

Variational Inequalities for Systems of Strongly Nonlinear Elliptic Operators of Infinite Order

By A. T. El-dessouky
Helwan University

Abstract- We are concerned with the existence of weak solutions of strongly nonlinear variational inequalities for systems of infinite order elliptic operators of the form:

$$A^r(u)(x) + B^r(u)(x), \quad x \in \Omega,$$

where

$$A(u)(x) = \sum (-1) |\alpha| \infty |\alpha| = \mathbf{0} \mathbf{D} \alpha A \alpha u(x),$$

$$(u)(x) \sum (-1) |\alpha| D \alpha B \alpha |\alpha| \leq M r(x, D \alpha u(x)), \quad M r \in \mathbb{N} \quad \text{fixed},$$

$$(x) |\partial \Omega = \mathbf{0}, |\omega| = 0, 1, 2, \dots,$$

Ω is a bounded domain in \mathbf{R}^N , $|\gamma| \leq |\alpha|$ and $r = 1, 2, \dots, m$.

We require that the coefficients A_α^r satisfy only some growth and coerciveness conditions and B_α^r obey a sign condition.

Keywords: systems of strongly nonlinear elliptic operators of infinite order-variational inequalities.

GJSFR-F Classification: MSC 2010: 11J89

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

R_{ef}

1. A. Benkirane, M. Chrif and S. El Manouni, Existence results for strongly nonlinear elliptic equations of infinite order, *Z. Anal. Anwend.* (J. Anal. Appl.)26, 2007, 303-313.

Variational Inequalities for Systems of Strongly Nonlinear Elliptic Operators of Infinite Order

A. T. El-dessouky

Abstract- We are concerned with the existence of weak solutions of strongly nonlinear variational inequalities for systems of infinite order elliptic operators of the form:

$$A^r(u)(x) + B^r(u)(x), x \in \Omega,$$

where

$$\begin{aligned} A^r(u)(x) &= \sum_{|\alpha|=0}^{\infty} |\alpha| \alpha A^r(x, D^\alpha u(x)), \\ (u)(x) &\sum_{|\alpha|=0}^{\infty} |\alpha| D^\alpha A^r(x, D^\alpha u(x)) \leq M(x, D^\alpha u(x)), M \in \mathbb{N} \text{ fixed}, \\ (x) &|\partial \Omega = 0, |\omega| = 0, 1, 2, \dots, \end{aligned}$$

Ω is a bounded domain in \mathbf{R}^n , $|\gamma| \leq |\alpha|$ and $r=1, 2, \dots, m$.

We require that the coefficients A_α^r satisfy only some growth and coerciveness conditions and B_α^r obey a sign condition.

Keywords: systems of strongly nonlinear elliptic operators of infinite order-variational inequalities.

I. INTRODUCTION

In a recent paper, Benkirane, Chrif and El-Manouni[1] considered the existence of solutions for strongly nonlinear elliptic equations of the form

$$\sum_{|\alpha|=0}^{\infty} (-1)^{|\alpha|} D^\alpha A_\alpha(x, D^\gamma u(x)) + g(x, u) = f(x), x \in \Omega, |\gamma| \leq |\alpha|$$

where A_α are assumed to satisfy polynomial growth and coerciveness

Conditions and g is strongly nonlinear in the sense that no growth condition is imposed but only a sign condition and $f \in L^1(\Omega)$. They relaxed the monotonicity condition, but we can't see this.

In this paper, we extend the result of[1] to the corresponding class of variational inequalities of the above system without assuming this condition.

II. FUNCTION SPACES

Let Ω be a bounded domain in \mathbf{R} ($N \geq 1$) having a locally Lipschitz property.

Let V be a closed linear subspace of $[W(\alpha_\alpha, p_\alpha)(\Omega)]^m$ such that

$$[W_0^k(\alpha_\alpha, p_\alpha)(\Omega)]^m \subseteq V \subseteq [W^k(\alpha_\alpha, p_\alpha)(\Omega)]^m$$

Author: Mathematics Department, Helwan University, Faculty of Science, Cairo, Egypt. e-mail: adeltohamy60@gmail.com

where $[W^k(a_\alpha, p_\alpha)(\Omega)]^m = \prod_{r=1}^m [W^k(a_{\alpha,r}, p_\alpha)(\Omega)]$, equipped with the norm

$$\|u\|_{k,p_\alpha}^{p_\alpha} = \sum_{r=1}^m \sum_{|\alpha|=0}^k a_{\alpha,r} \|D^\alpha u^r\|_{p_\alpha}^{p_\alpha}$$

and $[W_0^k(a_\alpha, p_\alpha)(\Omega)]^m = \overline{[C_0^\infty(\Omega)]^m}^{\parallel \parallel_{k,p_\alpha}}$

where $\{a_{\alpha,r}\}$ is an arbitrary sequence of nonnegative numbers and $p_\alpha > 1$.

Denote by $p'_\alpha = \frac{p_\alpha}{p_\alpha - 1}$, $|\alpha| \leq k$. Put $W = V \cap [W^{k+1}(a_\alpha, s_\alpha)(\Omega)]^m$, $s_\alpha > \max\{N, p_\alpha\}$.

W is furnished with the norm

$$\|\cdot\|_W = \max\{\|\cdot\|_V, \|\cdot\|_{k+1, s_\alpha}\}$$

By the Sobolev embedding theorem

$$[W^{k+1}(a_\alpha, s_\alpha)(\Omega)]^m \rightarrow [C^k(\bar{\Omega})]^m \quad (1)$$

Consider the m -product of Sobolev spaces of infinite order:

$$[W_0^\infty(a_\alpha, p_\alpha)(\Omega)]^m = \prod_{r=1}^m W_0^\infty(a_{\alpha,r}, p_\alpha)(\Omega)$$

$$\{u \in [C_0^\infty(\Omega)]^m : \|u\|_{\infty, p_\alpha}^{p_\alpha} = \sum_{r=1}^m \sum_{|\alpha|=0}^\infty a_{\alpha,r} \|D^\alpha u^r\|_{p_\alpha}^{p_\alpha} < \infty\},$$

$$[W^\infty(a_\alpha, p_\alpha)(\Omega)]^m = \{u \in [C^\infty(\Omega)]^m : \|u\|_{\infty, p_\alpha}^{p_\alpha} = \sum_{r=1}^m \sum_{|\alpha|=0}^\infty a_{\alpha,r} \|D^\alpha u^r\|_{p_\alpha}^{p_\alpha} < \infty\}$$

$$[W^{-\infty}(a_\alpha, p'_\alpha)(\Omega)]^m = \{h : h = \sum_{r=1}^m \sum_{|\alpha|=0}^\infty (-1)^{|\alpha|} a_{\alpha,r} D^\alpha h_\alpha^r; h_\alpha^r \in L^{p'_\alpha}(\Omega)\},$$

$$\|u\|_{-\infty, p'_\alpha}^{p'_\alpha} = \sum_{r=1}^m \sum_{|\alpha|=0}^\infty a_{\alpha,r} \|h_\alpha^r\|_{p'_\alpha}^{p'_\alpha} < \infty$$

The nontriviality of these spaces are discussed by Dubinskii in [5]. So we choose $a_\alpha = (a_{\alpha,r})_{r=1}^m$ such that the nontriviality of these spaces holds.

III. STRONGLY NONLINEAR VARIATIONAL INEQUALITIES OF FINITE ORDER

We start with the existence of weak solutions of strongly nonlinear variational inequalities for systems of the finite order elliptic operators:

$$\sum_{|\alpha|=0}^k (-1)^{|\alpha|} D^\alpha A_\alpha^r(x, D^\gamma u(x)) + \sum_{|\alpha| \leq M_r} (-1)^{|\alpha|} D^\alpha B_\alpha^r(x, D^\alpha u(x)), x \in \Omega, \quad (2)$$

To define the system (2) more precisely we introduce the following hypotheses:

A₁) $A_\alpha^r(x, \xi_\gamma) : \Omega \times \mathbb{R}^{N_0^1} \times \dots \times \mathbb{R}^{N_0^m} \rightarrow \mathbb{R}$ are carathéodory functions.

There exist a constant $c_0 > 0$, independent of k and a function $K_1^r \in L^{p'_\alpha}(\Omega)$ such that

$$|A_\alpha^r(x, \xi_\gamma)| \leq c_0 a_{\alpha,r} |\xi_\gamma^r|^{p_\alpha - 1} + K_1^r(x) \quad \forall x \in \Omega, \text{all } \xi_\gamma^r, \text{all } r = 1, 2, \dots, m, |\gamma| \leq |\alpha|$$

Ref

5. Yu. A. Dubinskii, Higher order parabolic differential equations, Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 37, 1990, 89-166.

where $\alpha > 0$, $p_\alpha > 1$ are real numbers.

A₂) There exists a constant c_1 , independent of k and a function $K_2 \in [L^1(\Omega)]^m$ Such that

$$\sum_{r=1}^m \sum_{|\alpha|=0}^k A_\alpha^r(x, \xi_\gamma) |\xi_\alpha|^r \geq c_1 \sum_{r=1}^m \sum_{|\alpha|=0}^k a_{\alpha,r} |\xi_\alpha|^r |p_\alpha| + K_2(x),$$

$$\forall \xi_\gamma^r, \xi_\alpha^r \in \mathbb{R}^{N_0^r}, |\gamma| \leq |\alpha|$$

Notes

B) $B_\alpha^r(x, \eta)$ are carathéodory functions defined for all $x \in \Omega$, all $\eta_\alpha^r \in \mathbb{R}^{N_1^r}$, each $r = 1, 2, \dots, m$ and α with $|\alpha| \leq M_r < k$ such that $B_\alpha^r(x, \eta) \eta_\alpha^r \geq 0$ and

$$\sup_{|\eta| \leq a} |B_\alpha^r(x, \eta)| \leq h_\alpha^r(x) \in L^1(\Omega)$$

Consider the nonlinear form

$$\begin{aligned} a(u, v) = \int_{\Omega} \sum_{r=1}^m \sum_{|\alpha|=0}^k A_\alpha^r(x, D^\gamma u(x)) D^\alpha v^r(x) dx + \\ \sum_{|\alpha| \leq M_r} B_\alpha^r(x, D^\alpha u(x)) D^\alpha v^r(x) dx \end{aligned}$$

which by A₁) and B) gives rise to a nonlinear mapping $S: K \cap W \rightarrow W^*$ such that

$$a(u, v) = (S(u), v) \quad (v \in K \cap W)$$

Theorem 1. Let the hypotheses A₁) - A₂) and B) be satisfied. Let K be a closed convex subset of V with $0 \in K$. Let $f \in V^*$ be given. Suppose that for some $R > 0$,

$$(S(v) - f, v) > 0 \quad \text{for all } v \in K \cap W, \|v\|_V = R,$$

Then there exists $u \in K \cap W, \|u\|_V \leq R$, such that

$$(S(u), v - u) \geq (f, v - u) \quad \text{for all } v \in K \cap W$$

Outline of proof.

Let Λ be the family of all finite dimensional linear subspaces F of W , which is a directed set under inclusion, and let F be provided with the norm $\|v\|_F = \|v\|_V$.

For each $F \in \Lambda$ let J_F be the injection mapping of F into W and $J_F^*: W^* \rightarrow F^*$ its adjoint.

In view of the compactness of the embedding (1) is easy to see that the the restriction of S to W is demicontinuous and moreover

$$(S_F(v) - f, v) > 0 \quad \text{for all } v \in F \cap K \quad \text{with } \|v\|_F = R.$$

Therefore by lemma 2 of [2] there exists $u_F \in F$ with $\|u_F\|_F \leq R$ such that

$$(S_F(u_F), v - u_F) - (J_F^* f, v - u_F) \geq 0 \quad \text{for all } v \in F \cap K \quad (3)$$

For any $F' \in \Lambda$, let $U_F = \{u_F : F \in \Lambda, F' \subset F, u_F \text{ as above}\}$. The family $\{(U_F) : F \in \Lambda\}$ has the finite intersection property and by the reflexivity of V , there exists

$$u \in \bigcap_{F' \in \Lambda} \{ \text{weak cl}_V (U_{F'}) \}$$

with $\|u\|_V \leq R$. Since $u \in \{ \text{weak } cl_V(\mathbf{U}_F) \}$, then for each $\mathbf{F}_0 \in \Lambda$ there exists a sequence $(F_n) \subset \Lambda$, whose union is dense in W , with $\mathbf{F}_0 \subset \mathbf{F}_1 \subset \dots$, and for each $n \in \mathbb{N}$ an element $u_n \in \mathbf{F}_n$ such that $u_n \rightarrow u$ weakly in V [proposition 11 of [3]]. Therefore for each $n \in \mathbb{N}$ we have from (3)

$$(S(u_n), v - u_n) - (f, v - u_n) \geq 0 \quad \text{for all } v \in \mathbf{F}_n \cap K \quad (4)$$

Setting $v = 0$ in (4) we conclude the uniform boundedness from above of the numerical sequence $\{(S(u_n), u_n)\}_{n \in \mathbb{N}}$. From the compactness of the embedding (1), we get

$$D^\alpha u_n(x) \rightarrow D^\alpha u(x) \text{ uniformly on } \bar{\Omega} \text{ for all } \alpha \text{ with } |\alpha| \leq k, \quad (5)$$

From A_1) and A_2), we obtain

$$\|u_n\|_{k, p_\alpha}^{p_\alpha} \leq c_2, \quad \int_{\Omega} |A_\alpha^r(x, D^r u_n(x))|^{p'_\alpha} \leq c_3.$$

From the inequality

$$|B_\alpha^r(x, \eta)| \leq \sup_{|\eta| \leq \delta^{-1}} |B_\alpha^r(x, \eta)| + \delta B_\alpha^r(x, D u_n(x)) D^\alpha u_n(x)$$

which is always true for each $\delta > 0, r = 1, 2, \dots, m$ and all α with $|\alpha| \leq k_r$.

For any measurable subset A of Ω , we get from B)

$$\int_A |B_\alpha^r(x, \eta)| dx \leq c_4 \quad (c_2 - c_4 \text{ are constants})$$

Now, allowing $n \rightarrow \infty$ in (4), taking these estimates into consideration as well as Vitali's and dominated convergence theorems and fatou's lemma, the proof follows.

IV. STRONGLY NONLINEAR VARIATIONAL INEQUALITIES OF INFINITE ORDER

Now we consider the existence of weak solutions of strongly nonlinear variational inequalities for systems of the infinite order elliptic operators:

$$\sum_{|\alpha|=0}^{\infty} (-1)^{|\alpha|} D^\alpha A_\alpha^r(x, D^r u(x)) + \sum_{|\alpha| \leq M_r} (-1)^{|\alpha|} D^\alpha B_\alpha^r(x, D^\alpha u(x)), x \in \Omega, \quad (6)$$

Theorem 2. Let the hypotheses A_1 - A_2) and B) be satisfied. Let K be a closed convex subset of $[W_0^\infty(\mathbf{a}_\alpha, \mathbf{p}_\alpha)(\Omega)]^m$ with $\mathbf{0} \in K$. Let $f \in [W^{-\infty}(\mathbf{a}_\alpha, \mathbf{p}'_\alpha)(\Omega)]^m$ be given. Then there exists at least one solution $u \in K$, such that

$$(A^r(u) + B^r(u), v^r - u^r) \geq (f^r, v^r - u^r), r \in \{1, 2, \dots, m\} \quad (7)$$

Proof. We adopt the ideas of [6]. Consider the auxiliary Dirichlet problem of order $2k$, which may be thought as the partial sum of the series (6):

$$(A_{2k}^r(u_k), v^r - u_k^r) + (B^r(u_k), v^r - u_k^r) \geq (f_k^r, v^r - u_k^r), v \in K \cap W, r \in \{1, 2, \dots, m\} \quad (8)$$

where

$$A_{2k}^r(u_k)(x) = \sum_{|\alpha|=0}^k (-1)^{|\alpha|} D^\alpha A_\alpha^r(x, D^r u_k(x)),$$

$$B^r(u_k)(x) = \sum_{|\alpha| \leq M_r < k} (-1)^{|\alpha|} D^\alpha B_\alpha^r(x, D^\alpha u_k(x))$$

Ref

6. A.T.El-dessouky, Variational inequalities of strongly nonlinear elliptic operators of infinite order, Publications de l'institut mathematique, Nouvelle serie tome(67),1993,81-87.

and

$$\mathbf{f}_k^r = \sum_{|\alpha|=0}^k (-1)^{|\alpha|} \mathbf{a}_{\alpha,r} \mathbf{D}^\alpha \mathbf{f}_\alpha^r \in \mathbf{W}^{-k}(\mathbf{a}_{\alpha,r}, \mathbf{p}'_\alpha)(\Omega)$$

The solvability of (8) in view of the hypotheses A₁)- A₂) and B) is a consequence of theorem1. Thus there exists $\mathbf{u}_k \in \mathbf{K} \cap \mathbf{W}$ solving (8).

One of the fundamental roles in finding the solution of (8) is played by the so called a priori estimates. By A₂) and B), we get

$$\|\mathbf{u}_k\|_{k,p_\alpha}^{p_\alpha} \leq c_2$$

Since $\mathbf{u}_k \in [\mathbf{W}^k(\mathbf{a}_\alpha, \mathbf{p}_\alpha)(\Omega)]^m$ Implies $\mathbf{u}_k \in [\mathbf{W}^1(\mathbf{a}_\alpha, \mathbf{p}_\alpha)(\Omega)]^m$ we get from the compactness of $[\mathbf{W}^1(\mathbf{a}_\alpha, \mathbf{p}_\alpha)(\Omega)]^m \rightarrow [\mathcal{C}(\bar{\Omega})]^m$, the uniform convergence of $\mathbf{u}_k(\mathbf{x}) \rightarrow \mathbf{u}(\mathbf{x})$ on $\bar{\Omega}$ as $k \rightarrow \infty$.

Similarly, by the compactness of $[\mathbf{W}^k(\mathbf{a}_\alpha, \mathbf{p}_\alpha)(\Omega)]^m \rightarrow [\mathcal{C}^{k-\ell}(\bar{\Omega})]^m$, for large enough k and $\ell \in \mathbb{N}$, we have $\mathbf{D}^\alpha \mathbf{u}_k(\mathbf{x}) \rightarrow \mathbf{D}^\alpha \mathbf{u}(\mathbf{x})$ uniformly on $\bar{\Omega}$ as $k \rightarrow \infty$.

By the definition of $[\mathbf{W}_0^\infty(\mathbf{a}_\alpha, \mathbf{p}_\alpha)(\Omega)]^m$, we get $\mathbf{u} \in [\mathbf{W}_0^\infty(\mathbf{a}_\alpha, \mathbf{p}_\alpha)(\Omega)]^m$ and by closedness of \mathbf{K} , $\mathbf{u} \in \mathbf{K}$. It remains to show that \mathbf{u} is a solution of (7). For this aim it suffices to prove the following assertions:

$$\lim_{k \rightarrow \infty} (\mathbf{A}_{2k}^r(\mathbf{u}_k), \mathbf{z}^r) = (\mathbf{A}^r(\mathbf{u}), \mathbf{z}^r) \quad (9)$$

$$\lim_{k \rightarrow \infty} (\mathbf{B}^r(\mathbf{u}_k), \mathbf{z}^r) = (\mathbf{B}^r(\mathbf{u}), \mathbf{z}^r) \quad (10)$$

$$\liminf_{k \rightarrow \infty} (\mathbf{A}_{2k}^r(\mathbf{u}_k), \mathbf{u}_k^r) \geq (\mathbf{A}^r(\mathbf{u}), \mathbf{u}^r) \quad (11)$$

$$\liminf_{k \rightarrow \infty} (\mathbf{B}^r(\mathbf{u}_k), \mathbf{u}_k^r) \geq (\mathbf{B}^r(\mathbf{u}), \mathbf{u}^r) \quad (12)$$

for all $\mathbf{z} \in \mathbf{K}$, $r = 1, 2, \dots, m$.

As above, (9) and (10) are consequence of the uniform boundedness of

$$\{\sum_{r=1}^m \sum_{|\alpha|=0}^k \mathbf{A}_\alpha^r(\mathbf{x}, \mathbf{D}^\alpha \mathbf{u}_k) \mathbf{D}^\alpha \mathbf{u}_k\}_{k \in \mathbb{N}}, \quad \{\sum_{r=1}^m \sum_{|\alpha|=0}^{M_r} \mathbf{B}^r(\mathbf{x}, \mathbf{D}^\alpha \mathbf{u}_k) \mathbf{D}^\alpha \mathbf{u}_k\}_{k \in \mathbb{N}}$$

and uniform equi-integrability of

$$\{\sum_{r=1}^m \sum_{|\alpha|=0}^k \mathbf{A}_\alpha^r(\mathbf{x}, \mathbf{D}^\alpha \mathbf{u}_k)\}, \quad \{\sum_{r=1}^m \sum_{|\alpha|=0}^{M_r} \mathbf{B}^r(\mathbf{x}, \mathbf{D}^\alpha \mathbf{u}_k)\} \text{ in } [L^1(\Omega)]^m$$

in view of Vitali's and dominated convergence theorems as well as (5). Assertions (11) and (12) are direct consequences of Fatou's lemma and (5).

Example. As a particular example which can be handled by our result but fails outside the scope of [4], we consider the nonlinear system

$$\begin{cases} \sum_{j=0}^{\infty} \sum_{|\alpha|=j} (-1)^{|\alpha|} D^\alpha (a_{\alpha,1} |D^\alpha u_1|^{p_\alpha-2} D^\alpha u_1) + h_1(x) |u_2| e^{|u_2|} \\ \sum_{j=0}^{\infty} \sum_{|\alpha|=j} (-1)^{|\alpha|} D^\alpha (a_{\alpha,2} |D^\alpha u_2|^{p_\alpha-2} D^\alpha u_2) + h_2(x) |u_1| e^{|u_1|} \end{cases}$$

$(h_i(x))_{i=1}^2$ are arbitrary nonnegative $L^1(x)$ -functions, $\mathbf{u} = (u_1, u_2)$.

Notes

REFERENCES RÉFÉRENCES REFERENCIAS

1. A. Benkirane, M. Chrif and S. El Manouni, Existence results for strongly nonlinear elliptic equations of infinite order, Z.Anal. Anwend.(J.Anal. Appl.)26, 2007, 303-313.
2. F. E. Browder: On the unification of the calculus of variation and the theory of monotone nonlinear operators in Banach spaces. Proc.Nat.Acad.Sc.U.S.A.,56, 1966, 419-425.
3. F. E. Browder, and P. Hess: Nonlinear mappings of monotone type in Banach spaces. J. of Functional Analysis Appl.43, 1973, 241-249.
4. Yu. A. Dubinskii, Sobolev spaces of infinite order and the behavior of solutions of some boundary-value problems with unbounded increase of the order of the equation, Math. USSR Sbornik 72, 1972, 143-162.
5. Yu. A. Dubinskii, Higher order parabolic differential equations, Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol.37,1990,89-166.
6. A.T.El-dessouky, Variational inequalities of strongly nonlinear elliptic operators of infinite order, Publications de l'institut mathematique, Nouvelle serie tome(67),1993,81-87.

