
© 2018. FY. AY. Ant. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

 

  
 

   

 
 
Unified Fractional Derivative Formulae for the Multivariable 
Aleph-Function          

By FY. AY. Ant 
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concerns the multivariable polynomials and two multivariable Aleph-functions with the help of the 
Leibniz rule for fractional derivatives. The last relation also implies the product of a class of 
multivariable polynomials and the multivariable Aleph-function but it is obtained by the 
application of the first formula twice and it implicates two independents variables instead of one. 
The polynomials and the functions have their arguments of the type                                                         

 are quite general nature. These formulae, besides being on very general character 
have been put in a compact form avoiding the occurrence of infinite series and thus making 
them put in applications. Our findings provide unifications and extensions of some (known and 
new) results. We shall give several corollaries and particular cases.        
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The fractional integral operator involving various special functions has found significant importance and applications in
mathematical analysis. Since last four decades, some workers like Love [14], McBride [18], Kalla [6,7], Kalla and
Saxena [8,9],  Saxena et  al.  [28],  Saigo  [21,22],  Kilbas  [10],  Kilbas  and  Sebastian [11]  have  studied  in  depth  the
properties,  applications  and  different  extensions  of  various  hypergeometric  operators  of  Fractional  integration.  A
detailed account of such operators along with their properties and applications can be found in the research monographs
by Samko et al. [25], Miller and Ross [19], Kiryakova [13,14], Kilbas, Srivastava and Trujillo [12] and Debnath and
Bhatta [3]. A useful generalization of the hypergeometric fractional integrals, including the Saigo operators [22,23], has
been introduced by Marichev [15] (see details in Samko et al. [23] and also see Kilbas and Saigo [13] ). The generalized
fractional integral operator of arbitrary order, involving Appell function  in the kernel defined and studied by Saigo
and Maeda [24, p. 393, Eq (4.12) and (4.13)] in the following manner :
Let    be complex numbers. The fractional integral  and derivative  of a function

 defined on  is given by :

 

and

 

Keywords: general class of multivariable polynomial, saigo-maeda operator, multivariable aleph-function, 
multivariable H-function, alephfunction, fractional derivative formulae, generalized leibniz rule.
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Abstract- The object of this paper is to derive three unified fractional derivatives formulae for the Saigo-Maeda operators of 
fractional integration. The first formula deals with the product of a general class of multivariable polynomials and the 
multivariable Aleph-function. The second concerns the multivariable polynomials and two multivariable Aleph-functions with 
the help of the Leibniz rule for fractional derivatives. The last relation also implies the product of a class of multivariable 
polynomials and the multivariable Aleph-function but it is obtained by the application of the first formula twice and it 
implicates two independents variables instead of one. The polynomials and the functions have their arguments of the type

are quite general nature. These formulae, besides being on very general character have been put in a compact 

form avoiding the occurrence of infinite series and thus making them put in applications. Our findings provide unifications 
and extensions of some (known and new) results. We shall give several corollaries and particular cases.



  

 

 
 

  

 

 
 

  
   

 

  
  

 

 
 

 
 

 
 

 
 

 
  

 
 

 
 

 

 
 

 
 

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function

The Appell hypergeometric function of the third type denoted  is defined by :

Recently, Agrawal [1], Soni and Singh [26], Ram and Suthar [20], Singh and Mandia [28] have studied several formulae
about  the  fractional  operator  involving  the  product  of  a  general  class  of  polynomials  of  one  variable  defined  by
Srivastava [29] and multivariable H-functions introduced by Srivastava and Panda [34,35]. In this paper, we shall obtain
three  results  that  give  the  theorems  of  the  product  of  two  multivariable  Aleph-functions  and  a  general  class  of
multivariable  polynomials [30] in Saigo-Maeda operators. 

The Aleph-function of several variables is an extension of  the multivariable I-function defined by Sharma and Ahmad
[25], itself is a generalization of G and H-functions of several variables defined by Srivastava et Panda [34,35]. The
multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariable Aleph-function of  
variables throughout our present study and will be defined and represented as follows (see Ayant [2]).

We have :      

                                 

     

with  

  

       
and

      

For more details, see Ayant [2]. The condition for absolute convergence of multiple Mellin-Barnes type contour  can be
obtained by extension of the corresponding Conditions for multivariable H-function given by as :
 

  ,   where
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with,  ,   ,                                                                                  

The complex numbers  are not zero.Throughout this document, we assume the existence and absolute convergence
Conditions of the multivariable Aleph-function. We may establish the asymptotic expansion in the following convenient
form :

     ,     

    ,      

where:   :  and 

                                                

We shall note:   = .

We define the Aleph-function of s-variable in the following manner :

    

and

     , 

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function

                    

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
  
er

sio
n 

I
V

III
Y
ea

r
20

18

39

  
 

( F
)

© 2018   Global Journals

Notes

(1.8)

(1.9)

(1.10)



  
 

  
 

 
  

 
   

 
 

 

 

For more details, see Ayant [2].   ,   where

    

with  ,   ,    
                                                                     

The complex numbers  are not zero. Throughout this document, we assume the existence and absolute convergence
Conditions of the multivariable Aleph-function. We may establish the asymptotic expansion in the following convenient
form :

      ,     

      ,      

where:   :  and 

                                            

    

We shall note:   = .

The generalized polynomials of multivariable defined by Srivastava [30], is given in the following manner :

 

                                                         
where  are arbitrary positive integers and the coefficients   are arbitrary constants,
real or complex. 

We shall note  

                                                                       

where 

where 

II. Lemma

Lemma 1.

Lemma 2.

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function
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We have the following results.

   

                                            

where

   

 

III. Main Results

a) Fractional derivative formula 1.

Theorem 1.

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function
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Provided that

  ,   where  is defined by (1.7).

 

To prove (3.1), we first express the general class of multivariable polynomials occurring on its left-hand side 
in series with the help of (1.12), replace the multivariable Aleph-function by its Mellin-Barnes integrals contour with
the help of (1.4), interchange the order of summations and  -integrals and taking the fractional derivative
Operator inside (which is permissible under the stated conditions) and make a little simplification. Next, we express the
Following  terms   so  obtained  regarding  Mellin-
Barnes integrals contour ([33], p. 18, eq.(2.6.4); p.10, eq.(2.1.1)). Now, interchanging the order of   and

-integrals (which is permissible under the stated conditions), and evaluating the -integral  with the help of
the lemma 1 and reinterpreting the multiple Mellin-Barnes integrals contour so obtained  regarding the Aleph-function
Of -variables, we get the desired formula (3.1) after algebraic manipulations.

                                                                                                     

   

Proof 

Theorem 2.

b) Fractional derivative formula 2

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function
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where
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Provided that

  ,   where  is defined by (1.7).

    ,   where  is defined by (1.11).

 

and the multiple series on the left-hand side of (3.8) converges absolutely.

To prove the second theorem, we take

 

and

 

in the left-hand side of the equation (3.8) and apply the following generalized Leibniz rule for the factional integrals

               

We obtain the second relation of fractional derivative after algebraic manipulations on making use of theorem 1 and the
result ([5],p. 91, eq. (6)).

Proof 

c) Fractional derivative formula 1.

Theorem 3.

Unified Fractional Derivative Formulae for the Multivariable Aleph-Function
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Provided that

  ,   where  is defined by (1.7).
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Proof of (3.16).
To prove the theorem 3; we use the fractional derivative formula one twice, first concerning the variable   and then
concerning the variable ; here  and  are independent variables.

The fractional derivative formulae 1, 2 and three established here are unified in nature and act as main formulae. Thus a
general  class  of polynomials involved in  fractional  derivative form 1, 2  and three reduces to a  wide spectrum of
polynomials listed by Srivastava and Singh ([36], pp. 158–161), and so from expressions 1, 2 and three we can further
obtain  various  fractional  derivative  expressions  involving  some  simpler  polynomials.  Again,  the  multivariable  H
-function occurring in these formulae can be suitably specialized to a remarkably wide variety of useful functions (or
product of several such functions) which are expressible in terms of E; F; G, H,  and I -functions of one, two or more
variables. For example, if   (or ), the multivariable H -function occurring in the left-
hand side of these formulae would reduce immediately to the product of r (or τ) different Fox's H-functions [4]. Thus
the table listing various particular  cases  of  the H -function ([16],  pp.  145–159) can be used to derive from these
fractional derivative forms some other fractional derivative formula involving any of these simpler special functions.
On reducing the operator to the Riemann–Liouville operator, we arrive at three fractional derivative formulae involving
these operators, but we do not record them here explicitly. Again, our theorems 1, 2 and three will also give rise in
essence to some other fractional derivative relation lying scattered in the literature (see [31], pp. 563–564, Eq. (2.1)–
(2.3), [32], pp. 644–645, Eq. (2.1)–(2.3)) on making suitable substitutions.

We have the following result,(see Soni and Singh [28] for more details).

where

 

 

Concerning the  corollaries, the class of multivariable polynomials   vanishes and the multivariable Aleph-
function reduces to Aleph-function of one variable defined by Sudland [3,38]. We shall use respectively the theorem 1
and theorem 2.

IV. Special
 

Cases and
 

Applications
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Provided that

        

 

Corollary 1.
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Corollary 2.
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Provided that

        

 

                       

 

We can give the similar theorems by applying the operator 
 
Remark: 

V. Conclusion

In this paper, we have obtained the theorems about generalized fractional derivative 
operators given by Saigo-Maeda. The images have been developed regarding the product of 
one or two multivariable Aleph-functions and a general class of multivariable polynomials 
in a compact and elegant form with the help of Saigo-Maeda operators. Most of the results 
obtained in this paper are useful in deriving definite composition formulae involving 
Riemann–Liouville, Erdelyi–Kober fractional calculus operators and multivariable Aleph-
functions. The findings of this paper provide an extension of the results given earlier by 
Kilbas, Kilbas and Saigo, Kilbas and Sebastian, Saxena et al. and Gupta et al. as
mentioned before.
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