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Abstract-

 

The stars of the middle main sequence often have 
spot-like chemical structures at

 

their surfaces. We consider 
diffusion caused by electric currents and argue that such

 

current-driven diffusion can form chemical in

 

homogeneities in 
plasma. Diffusion

 

was considered using partial momentum 
equations derived by the Chapman-Enskog

 

method. We argue 
that diffusion caused by electric currents can substantially 
change

 

the surface chemistry of stars and form spotted 
chemical structures even in a relatively

 

weak magnetic field. 
The considered mechanism can be responsible for a

 

formation of element spots in Hg-Mn and Ap-stars. Diffusion in 
the presence of

 

electric currents can be accompanied by 
propagation of a particular type of magneto

 

hydrodynamic

 

modes in which only the impurity number density oscillate. 
Such modes exist if the magnetic pressure is much greater 
than the gas pressure and can

 

be the reason of variations of 
the abundance peculiarities in stars.

 

Keywords:
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I.

 

Introduction

 
he stars of the middle main sequence often have 
relatively quiescent surface layers,

 

and the 
abundance peculiarities can develop in their 

atmospheres since, in general,

 

there are physical 
processes that lead to evolution of atmospheric 
chemistry during

 

the main sequence lifetime. Chemical 
composition can evolve in the atmospheres of

 

such 
stars, for example, because of loss of heavy ions 
caused by gravitational settling.

 

Also, the atmosphere 
can acquires ions driven upwards by radiative 
acceleration due

 

to the radiative energy flux (see 
Michaud 1970, Michaud et. al. 1976, Vauclair et al.

 

1979, 
Alecian & Stift 2006). Many stars with peculiar chemical 
abundances show

 

line-profile variations caused by 
element spots on their surface (see, e.g., Pyper 1969,

 

Khokhlova 1985, Silvester et al. 2012). The exact 
reasons of inhomogeneous surface

 

distributions on 
stars are unknown. It was thought that chemical spots 
can only

 

occur in the presence of a strong organized 
magnetic field. Indeed, some stars exhibit

 

the presence 
of such magnetic fields. For example, Ap stars show 
variations of both

 

spectral lines and magnetic field 
strength that can be caused by rotation of chemical

 

and 
magnetic spots. Often such stars have the strongest 
concentration of heavy

 

elements around the magnetic 
poles (see, e.g., Havnes 1975). A reconstruction of the

 

stellar magnetic geometry from observations is a very 
complex problem for decade. The magnetic Doppler 
imaging code developed by Piskunov & Kochukhov 
(2002) makes it possible to derive the magnetic map of 
a star self-consistently with the distribution of chemical 
elements. The reconstructions show that the magnetic 
and chemical maps can be extremely complex 
(Kochukhov et al. 2004a). For instance, Kochukhov et al. 
(2004b) have found that almost all elements (except, 
may be, Li and O) of the Ap-star HR 3831 do not follow 
the symmetry of the dipolar magnetic field but are 
distributed in a rather complex manner. The calculated 
distributions demonstrate the complexity of diffusion in 
Ap-stars and discard a point of view that diffusion leads 
to a formation of the chemical spots symmetric with 
respect to the londitudinal magnetic field (Kochukhov 
2004). Likely, chemical distributions are affected by a 
number of poorly understood phenomena in the surface 
layers of stars. 

Often, a formation of the chemical spots is 
related to anisotropic diffusion in a strong magnetic 
field. Indeed, the magnetic field of Ap-stars ( 103−104G) 
can magnetize electrons in plasma that, generally, leads 
to anisotropic transport. Anisotropy of diffusion in a 
magnetized plasma is characterized by the the Hall 
parameter, , where is the 
gyrofrequency of electrons and is their relaxation 
time; B is the magnetic field. If the base                           
ground plasma is presumably hydrogen, then                                                       

 
 

 
 

 
 

                      (1) 

where , and . 
Some Ap-stars that exhibit spot-like chemical structures 
have a sufficiently strong magnetic field that satisfies 
this condition. Note, however, that the magnetic field (1) 
magnetizes only electrons and, as a result, its effect on 
diffusion of heavy ions is relatively weak. Perhaps, a 
much stronger field that magnetizes protons is required 
in order to produce strong chemical in homogeneities in 
stars. In this case, one requires 1 where                            

is the Hall parameter for protons and                    

T 
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∼

xe = ωBeτe ωBe = eB/mec
τe

    (see, e.g., Spitzer 
1998) where and are the number density of electrons 
and their temperature, is the Coulomb logarithm. At 

1, the rates of diffusion along and across the 
magnetic field become different. The condition 1
yields the following estimate of the magnetic field that 
magnetizes plasma

τe= 3
√
me(kbT )

3/2/4
√
2πe4n Λ

n T
Λ xe

≥
xe ≥

B ≥ Be = 2.1× 103Λ10n15T
−3/2
4 G,

10= Λ/10, n15=n/1015Λ T4=T/104K

y >
y=eBτp/mpc



is the  relaxation 
time for protons (see, e.g., Spitzer 1998). The condition 

1 yields   

(2) 

Such field is substantially stronger than the field 
detected at the surface of Ap-stars. 

In recent years, the discovery of chemical 
inhomogeneities in the so-called Hg-Mn stars has rised 
additional doubts regarding the magnetic origin of these 
inhomogeneities. The aspect of inhomogeneous 
distribution of some chemical elements over the surface 
of HgMn stars was discussed first by Hubrig & Mathys 
(1995). In contrast to Ap-stars, no strong large-scale 
madnetic field of kG order has ever been detected in 
HgMn stars. For instance, Wade et al. (2004) find no 
longitudinal field above 50 G in the brightest Hg-Mn star 

And with distributed inhomogeneously chemical 
elements. The authors also establish an upper limit of 
the global field at ≈ 300 G that is obviously not sufficient 
to magnetize plasma. Weak magnetic fields in the 
atmospheres of Hg-Mn stars have been detected also 
by a number of authors (see, e.g., Hubrig & Castelli 
2001, Hubrig et al. 2006, Makaganiuk et al. 2011, 2012). 
In a recent study by Hubrig et al. (2012), the previous 
measuments of the magnetic field have been re-
analysed and the presence of a weak longitudinal 
magnetic field up to 60-80 G has been revealed in 
several HgMn stars. On the other hand, magnetic fields 
up to a few hundred Gauss have been detected in 
several HgMn stars (see, e.g., Mathys & Hubrig 1995). 
Measurements by Hubrig at al. (2010) reveal a 
longitudinal magnetic field of the order of a few hundred 
Gauss in the spotted star AR Aur. The complex 
interrelations between the magnetic field and the 
chemical structures clearly indicate how incomplete is 
our understanding of diffusion in stars. 

In this paper, we consider one more diffusion 
process that can be responsible for a formation of 
chemical inhomogeneities in stars. This process is 
relevant to electric currents and well studied in a 
laboratory plasma (see, e.g., Vekshtein et al. 1975) but 
have not been considered in detail in stellar conditions. 
By making use of a simple model, we show in this paper 
that interaction of the electric currents with different sorts 
of ions leads to their diffusion in the direction 
perpendicular to both the electric current and magnetic 
field. This type of diffusion can alter the surface 
chemical distributions even if the magnetic field is 
substantially weaker than Be. 

II. Basic Equations 

Consider a cylindrical plasma configuration with 
the magnetic field parallel to the axis 
( ) and ( )  are  cylindrical coordinates 
and the

 

corresponding unit vectors. The electric current 
in such configuration is

 

(3)

 

We suppose that 

 

0 at large s and, hence,                

 

=const at . Note that  can not be 
arbitrary function of s because, generally, the magnetic 
configurations

 

can be unstable for some dependences 
B(s)

 

(see, e.g., Tayler 1973, Bonanno

 

& Urpin 2008a,b). 
The characteristic timescale of this instability is usually 
of the

 

order of the time taken for an Alvén wave to travel 
around the star that is much

 

shorter than the diffision 
timescale. Therefore, a formation of chemical structures 
in

 

such magnetic configurations is impossible. Note 
that, in some cases, the considered

 

configuration can 
mimic real magnetic fields with a high accuracy. This is 
valid, for

 

example, for the magnetic field near the 
magnetic pole where the fild lines are very

 

close to a 
cylindrical geometry (see, e.g., Urpin & Van Riper 1993).

 

We assume that plasma is fully ionized and 
consists of electrons e, protons p, and

 

a small 
admixture of heavy ions i. The number density of 
species i

 

is small and does

 

not influence the dynamics 
of plasma. Therefore, these ions can be treated as trace

 

particles interacting only with a background hydrogen 
plasma. The hydrostatic

 

equilibrium in such plasma is 
given by

 
(4)

 
where 

 

is the gas pressure, 

 

is the density, and is 
an external force acting on

 

plasma. Since the 
baseground plasma is hydrogen and fully ionized,                  

where is the Boltzmann constant. In 
stellar conditions, is usually the sum of

 

two forces, 
, where 

 

is  the  gravity 
force and 

 

is caused by

 

radiative acceleration due 
to the radiative energy flux from the interior. We assume

 

that the both external forces and act in the 
vertical direction. Then, the z-component of Eq.

 

(4) 
determines the vertical distribution of a background 
plasma

 

and reads . The s-component of 
these equation describes the transverse

 

structure of a 
magnetic atmosphere. For the sake of simplicity, we 
consider the

 

case =const and neglect the contribution 
of thermodiffusion. Integrating the scomponent

 

of Eq. 
(4), we obtain

 
(5)

 
where 

 

are the values of 
( ) at . 

The

 

partial momentum equations in fully ionized 
multi

 

component plasma have

 

been considered by a 
number of authores (see, e.g., Urpin 1981). This study 
deals

 

mainly with the hydrogen-helium plasma. 
However, the derived equations can be

 

applied for 
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τp = 3
√
mp(kBT )

3/2/4
√
2πe4nΛ

y >

B > Bp = 105n15T
−3/2
4 Λ10 G.

α

z, ~B = B(s)~ez ;
s, ϕ, z ~es, ~eϕ, ~ez

jϕ = −(c/4π)(dB/ds).

jϕ→
B→B0 s→ ∞ B(s (

−∇p+ ~F +
1

c
~j × ~B = 0,

p ρ ~F

p≈ 2nkBT kB
~F

~F = ~Fg + ~Frad
~Fg = ρ~g

~Frad

~Fg
~Frad

∂p/∂z=Fz

T

n = n0

(

1 + β−1
0 − β−1

)

,

β= 8πp0/B
2; (p0, n0, T0, β0

p, n, T, β s → ∞

hydrogen plasma with a small admixture of any other 
ions if their number density is small. If the mean 
hydrodynamic velocity of plasma is zero and only small
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diffusive velocities are non-vanishing, the partial 
momentum equation for the species

 

i

 

reads

 

 
(6)

 where is the charge number of the species and 
are its partial pressure and

 

number density, is the 
electric field in plasma, and is the diffusion velocity.

 
Since diffusive velocities are usually very small, we 
neglect the terms proportional in the 
momentum equation (6). The force is the external 
force on

 

species ; in stellar conditions, is the sum 
of gravitational and radiative forces.

 

The forces 

 
and 

 

are caused by the interaction of ions with 
electrons and

 

protons, respectively. Note that forces 
and

  

are internal, but the sum of

 

internal 
forces over all plasma components is zero in 
accordance with Newton’s third law. If is small

 
compared to the number density of protons, 

 

is 
given by

 
(7)

 where is the force acting on the electron gas (see, 
e.g., Urpin 1981). Since is determined mainly 
by scattering of electrons on protons but scattering on 
ions

  

gives a small contribution to . Therefore, we 
can use for the expression

 

for hydrogen plasma 
calculated by Braginskii (1965). In our model of 
isothermal

 

plasma, the expression for reads

 (8)

 where 

  

is the current velocity of electrons; 

                 
; the subscripts and 

 

denote the 
parallel, perpendicular, and the so called Hall 
components of the

 

corresponding vector; 

 

and 

 
are the coefficients calculated by Braginskii

 

(1965). 
Taking into account Eq.(3), we have

 
(9)

 Since

   

in our model, we have = 0. 
In this paper, we consider diffusion

 

only in a relatively 
weak magnetic field that does not magnetize electrons, 

 1. Substituting Eq.(8) into Eq.(7) and using 
coefficients 

 

and 

 

calculated by

 

Braginskii (1965)

 
with the accuracy in linear terms in , we obtain

 

(10)
 

If  =const, the friction force  is 
proportional to the relative velocity of ions i and protons. 
Like (see Eq.(8)), this force also has a tensor 
character and, generally, depends on the magnetic field. 

The force  has an especially simple shape 
if  1 (see Urpin 1981) and we consider only 
this case. We neglect the influence of the magnetic field 
on  since this influence becomes important only in 
a strong magnetic field . Taking into account that 
the velocity of the background plasma is zero, = 0, 
the friction force  can be written as 

(11) 

where is the 
timescale of ion-proton scattering; we assume that is 
the same for all types of scattering (see, e.g., Urpin 
1981). 

III. Diffusion Velocity 

The cylindrical components of Eq.(6) yield 

 

(12)

 

(13)

 
 (14)

 

In our simplified magnetic configuration, we 
have = 0. Eqs.(12)-(14) depend on cylindrical 
components of the electric field, , and  These 
components can be determined from the momentum 
equations for electrons and protons 

(15)

 

(16) 

In these equations, we neglect collisions of 
electrons and protons with the ions 

 
since

 
these ions 

are considered as the test particles and their number 
density is assumed to

 
be small. The sum of Eqs.(15) 

and (16) yield the equation of hydrostatic equilibrium
 
(4). 

The difference of Eqs.(16) and (15) yields the following 
expression fo the electric

 
field

 

(17)
 

Taking into account the friction force (Eq. 
(8)) and the coefficients 

 

and , calculated by 
Braginskii (1965), we obtain with accuracy in linear 
terms in  
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−∇pi+Zieni



~E +
~Vi

c
× ~B



+ ~Rie+ ~Rip+ ~Fi = 0,

Zi i,pi ni
~E

~Vi

(~Vi · ∇)~Vi
~Fi

i ~Fi ~Rie
~RiH i

~Rie
~RiH

ni
~Rie

~Rie = −(Z2
i ni/n)~Re

~Re
ni≪n, ~Re

i ~Re
~Re

~Re

~Re = −α‖~u‖ − α⊥~u⊥ + α∧
~b× ~u,

~u = −~j/en
~b = ~B/B ‖, ⊥, ∧

α‖, α⊥ α∧

~u = (c/4πen)(dB/ds)~eϕ.

~B ⊥ ~u ~u‖

xe ≪
α⊥ α∧

xe

Rieϕ=Z2
i ni

(

0.51
me

τe
u
)

, Ries=Z
2
i ni

(

0.21x
me

τe
u
)

.

~RipT

~Re

~Rip

Ai=mi/mp≫
~Rip ≥ Bp

~Vp
~Rip

~Rip = (0.42miniZ
2
i /τi)(−~Vi),

τi 3
√
mi(kBT )

3/2/4
√
2πe4nΛ; τi/Z

2
i=

Λ

− d

ds
(nikBT ) +Zieni

(

Es+
Viϕ

c
B
)

+Ries+Rips= 0,

Zieni

(

Eϕ−
Vis

c
B
)

+Rieϕ+Ripϕ= 0,

− d

dz
(nikBT ) +ZieniEz+Riez+Ripz+Fiz= 0.

Riez

Es,Eϕ Ez .

−∇(nkBT )−en ~E +
~u

c
× ~B

)

+ ~Re+ ~Fe = 0,

)

−∇(nkBT ) + en~E − ~Re + ~Fp = 0.

i

~E= −1

2

~u

c
× ~B +

~Re

en
− 1

2en
(~Fp− ~Fe).

~Re
α⊥ α∧

xe

Es=−uB

2c
− 1

e

(

0.21
meu

τe
xe

)

Eϕ=−1

e

(

0.51
meu

τe

)

,,
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Substituting Eqs.(7) and (19) into vertical 
component of the momentum equation

 

(15), we obtain 
the following expression for the velocity of vertical 
diffusion

 

(19)
 

where is the diffusion coefficient, 
                  

, and

 

(20) 

Often, radiative acceleration due to the radiative 
energy flux and gravitational settling give the main 
contribution to the external force (Michaud et al. 
1976). The diffusion velocity caused by these forces can 
be relatively large and, therefore, the vertical diffusion 
often is faster than diffusion in the tangential direction 
parallel to the surface. As a result, the vertical 
distribution of chemical elements reaches a quasi-
steady equilibrium on a relatively short timescale. We will 
show, however, that the horizontal diffusion can form 
spots faster than the vertical diffusion if the magnetic 
field is weak. 

The tangential components of the difusion 
velocity can be obtained from Eqs. (13) and (14). Taking 

into acount Eq. (12) for , one can transform Eqs. 
(13)-(14) into 

 (21) 

where 

(22)
 

(23)
 

Then, the diffusion velocities in the - and -
directions are

 

  

(24) 

The parameter is of the order of and is 
small even for magnetic fields typical

 
for Ap-stars. Then, 

we
 
have for 

 

(25)
 

Substituting Eqs. (10) and (19) into expressions 
(23)-(24) for A

 
and G, we obtain

 
the following 

expressions for the diffusion velocities
 

 (26) 

 
 (27)

 

 is the velocities of ordinary diffusion and is the 
diffusion velocity caused by the electric current. The 
corresponding diffusion coefficients are 

 
(28)

 

. (29) 

where and ). Eqs. (27)-
(28) describe the drift of ions under the combined 
influence of and   .

IV.

 

Distribution of

 

Ions Caused by 
Electric Currents

 

Consider the equilibrium distribution of heavy 
ions in our model. In

 

equilibrium,

 

we have = 0

 

and 
Eq.(27) yields

 

 

(30)

 

The term on the r.h.s. describes the effect of 
electric currents on the distribution of

 

impurities. Note 
that this type of diffusion is driven by the electric current 
rather

 

than an inhomogeneity of the magnetic field. The 
conditions = 0 and 

 

are equivalent in our 
simplified magnetic configuration. Eq. (4) yields

 

(31)

 

Substituting Eq. (32) into Eq.(31) and 
integrating, we obtain

 

(32)

 

where

 

  

and is the value of at . Denoting the local 
abundance of the element as 

 

and taking into 
account Eq. (5), we have

 

 

(34)
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(18)Ez = − 1

2en
(Fpz − Fez).

Viz = −D
d lnni

dz
+

D

nikBT
F (i)
z ,

D = 2.4c2i τi/Z
2
i

c2i = kBT/mi

F (i)
z = Fiz −

Zini

2n
(Fpz − Fez).

F (i)
z

~Rip

Vis − qViϕ = A, Viϕ + qVis = G,

A =
D

nikBT
−dpi

ds
+ ZieniEs +Ries

)

,

G=
D

nikBT
(ZieniEϕ+Rieϕ) , q = 2.4

eB

Zimic
τi.

s ϕ

Vis =
A+ qG

1 + q2
, Viϕ =

G− qA

1 + q2
.

q ωBiτi

q ≪ 1

Vis ≈ A, Viϕ ≈ G.

Vis = Vni
+ VB, Vni

=−D
d lnni

ds
, VB=DB

d lnB

ds

Viϕ = DBϕ
dB

ds

Vni VB

D=
2.4c2i τi
Z2

i

, DB=
2.4c2Aτi
ZiAi

(0.21Zi − 0.71),

DBϕ = 1.22

√

me

mi

c(Zi − 1)

4πenZi
.

c2i =kBT/mi c2A=B
2/(4πnmp
i

∇ni
~j

Vis

D
d lnni

ds
= DB

d lnB

ds
.

dB/ds 6 j 6= 0

d

ds
(nkBT ) = − B

8π

dB

ds
.

ni

ni0

=
(

n

n0

)µ

,

µ = −2Zi(0.21Zi − 0.71)71 ( (33)

ni0 ni s → ∞
i γi=ni/n

γi
γi0

=
(

n

n0

)µ−1

= 1 +
1

β0
− 1

β

)µ−1

,

)
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where  . Local abundances turn out to be 
flexible to the field strength and, particularly, this 
concerns ions with large charge numbers. The exponent 
( −1) can reach large negative values for elements with 
large and, hence, produce strong abundance 
anormalies. For instance, ( 1) is equal 1.16, -0.52, 
and -2.04 if =2, 3, and 4, respectively. Note that 
( −1) changes its sign as increases: ( −1) > 0 if                

= 2 but (  − 1) < 0 for ≥ 3. Therefore, elements 
with ≥ 3 are in deficit ( ) in the region with a 
weak magnetic field ( ) but, on the contrary, these 
elements should be overabundant in the spot where the 
magnetic field is stronger than the external field      .

Note that the dependence of the exponent 
( 1) on can be responsible for the increase in He 
abundance in magnetic stars with stellar age. This 
increase was first discovered by Bailey et al. (2014) and 
is very unexpected within the frame of the standard 
theory because radiative levitation of He is very weak 
and becomes weaker as the star evolves. However, the 
increase in He abundance seems to be rather natural if 
one takes into account the current-driven diffusion. 
Indeed, observations indicate that the magnetic field 
decreases with the stellar age (see, e.g., Bailey et al. 
(2014)) because of ohmic dissipation and, hence, a 
contrast between the magnetic spots and ambient 
plasma becomes weaker. As it follows from Eq. (34), a 
weaker contrast of the magnetic field leads to a higher 
local abundance of He in a spot. 

It is generally believed that the standard 
diffusion smoothes chemical in homogeneities on a 
timescale of the order of L2/D where L is the length scale 
of a nonuniformity. However, this is not the case for a 
chemical distribution given by Eq. (34) which can exist 
during a much longer time than . In our model, 
distribution (34) is reached due to balance of two 
diffusion processes, standard (  ) and current-driven 
(  ) diffusion which push heavy ions in the 
opposite directions. As a result, = 0 in the 
equilibrium state and this state can be maintained as 
long as the electric currents exist. Therefore, the 
characteristic lifetime of chemical structures is of the 
order of the decay time of electric currents that is 
determined by ohmic dissipation and is 
where  is the electrical conductivity. Decay of the 
magnetic field is very slow in stellar conditions and the 
decay timescale can be longer than the diffusion 
timescale if . Under such conditions, the 
lifetime of a spot is entirely determined by the ohmic 
decay time. 

Note tha = 0 in the equilibrium state but the 
- component of the diffusion velocity is non-zero. It 

turns out that impurities rotate around the magnetic exis 
even if equlibrium is reached, . The direction of 
rotation depends on the sign of  and is opposite to 
the electric current. Since electrons move in the same 
direction, heavy ions turn out to be carried along 

electrons. Different ions move with different velocities 
around the axis, and the difference between different 
sorts of ions, , is of the order of 

(35)

 

where 
 

, and 
                        

. Since  different
 
impurities  rotate 

around the magbetic axis with different velocities, 
periods

 
of such

 
rotation also are different for different 

ions. The difference in periods can be estimated
 
as

 

(36)
 

If the distribution of impurities is non-
axisymmetric then such diffusion in the azimuthal

 

direction should lead to slow variations in the 
abundance peculiarities.

 

V.
 

Diffusion Waves
 

In our model of plasma with a cylindrical 
symmetry, the continuity equation for ions reads

 

(37)
 

Together with Eqs. (29)-(30), this equation 
describes diffusion of ions 

 
in the presence

 
of electric 

currents.
 

Let us assume that plasma is in a diffusion 
equilibrium (Eq. (31)) and, hence,

 
the distribution of 

elements in such a basic state is given by Eqs.(33)-(35). 
Consider

 
the behaviour of small disturbances of the 

number density of impurity from this
 

equilibrium by 
making use of a linear analysis of Eq. (36). Since the 
number density

 
of impurity i

 
is small, its influence on 

parameters of the basic state is negligible. For
 
the sake 

of simplicity, we assume that small disturbances are 
axisymmetric and do no

 
depend on the vertical 

coordinate, . Such disturbances have a shape of 
cylindrical

 
waves. Denoting disturbances of the impurity 

number density by and linearizing
 

Eq. (36), we 
obtain the equation governing the evolution of such 
small disturbances,

 

(38)
 

We consider disturbances with the wavelength 
shorter than the lengthscale of . In this case, we can 
use the so called local approximation and assume that

 

disturbances are 
 

where 
 

is the 
wavevector, 

 

1, and M
 
is

 
the azimuthal wavenumber. 

Since the basic state does not depend on can be
 

represented as 
   

where 
 

should be calculated from the
 
dispersion equation. We 
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consider two particular cases of the compositional 
waves, = 0 and  . 

Cylindrical waves with = 0. Substituting 
into Eq. (38), we obtain the dispersion equation for                      

= 0 

. 
(39)

 

This dispersion equation describes cylindrical 
waves in which only the number density

 

of impurity 
oscillates. The quantity characterizes decay of waves 
with the

 

characteristic timescale typical for a 
standard diffusion. The frequency describes 
oscillations of impurities caused by the combined action 
of electric

 

current and the Hall effect. Note that the 
frequency can be of any sign but is

 

always positive. 
The compositional waves are aperiodic if 
and  oscillatory

 

if . This condition is 

    

equivalent to

 

 (40) 

where 
 

is the sound speed, . 
Compositional waves become oscillatory

 
if the field is 

strong and the magnetic pressure is substantially 
greater than the gas

 
pressure. The frequency of 

diffusion waves is higher in the region where the 
magnetic

 
field has strong gradients. The order of 

magnitude estimate of is
 

(41)
 

where is the mean free-path of ions . Note that 
different impurities oscillate

 
with different frequences.

 

Non-axisymmetric
 

waves
 

with M ≫
 
ks. In this

 

case, the dispersion equation
 
reads

 

(42)

 

Non-axisymmetric waves rotate around the 
cylindric axis with the frequency 

 
and

 
decay slowly on 

the diffusion timescale . The frequency of such 
waves is

 
typically higher than that of cylindrical waves. 

One can estimate the ratio of these
 
frequencies as

 

(43)

 

Since we consider only weak magnetic fields 
(

 

1), the period of non-axisymmetric

 

waves is shorter 
for waves with . The ratio of the diffusion 
timescale

 

and period of non-axisymmetric waves is

 

  
 (44)

 

and can be large. Hence, these waves can be 
oscillatory.

 
 
 

VI. Conclusion 

We have considered diffusion of elements 
under a combined influence of standard and current-
driven diffusion mechanisms. A diffusion velocity caused 
by the electric current can be estimated as 

 (45) 

if the magnetic field is relatively weak and electrons are 
not magnetized. Generally,

 
this velocity can be 

comparable to velocities caused by other diffusion 
mechanisms.

 
The current-driven mechanism can form 

chemical inhomogeneities in plasma even if
 

the 
magnetic field is weak (   G)

 
whereas other 

diffusion processes require
 

a substantially stronger 
magnetic field (see Eqs. (1) and (2)). Using Eq. (48),  the

 

velocity of current-driven diffusion can be estimated as
 

(46) 

  
 

 

The current-driven mechanism leads to a drift of 
ions in the direction perpendicular to both the magnetic 
field and electric current. Therefore, a distribution of 
chemical elements in plasma depends essentially on the 
geometry of fields and currents. The mechanism 
considered can operate both in laboratory plasma and 
in various astrophysical bodies where the electric 
currents are non-vanishing. 

The considered mechanism does not depend 
on the nature of electric currents and can operate if the 
current is maintained by some mechanism or if it is of 
the fossil origin. In the latter case, the decay time of 
Ohmic dissipation in the spot must be longer than the 
diffusion time scale. If the length scale of the field is L, 
the decay time scale is where  is the 
conductivity. In subphotospheric layers, we can estimate  and yrs. The time scale of 
diffusion from subphotospheric layers is 
where H is the heigh scale. Using Eq. (34) and 
assuming 100 G, we obtain  yrs 
where H8 = H/108 cm. Hence, the current-driven 
diffusion is faster than the Ohmic dissipation if 
and it can form the observed chemical inhomogeneities. 

Like other diffusion processes, the current-
driven diffusion can lead to a formation of chemical 
spots if the star has relatively quiescent surface layers. 
This condition is fulfilled in various type of stars and, 
therefore, the current-driven diffusion can manifest itself 
in different astrophysical bodies. For example, this 
mechanism can contribute to formation of element spots 
in Ap-stars. The magnetic fields have been detected in 
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M M ≫ ks
M δni

M

iω=−ωR+iωB, ωR=Dk2, ωB=kDB(d lnB/ds).

ωR

∼(Dk2)−1

ωB

ωR

ωR > |ωB|
|ωB| > ωR

c2A/c
2
s > Z−1

i |0.21Zi − 0.71|−1kL,

cs c2s = kBT/mp

ωI

ωI ∼ kcA(1/ZiAi)(cA/ci)(li/L),

li= ciτi i

iω=−ωR+iωBϕ, ωBϕ=(M/s)BDBϕ(d lnB/ds).

ωBϕ

∼ ω−1
R

(ωBϕ/ωB)∼(BDBϕ/DB)∼(1/Aixe)(M/ks).

xe≫
M> ixe(ksA (

(ωBϕ/ωR) ∼ (1/xe)(c
2
A/c

2
s)(Zi/Ai)(1/kL

(

VB ∼ cA(cA/ci)(1/ZiAi)(li/L

∼ 10− 100

VB ∼1.1×10−4A
−1/2
i B2

4n
−2
15 T

3/2
4 Λ10L

−1
10 cm/s,

where G and      = 
 The  velocity VB turns   out to   be   sensitive   to   the 
field (  ) and, therefore, diffusion in a weak magnetic 
field requires a longer time to reach equilibrium 
abundances (34).

10= Λ/10, B4=B/104Λ L10 L/1010     cm,

∝B2

td∼4πσL2/c2 σ

σ∼3·1014 s−1 td ∼ 107L2
10

tB∼H/VB

B∼ tB∼ · 106H8L103

L10 > 1

Chemical in Homogeneities, Electric Currents, and Diffusion Waves in Stars



many of such spotted stars and, likely, these magnetic 
fields are maintained by electric currents located in the 
surface layers. Quiescent surface layers may exist in 
other types of stars as well, for example, in white dwarfs 
and neutron stars. Many neutron stars have strong 
magnetic fields and, most likely, topology of these fields 
is very complex with spot-like structures at the surface. 
As it was shown, such magnetic configurations can be 
responsible for the formation of a spotlike element 
distribution at the surface. Such chemical structures can 
be important, for instance, for the emission spectra, 
diffusive nuclear burning (Brown et al. 2002, Chang & 
Bildsten 2004), etc. Evolution of neutron stars is very 
complicated, particularly, in binary systems (see, e.g., 
Urpin et al. 1998a,b) and, as a result, a surface 
chemistry can be complicated as well. Diffusion 
processes may play an important role in this chemistry. 

Our study reveals that a particular type of 
magnetohydrodynamic waves exist in multicomponent 
plasma in the presence of electric currents. These 
waves are characterized by oscillations of the impurity 
number density and exist only if the magnetic pressure 
exceeds essentially the gas pressure. The frequency of 
such waves is given by Eq.(39) and turns out to be 
relatively small. Note that different impurities oscillate 
with different frequences. Therefore, the local 
abandances of different elements can exhibit variations 
with the time. The characteristic timescale of these 
variations is shorter in plasma with a stronger magnetic 
field. 
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