 4y2)2

(

dy

dx

)2)

−
4x

1 + 4y2
dy

dx
+ 2arctan(2y) = x3,

Solution. Let ξ = arctan(2y) so that

dξ

dx
=

2

1 + 4y2
dy

dx
and

d2ξ

dx2
=

2

1 + 4y2
d2y

dx2
−

16y

(1 + 4y2)2

(

dy

dx

)2

.

Then the given equation reduce to the form

x2
d2ξ

dx2
− 2x

dξ

dx
+ 2ξ = x3.

From this, the two linearly independent solutions of the corresponding homo-
geneous part are ξ1 = x = f1(y) and ξ2 = x2 = f2(y). Here the Wronskian
W (x, x2) = x2 6= 0. Clearly y1(x) =

1
2 tan(x) and y2(x) =

1
2 tan(x

2) are the
two linearly independent solutions of the corresponding homogeneous part.

From the above theorem using (2.3), a particular solution ξp is given by

ξp = fp(y) = −x

∫

x2.x3

x2.x2
dx+ x2

∫

x.x3

x2.x2
dx =

x3

2
.

Thus by applying the above theorem (2.2), a particular solution of the given

equation is fp(y) = arctan(2y) = x3

2 implies yp =
1
2 tan(

x3

2 ).

is a particular solution of (2.5) which is also a particular solution of (2.2).
Then applying (1.6)-(1.10) and using (2.6) with its first and second deriva-
tives in (2.5), we have system of equations as

{

ξ1
du
dx

+ ξ2
dv
dx

= 0
du
dx

dξ1
dx

+ dv
dx

dξ2
dx

= r(x)
x2

(2.7)

III. Examples
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Thus obviously the general solution of the given nonlinear non-homogeneous
second order ODE is simply the sum of the general solutions of its corre-
sponding homogeneous part and the particular solution of the non-homogeneous
part. Hence y(x) = c1 tan(x)+ c2 tan(x

2)+ 1
2 tan(

x3

2 ) is the required general
solution, for some integral constants c1 and c2.

Example 3.2. Find a particular solution of the nonlinear ODE

2x2
(

1

1 + 4y2
d2y

dx2
−

8y

(1 + 4y2)2

(

dy

dx

)2)

−
4x

1 + 4y2
dy

dx
+ 2arctan(2y) = x4.

Solution. Let ξ = arctan(2y) and using example (3 .1 ), we obtain

x2
d2ξ

dx2
− 2x

dξ

dx
+ 2ξ = x4.

By the above theorem and example (3 .1 ), a particular solution is ξp =

fp(y) =
x4

6 , implies that yp =
1
2 tan(

x4

6 ) is the desired solution.

Example 3.3. Find a particular solution of the nonlinear ODE

2x2
(

1

1 + 4y2
d2y

dx2
−

8y

(1 + 4y2)2

(

dy

dx

)2)

−
4x

1 + 4y2
dy

dx
+2arctan(2y) = x4+x3.

Solution. By the principle of superposition, a particular solution should be

yp = yp1 + yp2 =
1

2
tan

(

x3

2

)

+
1

2
tan

(

x4

6

)

is the desired solution.

Example 3.4. Find the general solution of the nonlinear ODE

x2
(

2

y3

(

dy

dx

)2

−
1

y2
d2y

dx2

)

−
7x

y2
dy

dx
+

13

y
=

4

x3
, for x ∈ (1, 2].

Solution. Let ξ = 1
y
. Using ξ and its first and second derivatives in the

given equation, we obtain

x2
d2ξ

dx2
+ 7x

dξ

dx
+ 13ξ =

4

x3
,

which has two linearly independent solutions ξ1 = x−3 cos(2 ln x) and ξ2 =
x−3 sin(2 ln x). Here the Wronskian W (x; ξ1, ξ2) = 2x−7 6= 0 for x ∈ (1, 2].
Thus by the above theorem (2.2) and (2.3), we get a particular solution

ξp = x−3 sin2(2 ln x)− x−3 cos2(2 lnx).

yp =
x3

sin2(2 ln x)− cos2(2 ln x)
.
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Hence the required general solution for some constants c1 and c2 is

y(x) = c1
x3

cos(2 lnx)
+ c2

x3

sin(2 ln x)
+ yp.

In this paper besides having an important history background, it also has
interesting applications. Using this paper, we can find the general solutions
of a nonlinear Cauchy-Euler equation that can be reduced to the general
form of a linear Cauchy-Euler equation [1], which is given as

anx
n d

ny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ · · · + a1x

dy

dx
+ a0y = f(x),

by using appropriate methods. In particular, the ideas of this paper may be
a base to obtain a generalized version of other first order ODEs. Moreover,
the approach adopted in this paper was meant to reach both researchers and
undergraduate students.

IV. Concluding Remarks and Observations
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