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Abstract-

 

Classical mechanics and quantum mechanics 
contradict each other,

 

and both are essential to explain the 
phenomena of the exclusively different realm of nature. On the 
other hand, Bohr’s correspondence principle shows classical 
mechanics is the somewhat approximate version of quantum 
mechanics. Classically a particle with negative energy i. e.

VE <

 

is not allowed go through a forbidden region or 
disappearing from one well to another well. This paper gives 
the numerical studies for the trajectory of the particle in a 
double-well potential and presents quantum mechanical 
behavior such as tunneling in the complex plane for different 
energies. Our findings provide a route to solve the classical 
system with complex energy.
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I.

 

Introduction

 

uantum mechanical phenomena are completely 
different from classical mechanical in our 
physical world. The motion of a classical particle 

is deterministic and is described by Hamiltonian’s 
equation. The position x(t) of a particle at any instant can 
be found by solving a local initial value problem for this 
differential equation. The energy of a particle which is 
numerically equal to the Hamiltonian is a constant and 
can have any values. Classically, the motion of the 
particle is confined or allowed to a region where energy 
E≥V(x) and forbidden where E<V(x). A classical particle 
may not travel through the barrier which separates two 
classical allowed regions.

 

Many researchers have astonished by 
extending both quantum mechanics and classical

 

mechanics into the complex domain. In conventional 
quantum mechanics, all physical observable must be 
represented by Hermitian operators on Hilbert space so 
that the Hamiltonians have real energy eigen

 

values and 
unitary time evolution[1].

 

But a class of physical 
allowable Hamiltonians may be extended to include 
non-Hermitian Hamiltonians that possess an unbroken 
PT(combined parity and time reversal) symmetry 
because these complex Hamiltonians also have real 

energy eigenvalues and generate unitary time 
evolution[2-12].In the recent years; some new surprising 
phenomena were revealed by PT symmetry quantum 
mechanics which observed in laboratory experiment[13-
15]. Conventional classical mechanics is the study of 
the real solution to Hamiltonian’s equation, and we find 
the exact trajectory of a particle. To understand PT-
symmetric quantum mechanics, conventional classical 
mechanics is extended into the complex domain. In the 
complex classical mechanics, we study all solutions, 
real as well as complex of Hamiltonian’s equation[16-
18]i.e., the real and the complex trajectory for a system 
having real energy. Study of complex classical 
mechanics has provided an intuitive image of what is 
happening at the unbroken and broken PT-symmetric 
phase of PT-symmetric quantum mechanics, the 
classical trajectories are closed and periodic, but in the 
broken phase those are open[19]. 

A new area of research has been recently 
introduced which concerns the generalization of 
classical mechanics from real to complex energy[20]. 
Since the energy of a quantum particle cannot be 
determined precisely due to an infinite amount of time. 
According to the time-energy uncertainty principle in 
quantum mechanics ∆𝐸𝐸 ∆𝑡𝑡 ≥ ℎ

4𝜋𝜋
, the energy cannot be 

measured without an uncertainty of ∆𝐸𝐸. As a 
consequence of this argument, the uncertainty exists in 
classical mechanics and further, it, can be assumed as 
complex. The generalization from real to complex 
energy reveals many features of quantum mechanics by 
the classical system having complex energy. Carl M 
Bender, Dorje C Brody and Daniel W Hook have 
performed numerical studies in the conjectural 
paper[20] and they found some well-known quantum 
effects  by the deterministic equations of classical 
mechanics(Newton’s law) when these equations are 
solved in the complex plane for the systems having 
complex energy. 

In the discussion of the conjectural paper[20], it 
has been concluded that the analogies between 
quantum mechanics and complex energy classical 
mechanics make further investigation worthwhile. In    
[21-22] the authors investigated the analogies between 
quantum mechanics and complex classical mechanics 
and also provide a procedure to obtain the trajectory 
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when the energy of a deterministic classical particle is 
allowed to be complex in the double well potential.  

In this work, we allowed a classical particle to 
have a complex energy in the double well potential 
𝑥𝑥4 − 𝑥𝑥2, the corresponding system appears with a 
phenomenon that completely a feature of  quantum 
mechanics such as tunneling. 

II. Methodology 

In classical mechanics, the motion of a particle 
is modeled by the Hamiltonian of the for 

                             𝐻𝐻 = 1
2
𝑝𝑝2 + 𝑉𝑉(𝑥𝑥)    (2.1) 

Such that the first derivative of the potential V(x) 
is a function of the position of the particle, 𝑥𝑥.The 
Hamilton’s equations are 

                              
)( up

p
Hx ==
∂
∂

=
                  

(2a) 

and                    )( a
x
Hp =
∂
∂

−=     (2b) 

𝑢𝑢 and 𝑎𝑎 express the velocity and the acceleration of the 
particle at the point 𝑥𝑥. 

If the energy 𝐸𝐸 is a given numerical value of 𝐻𝐻, 
which is a constant of motion, then we get from 
equation (1) 

                            
)(

2
1 2 xVpE +=   (2.3) 

Using equation (2) in (3) we obtain, 

                               )(22 xVEu −±=     (2.4) 

 
 

    

 The particle starts its journey from 0+x
 
at the 

time 0=t and if the time interval t∆
 
is infinitesimally 

small, we can consider a as a constant. Hence, at the 
position

  
𝑥𝑥+0, the velocity of the particle is,

 

                        
)(22 00 ++ −= xVEu

                  
(2.5) 

Where particle moves with positive value of 𝑢𝑢 
and the acceleration is 

                       
)( 00 ++ ∂

∂
−= x

x
Ha

                          
(2.6) 

Now according to the well-known classical formula 

                    

2
0 2

1 atutxx ++= ,                        (2.7) 

we have             2
0001 )(

2
1 tatuxx ∆+∆+= ++++

  
(2.8) 

Because both the velocity and the acceleration 
depend on position of the particle, the velocity and 
acceleration at the position 1+x are 

                    )(22 11 ++ −= xVEu                    (2.9) 

and                

               
)( 11 ++ ∂

∂
−= x

x
Ha

                  
(2.10) 

respectively.  Now  the  position  of the  particle for  time,
tt ∆+∆+0 , i.e. t∆2  is     

 2
1112 )(

2
1 tatuxx ∆+∆+= ++++

              
(2.11)

 

Similarly, we can obtain the position of the 
particle after each interval, 3+x , 4+x , 5+x

 

Let us take the final position nx+  for the  
positive sign of u . Then the particle travels from nx+  
with the negative sign of u. Therefore, the velocity of the 
particle at nx+  is 

                        

)(220 nxVEu +− −=
              

(2.12) 

and 

               )(0 nx
x
Ha +− ∂
∂

−=
                 

(2.13) 

After the time interval t∆ from the nx+
 position 

of the particle is 

             

2
001 )(

2
1 tatuxx n ∆+∆+= −−+−

           
(2.14)

 

Similarly using the above procedure we can 
obtain

 
the positions of the particle

  
𝑥𝑥−2,𝑥𝑥−3,

 

𝑥𝑥−4, … … … .𝑥𝑥−𝑛𝑛 , for each interval ∆𝑡𝑡, where 𝑥𝑥−𝑛𝑛
 
is the 

final position of the particle with the negative sign of 𝑢𝑢. 
Then at the point, 𝑥𝑥−𝑛𝑛 , then the particle travels with the 
positive sign of 𝑢𝑢.

 

The alternatively taking positive sign of 𝑢𝑢
 
and 

negative sign of 𝑢𝑢
 
of the particle continue endlessly, and 

we have an endless trajectory of the classical particle. If 
after 𝑛𝑛∆𝑡𝑡

 
time, the particle returns to its initial position, 

the trajectory of the particle is closed and periodic with 
𝑛𝑛∆t, where 𝑛𝑛

 
is a positive integer.
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It is obvious from above two that 𝑢𝑢 is complex 
value when )(xVE ≤ , but 𝑢𝑢 is real value when 

)(xVE ≥ . The positive and negative of

)(22 xVE −± is denoted by +u and −u respectively.



III. Theoretical Calculation 

a) Motion of a Particle Having Real Energy in the 
Potential (𝑥𝑥4 − 𝑥𝑥2) in the Complex Domain 

Investigation of the classical trajectories of a 
particle having energy 𝐸𝐸 = 1 with different initial 
conditions in the potential, 𝑥𝑥4 − 𝑥𝑥2 , defined by the 
Hamiltonian 𝐻𝐻 = 1

2
𝑝𝑝2 + 𝑥𝑥4 − 𝑥𝑥2 in the complex domain 

showed in figure 1. The solutions of the equation 
𝑉𝑉(𝑥𝑥) = 𝐸𝐸, i.e.𝑥𝑥4 − 𝑥𝑥2=1 gives the classical turning 
points located at  𝑥𝑥 = ± 1.2720, ± 0.7862𝑖𝑖 and indicated 
by red dots. The so-called ‘classical allowed region’(for 
which 𝐸𝐸 ≥  𝑉𝑉(𝑥𝑥) i. e. 1 ≥ 𝑥𝑥4 − 𝑥𝑥2) is the portion of the 
real 𝑥𝑥 between 𝑥𝑥 = −1.2720 to 𝑥𝑥 = 1.2720, and a 
classical particle initially on this line segment moves 
parallel to the real axis and oscillate between real turning 
points. The classical forbidden regions (represented by 
𝐸𝐸 < 𝑉𝑉(𝑥𝑥) i.e.,1 < 𝑥𝑥4 − 𝑥𝑥2) are the portions of the real 
axis for which 𝑥𝑥 > 1.2720 and 𝑥𝑥 < −1.2720, and a 
particle having initial position in either one moving 
perpendicularly to the real axis. The particle then enters 
into the complex-x and makes a sharp turn about the 
imaginary turning points and return to its initial position. 
All orbits in figure 1 have the same period which is 
exactly 3.998. It was observed that two different 
trajectories never cross each other. 

The trajectories of a classical particle having 
real negative energy,𝐸𝐸 = −1, in the potential, 𝑥𝑥4 − 𝑥𝑥2 of 
the Hamiltonian  𝐻𝐻 = 1

2
𝑝𝑝2 + 𝑥𝑥4 − 𝑥𝑥2 with different initial 

conditions were shown in figure 2. The turning points 
belong to the energy 𝐸𝐸 = −1 are located at 𝑥𝑥 =
±(0.8660 −  0.5000𝑖𝑖), ±(0.8660 +  0.5000𝑖𝑖), which 
are indicated by red dots in figure 2.We observed that 
the all trajectories are closed and periodic. The classical 
trajectories are always confined to either the right-half or 
left-half of the complex- 𝑥𝑥 plane and unable to go 
through imaginary axis, 𝑥𝑥 = 0. Figure 2 shows the 
sixteen classical trajectories for energy 𝐸𝐸 = −1. Eight 
trajectories lie in the right-half enclosing the turning 
points 𝑥𝑥 = 0.8660 +  0.5000𝑖𝑖 and 𝑥𝑥 = 0.8660− 0.5000𝑖𝑖, 
and other eight trajectories lie in the left-half enclosing 
the turning points 𝑥𝑥 = −0.8660 +  0.5000𝑖𝑖 and 𝑥𝑥 =
−0.8660− 0.5000𝑖𝑖. No two trajectories cross each 
other. Thus for a particle having negative real energy the 
potential 𝑥𝑥4 − 𝑥𝑥2 act. 

b) Classical Trajectory of a Particle of Energy 2 + 0.2𝑖𝑖in 
the Double-Well Potential 

A single classical trajectory of a particle having 
energy 𝐸𝐸 = 2 + 0.2𝑖𝑖 in the potential, 𝑥𝑥4 − 𝑥𝑥2 defined by 
Hamiltonian 𝐻𝐻 = 1

2
𝑝𝑝2 + 𝑥𝑥4 − 𝑥𝑥2 presnted in figure 3. The 

solution of the equation 𝑉𝑉(𝑥𝑥) = 𝐸𝐸, i.e. 𝑥𝑥4 − 𝑥𝑥2 = 2 +
0.2𝑖𝑖 gives classical turning points. Hence we have four 
turning points located at 𝑥𝑥 =   1.4149 +  0.0235𝑖𝑖,
−  1.4149  −  0.0235𝑖𝑖, 0.0333 −  1.0013𝑖𝑖,   − 0.0333 +
 1.0013𝑖𝑖 which are indicated by red dots. The turning 

points are different from figure 1 due to the amount of 
adding energy (0.2𝑖𝑖) to real energy(2). A particle whose 
initial position in any point in the complex- 𝑥𝑥 plane have 
an initial motion having two components, along with real 
axis and perpendicular to the real axis and the particle 
moves in the complex-𝑥𝑥 plane. The trajectory spirals 
inward around the pair of turning points, 1.4149 +
 0.0235𝑖𝑖 and −1.4149 −  0.0235𝑖𝑖 and make a sharp 
turn about the other pair of turning points, 0.0333 −
 1.0013𝑖𝑖 and−0.0333 +  1.0013𝑖𝑖. The effect is that the 
trajectory still does not cross itself; the trajectory no 
longer needs to be closed and periodic. The trajectory, 
in this case, is open.    

c) Classical Trajectory of a Particle of Energy 2− 0.2𝑖𝑖 
The single classical trajectory of a particle 

having energy 𝐸𝐸 = 2 − 0.2𝑖𝑖 in the potential, 𝑥𝑥4 − 𝑥𝑥2  

defined by Hamiltonian 𝐻𝐻 = 1
2
𝑝𝑝2 + 𝑥𝑥4 − 𝑥𝑥2 depicted in 

figure 4. The solution of the equation 𝑉𝑉(𝑥𝑥) = 𝐸𝐸, i.e. 
𝑥𝑥4 − 𝑥𝑥2 = 2− 0.2𝑖𝑖 gives classical turning points. Hence 
we have four turning points located at  𝑥𝑥 =  1.4149 −
 0.0235𝑖𝑖,   − 1.4149   +    0.0235𝑖𝑖,     0.0333  +   1.0013𝑖𝑖,
−0.0333 −  1.0013𝑖𝑖 which are indicated by red dots. 
The turning points are different from figure 1 due to the 
amount of subtracting energy (0.2𝑖𝑖) to real energy(2). A 
particle whose initial position in any point in the 
complex- 𝑥𝑥 plane have an initial motion having two 
components, along real axis and perpendicular to the 
real axis and the particle moves in the  complex-𝑥𝑥 plane. 
The trajectory spirals inward around the pair of turning 
points, 1.4149 −  0.0235𝑖𝑖 and −1.4149 +  0.0235𝑖𝑖 and 
make a sharp turn about the other pair of turning points, 
0.0333 +  1.0013𝑖𝑖 and −0.0333 −  1.0013𝑖𝑖. The effect 
is that the trajectory still does not cross itself, the 
trajectory no longer need be closed and periodic. The 
trajectory, in this case, is open. The direction of motion 
of the particle, in this case, becomes reverse compared 
to figure 3 due to change of sign in the imaginary part of 
the energy. 

d) Classical Trajectory of a Particle of Energy −1− 2𝑖𝑖 

For the classical particle with complex energy 
𝐸𝐸 = −1− 2i in the double well potential, turning points 
are 1.2503 - 0.4804i, 0.6760 + 0.8885i, -1.2503 + 
0.4804i, -0.6760 - 0.8885i which are indicated by red 
dots. A single classical trajectory of classical particle 
having energy 𝐸𝐸 = −1− 2i in the complex-x plane 
sketched in figure 5. In figure 5 the trajectory begins at 

1=x , and it spirals around the right pair of turning 
points of the right-half of double-well potential then it 
crosses imaginary axis 0=x  and enters into left-half of 
double well potential and spirals around the left pair of 
turning points. In figure 6 the trajectory begins at 

1−=x  and it spirals around the left pair of turning 
points of the left-half of double-well potential  then it 
crosses imaginary axis 0=x  and enters into right-half 
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of double well potential and spirals around the right pair 
of turning points. Both trajectories are not periodic 
because they are open. According to classical 
mechanics this type of motion is forbidden, but allowing 
the energy of a classical particle to be complex, we get 
a quantum mechanical phenomenon. 

e) Classical Trajectory of a Particle of Energy −1 + 2𝑖𝑖 
The single classical trajectory of a classical 

particle having energy E = −1 + 2i in the double-well 
potential in the complex domain pictured in figure 7. The 
four classical turning points are associated with this 
energy are 1.3077 + 0.4956i, 0.6754 - 0.9595i, -1.3077 - 
0.4956i, -0.6754 + 0.9595i, which are indicated by red 
dots in the figure 7. The particle begins its motion from 
position x=1, and it shows classical tunneling through 
imaginary plane 𝑥𝑥 = 0. Although we changed the sign of 
imaginary part of energy, it does not change tunneling of 
the classical particle. The classical particle first spirals 
around the right pair of turning points then leaps to left-
half of the complex-x plane. Then the particle spirals 
around the left pair of turning points. 

f) Classical Trajectory of a Particle of Energy −1− 2.5𝑖𝑖 
A single classical trajectory of a particle with 

energy E = −1 − 2.5i in the double-well potential in the 
complex-x plane pictured in figure 8. The four turning 
points associated with energy E = −1− 2.5i are 1.3077 
- 0.4956i, 0.6754 + 0.9595i, -1.3077 + 0.4956i, -0.6754 - 
0.9595i which are indicated by red dots. The particle 
begins its journey from x=8 and enters into left-half of 
the complex-x plane crossing imaginary axis x=0. Then 
spirals around the left pair of turning points, and then it 
returns to right-half of the complex-x plane. So, in this 
case, we have two times tunneling through imaginary 
axis x=0. The trajectory is not periodic because it is 
open. 

g) Classical Trajectory of a Particle of Energy −1 + 2.5𝑖𝑖 
Let us investigate what happens if we take a 

classical particle having complex conjugate of energy 
E = −1 − 2.5i, i.e.−1 + 2.5iin the double-well potential. 
A single classical trajectory of a particle with energy 
E = −1 + 2.5i in the double-well potential in the 
complex-x plane presented in figure 9. The four turning 
points associated with energy E = −1 + 2.5i are 1.3077 
+ 0.4956i, 0.6754 - 0.9595i, -1.3077 - 0.4956i,    -0.6754 
+ 0.9595i which are indicated by red dots. The particle 
begins its journey from x=8 and enters into left-half of 
the complex-x plane crossing imaginary axis x=0. Then 
spirals around left pair of turning points, and then it 
returns to right-half of the complex-x plane. So, in this 
case, we have two times tunneling through imaginary 
axis x=0. Although we take energy E = −1 + 2.5i, the 
complex conjugate of E = −1− 2.5i, we get same result 
i.e., tunneling. The trajectory is not periodic because it is 
open. 
 

IV. Results and Discussion 

We investigated the motion of a classical 
particle in the classical system using potential 𝑉𝑉(𝑥𝑥) =
𝑥𝑥4 − 𝑥𝑥2, in the complex domain by numerically. We 
found that the trajectories of the particle in the potential, 
𝑥𝑥4 − 𝑥𝑥2 are always confined to either right-half or left-
half of complex-x plane for a negative real value of 
energy. Thus, the potential acts like a double-well 
potential, one well is left-half and another well is right-
half of complex-x plane, separated by the imaginary axis 
x=0, leads to no effect analogous to quantum tunneling. 
Butthe energy of a deterministic particle being complex 
in the double-well potential, 𝑥𝑥4− 𝑥𝑥2, the corresponding 
system presents an effect analogous to quantum 
tunneling. We examine the analog to the quantum 
tunneling in the complex classical system for different 
four energies −1− 2𝑖𝑖,−1 + 2𝑖𝑖,−1 + 2.5𝑖𝑖 and −1− 2.5𝑖𝑖  
The classical  ‘tunneling’  process is less abstract and 
hence easier to understand than quantum-mechanical 
analog. During quantum tunneling the particle 
disappears from one classical region and reappears 
almost immediately in another region giving no idea 
about the path. For a classical particle, it is clear how 
the particle travels from one classically allowed region to 
the other i.e., it follows a well-defined path in the 
complex-x plane.  

V. Conclusion 

Investigation of the trajectories of particle 
having real but negative energy in the potential  𝑥𝑥4 − 𝑥𝑥2 
gives  𝑥𝑥4 − 𝑥𝑥2  acts like double-well potential. Particle 
exhibits periodic motion for real energy and confined to 
either right-half or left-half of the complex-x plane 
separated by imaginary axis 0=x  for negative energy. 
The open classical trajectories that result from complex 
energy are particularly interesting because of their 
behavior reminiscent of the phenomenon of quantum 
tunneling-a negative energy quantum particle in such 
potential tunnels back and forth from one-well to 
another-well. 
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