

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F
MATHEMATICS AND DECISION SCIENCES
Volume 18 Issue 1 Version 1.0 Year 2018
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

A Volume Preserving Map from Cube to Octahedron

By Adrian Holhoş

Universitatea Tehnică din Cluj-Napoca

Abstract- Using simple geometric reasoning we deduce a volume preserving map from the cube to the octahedron.

GJSFR-F Classification: MSC 2010: 00A69

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

A Volume Preserving Map from Cube to Octahedron

Adrian Holhoş

Abstract- Using simple geometric reasoning we deduce a volume preserving map from the cube to the octahedron.

I. PRELIMINARIES

Consider the cube $\mathbb{C} = [-1, 1]^3$ centered at the origin O and the regular octahedron \mathbb{K} of the same volume, centered at O and with vertices on the coordinate axes

$$\mathbb{K} = \{(x, y, z) \in \mathbb{R}^3, |x| + |y| + |z| \leq a\}.$$

Let L denote the edge of \mathbb{K} . Since the volume of the octahedron \mathbb{K} is $\sqrt{2}L^3/3$, and this is equal to the volume of the cube \mathbb{C} , we have $8 = \sqrt{2}L^3/3$. Then, the distance from the origin to each vertex of \mathbb{K} is

$$a = L/\sqrt{2} = \sqrt[3]{6}. \quad (1)$$

We will construct a map $\mathcal{U}: \mathbb{C} \rightarrow \mathbb{K}$ which preserves the volume, i.e.

$$\text{Volume}(D) = \text{Volume}(\mathcal{U}(D)), \quad \text{for all } D \subseteq \mathbb{C},$$

where $\text{Volume}(D)$ denotes the volume of a domain D . For an arbitrary point $(x, y, z) \in \mathbb{C}$ we denote

$$(X, Y, Z) = \mathcal{U}(x, y, z) \in \mathbb{K}.$$

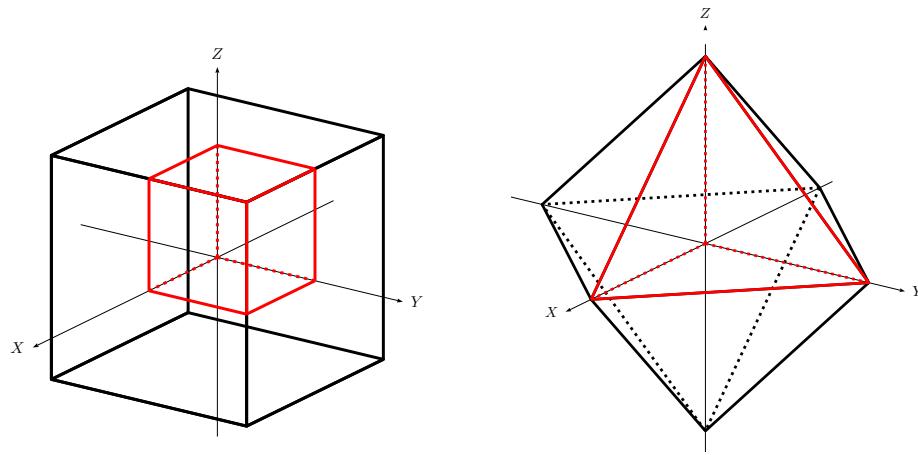


Figure 1: In the left, the cube \mathbb{C} in black and the little cube \mathbb{C}^1 from the positive octant in red. In the right, the octahedron \mathbb{K} in black and the tetrahedron K^1 in red

For the construction of \mathcal{U} , we split the cube into eight congruent cubes separated by the coordinate planes XOY , YOZ and ZOX , and thus, the construction of \mathcal{U} can be reduced to the construction of its restriction to one of these cubes. We will denote \mathbb{C}^1 the eight part of \mathbb{C} situated in the positive octant. We will denote by \mathbb{K}^1 the part of \mathbb{K} situated in the positive octant. The map \mathcal{U} will be constructed in such a way that \mathbb{C}^1 will be mapped in \mathbb{K}^1 and all the other seven cubes of \mathbb{C} will be mapped to the corresponding tetrahedrons of \mathbb{K} .

II. CONSTRUCTION OF THE VOLUME PRESERVING MAP \mathcal{U}

We focus on the region \mathbb{C}^1 of \mathbb{C} situated in the positive octant

$$I_0^+ = \{(x, y, z) \in \mathbb{R}^3, x \geq 0, y \geq 0, z \geq 0\},$$

and we denote the vertices of the cube \mathbb{C}^1 as follows: $A = (1, 0, 0)$, $B = (1, 1, 0)$, $C = (0, 1, 0)$, $D = (0, 1, 1)$, $E = (0, 0, 1)$, $F = (1, 0, 1)$ and $G = (1, 1, 1)$, see Figure 2 (left). We also consider the following points in $\mathbb{K}^1 = \mathbb{K} \cap I_0$: $A' = (a, 0, 0)$, $B' = (a/2, a/2, 0)$, $C' = (0, a, 0)$, $D' = (0, a/2, a/2)$,

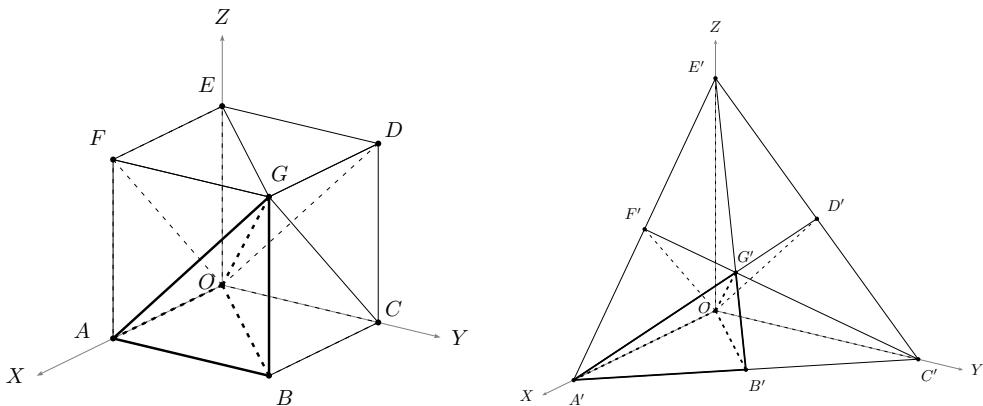


Figure 2: The cubical region \mathbb{C}^1 and its image \mathbb{K}^1

Notes

$E' = (0, 0, a)$, $F = (a/2, 0, a/2)$ and $G' = (a/3, a/3, a/3)$, see Figure 2 (right). We split the region \mathbb{C}^1 into six tetrahedrons of equal volume:

$$\begin{aligned} OABG &= \{(x, y, z) \in I_0, 1 \geq x \geq y \geq z \geq 0\}, \\ OBCG &= \{(x, y, z) \in I_0, 1 \geq y \geq x \geq z \geq 0\}, \\ OCDG &= \{(x, y, z) \in I_0, 1 \geq y \geq z \geq x \geq 0\}, \\ ODEG &= \{(x, y, z) \in I_0, 1 \geq z \geq y \geq x \geq 0\}, \\ OEGF &= \{(x, y, z) \in I_0, 1 \geq z \geq x \geq y \geq 0\}, \\ OFAG &= \{(x, y, z) \in I_0, 1 \geq x \geq z \geq y \geq 0\}. \end{aligned}$$

They will be mapped onto the tetrahedrons $OA'B'G'$, $OB'C'G'$, $OC'D'G'$, $OD'E'G'$, $OE'F'G'$ and $OF'A'G'$, respectively.

We focus on the region $OABG$ and the corresponding region $OA'B'G'$

$$OA'B'G' = \{(X, Y, Z) \in \mathbb{R}^3 \mid 0 \leq Z \leq Y \leq X, X + Y + Z \leq a\}.$$

Consider a point $M(x, y, z)$ in $OABG$ and the corresponding point $M'(X, Y, Z)$ through the map \mathcal{U} . Consider the plane π_1 through M parallel with the plane ABG and P the point of intersection of π_1 with OA . Suppose this plane is mapped in the plane π'_1 through M' parallel with $A'B'G'$ and P' is the corresponding point on OA' , the intersection of the plane π'_1 with OA' .

The ratio of the volumes of the two pyramids with the same vertex O and the bases on the planes π_1 and ABG must be equal with the ratio of the volumes of the two pyramids with the same vertex O and the bases on the planes π'_1 and $A'B'G'$ and equal with the cube of the ratio OP/OA and equal with the cube of the ratio OP'/OA' . We obtain

$$OP' = OA' \cdot OP,$$

which is equivalent with

$$X + Y + Z = ax. \quad (2)$$

Consider the plane π_2 through M parallel with the plane OBG and Q the point of intersection of π_2 with OA . Suppose this plane is mapped in the plane π'_2 through M' parallel with $OB'G'$ and Q' is the corresponding point on OA' , the intersection of the plane π'_2 with OA' .

The ratio of the volumes of the two pyramids with the same vertex A and the bases on the planes π_2 and OBG must be equal with the ratio of the volumes of the two pyramids with the same vertex A' and the bases on the planes π'_2 and $OB'G'$ and equal with the cube of the ratio AQ/AO and equal with the cube of the ratio $A'Q'/A'O$. We obtain

$$A'Q' = OA' \cdot AQ,$$

which is equivalent with $OQ' = a \cdot OQ$. We obtain

$$X - Y = a(x - y). \quad (3)$$

Consider the plane π_3 through M parallel with the plane OAG and R the point of intersection of π_3 with AB . Suppose this plane is mapped in the plane π'_3 through M' parallel with $OA'G'$ and R' is the corresponding point on $A'B'$, the intersection of the plane π'_3 with $A'B'$.

The ratio of the volumes of the two pyramids with the same vertex B and the bases on the planes π_3 and OAG must be equal with the ratio of the volumes of the two pyramids with the same vertex B' and the bases on the planes π'_3 and $OA'G'$ and equal with the cube of the ratio BR/BA and equal with the cube of the ratio $B'R'/B'A'$. We obtain

$$B'R' = A'B' \cdot BR,$$

which is equivalent with $A'R' = \frac{a\sqrt{2}}{2} \cdot AR$. We obtain

$$Y - Z = \frac{a\sqrt{2}}{2} \cdot \frac{(y - z)\sqrt{2}}{2} = \frac{a}{2}(y - z). \quad (4)$$

Solving the system of the three equations (2), (3) and (4), we obtain

$$X = ax - \frac{a}{2}y - \frac{a}{6}z$$

$$Y = \frac{a}{2}y - \frac{a}{6}z$$

$$Z = \frac{a}{3}z,$$

where the value of a is specified by (1).

More general, the equations for all eight octants can be obtain in the following way: let

$$M = \max(|x|, |y|, |z|)$$

$$M' = \max(|X|, |Y|, |Z|)$$

$$m = \min(|x|, |y|, |z|)$$

$$m' = \min(|X|, |Y|, |Z|)$$

$$c = |x| + |y| + |z| - M - m$$

$$c' = |X| + |Y| + |Z| - M' - m'.$$

Using the same reasoning we obtain the following system of equations

$$|X| + |Y| + |Z| = a \cdot M$$

$$M' - c' = a \cdot (M - c)$$

$$c' - m' = \frac{a}{2} \cdot (c - m)$$

with the solution

$$M' = aM - \frac{a}{2}c - \frac{a}{6}m$$

$$c' = \frac{a}{2}c - \frac{a}{6}m$$

$$m' = \frac{a}{3}m.$$

Notes

III. APPLICATIONS

A volume preserving map can be useful in some statistics applications and for a decomposition of a 3D solid into smaller elements of equal volume.

For example, if we start with a uniform distribution of points in the solid cube we can obtain a uniform distribution of points in the solid octahedron (see [1] and the references therein, for a similar application in the case of planar domains).

For a cube is easy to obtain a uniform grid, a grid with all the elements having the same volume. By applying the map \mathcal{U} we get a uniform grid for the octahedron. Using the map constructed in [2] we obtain a uniform grid for the ball. This method to obtain a uniform grid in the ball is different than the method described in [3].

REFERENCES RÉFÉRENCES REFERENCIAS

Ref
2. A. Holhoş, D. Roşca (2017), Area preserving maps and volume preserving maps between a class of polyhedrons and a sphere, *Adv. Comput. Math.*, 43, 677–697.

1. Holhoş (2017), Two Area Preserving Maps from the Square to the p -Ball, *Math. Model. Anal.*, 22, 157–166.
2. A. Holhoş, D. Roşca (2017), Area preserving maps and volume preserving maps between a class of polyhedrons and a sphere, *Adv. Comput. Math.*, 43, 677–697.
3. D. Roşca, A. Morawiec and M. De Graef (2014), *A new method of constructing a grid in the space of 3D rotations and its applications to texture analysis*, *Modelling Simul. Mater. Sci. Eng.* 22, 075013 (17pp).

Notes

This page is intentionally left blank