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Investigation of Classical Systems with Complex
Energy in the Field of Quantum-Classical
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Abstract- Classical mechanics and quantum mechanics
contradict each other, and both are essential to explain the
phenomena of the exclusively different realm of nature. On the
other hand, Bohr's correspondence principle shows classical
mechanics is the somewhat approximate version of quantum
mechanics. Classically a particle with negative energy i. e.
E <V is not allowed go through a forbidden region or
disappearing from one well to another well. This paper gives
the numerical studies for the trajectory of the particle in a
double-well potential and presents quantum mechanical
behavior such as tunneling in the complex plane for different
energies. Our findings provide a route to solve the classical
system with complex energy.
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[ [NTRODUCTION

uantum mechanical phenomena are completely

different from classical mechanical in our

physical world. The motion of a classical particle
is deterministic and is described by Hamiltonian's
equation. The position x(t) of a particle at any instant can
be found by solving a local initial value problem for this
differential equation. The energy of a particle which is
numerically equal to the Hamiltonian is a constant and
can have any values. Classically, the motion of the
particle is confined or allowed to a region where energy
E=V(x) and forbidden where E<V(x). A classical particle
may not travel through the barrier which separates two
classical allowed regions.

Many researchers have astonished by
extending both quantum mechanics and classical
mechanics into the complex domain. In conventional
quantum mechanics, all physical observable must be
represented by Hermitian operators on Hilbert space so
that the Hamiltonians have real energy eigen values and
unitary time evolution[1]. But a class of physical
allowable Hamiltonians may be extended to include
non-Hermitian Hamiltonians that possess an unbroken
PT(combined parity and time reversal) symmetry
because these complex Hamiltonians also have real
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energy eigenvalues and generate unitary time
evolution[2-12].In the recent years; some new surprising
phenomena were revealed by PT symmetry quantum
mechanics which observed in laboratory experiment[13-
15]. Conventional classical mechanics is the study of
the real solution to Hamiltonian’s equation, and we find
the exact trajectory of a particle. To understand PT-
symmetric guantum mechanics, conventional classical
mechanics is extended into the complex domain. In the
complex classical mechanics, we study all solutions,
real as well as complex of Hamiltonian’s equation[16-
18]i.e., the real and the complex trajectory for a system
having real energy. Study of complex -classical
mechanics has provided an intuitive image of what is
happening at the unbroken and broken PT-symmetric
phase of PT-symmetric quantum mechanics, the
classical trajectories are closed and periodic, but in the
broken phase those are open[19].

A new area of research has been recently
infroduced which concems the generalization of
classical mechanics from real to complex energy[20].
Since the energy of a quantum particle cannot be
determined precisely due to an infinite amount of time.
According to the time-energy uncertainty principle in

quantum mechanics AE At > ﬁ, the energy cannot be

measured without an uncertainty of AE. As a
consequence of this argument, the uncertainty exists in
classical mechanics and further, it, can be assumed as
complex. The generalization from real to complex
energy reveals many features of quantum mechanics by
the classical system having complex energy. Carl M
Bender, Dorje C Brody and Daniel W Hook have
performed numerical studies in the conjectural
paper[20] and they found some well-known quantum
effects by the deterministic equations of classical
mechanics(Newton's law) when these equations are
solved in the complex plane for the systems having
complex energy.

In the discussion of the conjectural paper[20], it
has been concluded that the analogies between
guantum mechanics and complex energy classical
mechanics make further investigation worthwhile. In
[21-22] the authors investigated the analogies between
quantum mechanics and complex classical mechanics
and also provide a procedure to obtain the trajectory
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when the energy of a deterministic classical particle is
allowed to be complex in the double well potential.

In this work, we allowed a classical particle to
have a complex energy in the double well potential
x* —x2, the corresponding system appears with a
phenomenon that completely a feature of quantum
mechanics such as tunneling.

II. METHODOLOGY

In classical mechanics, the motion of a particle
is modeled by the Hamiltonian of the for

H= %pz + V(%) 2.1)

Such that the first derivative of the potential V(x)
is a function of the position of the particle, x.The
Hamilton’s equations are

. 0oH
(== p=u) ea)
p
and p= —%—‘:(: a) (2b)

u and a express the velocity and the acceleration of the
particle at the point x.

If the energy E is a given numerical value of H,
which is a constant of motion, then we get from
equation (1)

E= % P +V(X) (2.3)
Using equation (2) in (3) we obtain,
U=1,2E-2V(Xx) (2.4)

It is obvious from above two that u is complex
value when E<V(X), but u is real value when

E>V(X). The positive
+,/2E-2V(X) is denoted by U, and U_respectively.
The particle starts its journey fromX,, at the

timet = 0and if the time interval At is infinitesimally
small, we can consider aas a constant. Hence, at the
position x_, the velocity of the particle is,

U, =+/2E-2V(X,,)

Where particle moves with positive value of u
and the acceleration is

and  negative  of

(2.5)

oH

a,= _&(Xm) (2.6)

Now according to the well-known classical formula
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1
x=x0+ut+§at2, 2.7)

we have o (At)? (2.8)

an

1
X,; = X, + U At + Ea

Because both the velocity and the acceleration
depend on position of the particle, the velocity and

acceleration at the position X, are

U, =y 2E-2V(x,) (29
and
oH
a, = —g(xﬂ) (2.10)

respectively. Now the position of the particle for time,
O+At+ At ie 2At is

L(AY)? 2.11)

X,, = X, +U, At +%a+
Similarly, we can obtain the position of the
particle after each interval, X, 5, X, 4, X,5
Let us take the final position X, for the
positive sign of U. Then the particle travels from X,
with the negative sign of U. Therefore, the velocity of the
particle at X, , is

U, =+2E-2V(X,,) (2.12)
and
oH
a,=— 2.13
—0 6X (X+n) ( )

After the time interval At from the X, position
of the patrticle is

X, =X, +U At + %a_o (At)? (2.14)

Similarly using the above procedure we can
obtain the positions of the particle x_,,x_s,
X_gy e e e X_p, fOr each interval At, where x_,, is the
final position of the particle with the negative sign of u.
Then at the point, x_,,, then the particle travels with the
positive sign of u.

The alternatively taking positive sign of u and
negative sign of u of the particle continue endlessly, and
we have an endless trajectory of the classical particle. If
after nAt time, the particle returns to its initial position,
the trajectory of the particle is closed and periodic with
nAt, where n is a positive integer.



[11. THEORETICAL CALCULATION

a) Motion of a Particle Having Real Energy in the
Potential (x* — x?) in the Complex Domain
Investigation of the classical trajectories of a
particle having energy E =1 with different initial
conditions in the potential, x* —x?, defined by the
Hamiltonian H = %pz + x* — x2 in the complex domain

showed in figure 1. The solutions of the equation
V(x) =E, iex*—x*=1 gives the classical turning
points located at x = + 1.2720, + 0.7862i and indicated
by red dots. The so-called ‘classical allowed region’(for
which E > V(x) i. e. 1 =x* —x?) is the portion of the
real x between x =-—1.2720 to x = 1.2720, and a
classical particle initially on this line segment moves
parallel to the real axis and oscillate between real turning
points. The classical forbidden regions (represented by
E<V(x) ie.,1<x*—x? are the portions of the real
axis for which x > 1.2720 andx < —1.2720, and a
particle having initial position in either one moving
perpendicularly to the real axis. The particle then enters
into the complex-x and makes a sharp turn about the
imaginary turning points and return to its initial position.
All orbits in figure 1 have the same period which is
exactly 3.998. It was observed that two different
trajectories never cross each other.

The trajectories of a classical particle having
real negative energy,E = —1, in the potential, x* — x? of
the Hamiltonian H = %pz + x* — x2 with different initial

conditions were shown in figure 2. The turning points
belong to the energy E =-—1are located at x =
+(0.8660 — 0.5000i), +(0.8660 + 0.5000i), which
are indicated by red dots in figure 2.We observed that
the all trajectories are closed and periodic. The classical
trajectories are always confined to either the right-half or
left-half of the complex-x plane and unable to go
through imaginary axis, x = 0. Figure 2 shows the
sixteen classical trajectories for energy E = —1. Eight
trajectories lie in the right-half enclosing the turning
points x = 0.8660 + 0.5000i and x = 0.8660 — 0.5000¢,
and other eight trajectories lie in the left-half enclosing
the turning points x = —0.8660 + 0.5000{ and x =
—0.8660 — 0.5000i. No two trajectories cross each
other. Thus for a particle having negative real energy the
potential x* — x? act.

b) Classical Trajectory of a Particle of Energy 2 + 0.2iin
the Double-Well Potential

A single classical trajectory of a particle having
energy E = 2 + 0.2i in the potential, x* — x? defined by
Hamiltonian H = %pz + x* — x? presnted in figure 3. The
solution of the equation V(x) =E, ie. x*—x>2=2+
0.2i gives classical turning points. Hence we have four
turning points located at x = 1.4149 + 0.0235i,

— 1.4149 — 0.0235i, 0.0333 — 1.0013i, —0.0333 +
1.0013i which are indicated by red dots. The turning

points are different from figure 1 due to the amount of
adding energy (0.2i) to real energy(2). A particle whose
initial position in any point in the complex- x plane have
an initial motion having two components, along with real
axis and perpendicular to the real axis and the particle
moves in the complex-x plane. The trajectory spirals
inward around the pair of turning points, 1.4149 +
0.0235{ and —1.4149 — 0.0235i and make a sharp
turn about the other pair of turning points, 0.0333 —
1.0013i and—0.0333 + 1.0013i. The effect is that the
trajectory still does not cross itself; the trajectory no
longer needs to be closed and periodic. The trajectory,
in this case, is open.

c) Classical Trajectory of a Particle of Energy 2 — 0.2i

The single classical trajectory of a particle
having energy E =2 —0.2i in the potential, x* — x?
defined by Hamiltonian H = %pz + x* — x? depicted in
figure 4. The solution of the equation V(x) =E, i.e.
x* — x? = 2 — 0.2i gives classical turning points. Hence
we have four turning points located at x = 1.4149 —
0.0235i, —1.4149 + 0.0235i, 0.0333 + 1.0013i,
—0.0333 — 1.0013i which are indicated by red dots.
The turning points are different from figure 1 due to the
amount of subtracting energy (0.2i) to real energy(2). A
particle whose initial position in any point in the
complex- x plane have an initial motion having two
components, along real axis and perpendicular to the
real axis and the particle moves in the complex-x plane.
The trajectory spirals inward around the pair of tumning
points, 1.4149 — 0.0235i and —1.4149 + 0.0235i and
make a sharp turn about the other pair of turning points,
0.0333 + 1.0013i and —0.0333 — 1.0013i. The effect
is that the trajectory still does not cross itself, the
trajectory no longer need be closed and periodic. The
trajectory, in this case, is open. The direction of motion
of the patrticle, in this case, becomes reverse compared
to figure 3 due to change of sign in the imaginary part of
the energy.

d) Classical Trajectory of a Particle of Energy —1 — 2i
For the classical particle with complex energy
E = —1—2i in the double well potential, turning points
are 1.2503 - 0.4804i, 0.6760 + 0.8885i, -1.2503 +
0.4804i, -0.6760 - 0.8885i which are indicated by red
dots. A single classical trajectory of classical particle
having energy E =—-1-2i in the complex-x plane
sketched in figure 5. In figure 5 the trajectory begins at
X=1, and it spirals around the right pair of turning
points of the right-half of double-well potential then it
crosses imaginary axis X = 0 and enters into left-half of
double well potential and spirals around the left pair of
turning points. In figure 6 the trajectory begins at
X=-1 and it spirals around the left pair of turmning
points of the left-half of double-well potential then it

crosses imaginary axis X =0 and enters into right-half
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of double well potential and spirals around the right pair
of turning points. Both trajectories are not periodic
because they are open. According to classical
mechanics this type of motion is forbidden, but allowing
the energy of a classical particle to be complex, we get
a quantum mechanical phenomenon.

e) Classical Trajectory of a Particle of Energy —1 + 2i

The single classical trajectory of a classical
particle having energy E = —1+ 2i in the double-well
potential in the complex domain pictured in figure 7. The
four classical tumning points are associated with this
energy are 1.3077 + 0.4956i, 0.6754 - 0.9595i, -1.3077 -
0.4956i, -0.6754 + 0.9595i, which are indicated by red
dots in the figure 7. The particle begins its motion from
position x=1, and it shows classical tunneling through
imaginary plane x = 0. Although we changed the sign of
imaginary part of energy, it does not change tunneling of
the classical particle. The classical particle first spirals
around the right pair of turning points then leaps to left-
half of the complex-x plane. Then the particle spirals
around the left pair of turning points.

) Classical Trajectory of a Particle of Energy —1 — 2.5i

A single classical trajectory of a particle with
energy E = —1 — 2.5i in the double-well potential in the
complex-x plane pictured in figure 8. The four turning
points associated with energy E = —1 — 2.5i are 1.3077
- 0.4956i, 0.6754 + 0.9595i, -1.3077 + 0.4956i, -0.6754 -
0.9595i which are indicated by red dots. The particle
begins its journey from x=8 and enters into left-half of
the complex-x plane crossing imaginary axis x=0. Then
spirals around the left pair of turning points, and then it
returns to right-half of the complex-x plane. So, in this
case, we have two times tunneling through imaginary
axis x=0. The trajectory is not periodic because it is
open.

g) Classical Trajectory of a Particle of Energy —1 + 2.5i

Let us investigate what happens if we take a
classical particle having complex conjugate of energy
E = —1 — 2.5i, i.e.—1 + 2.5iin the double-well potential.
A single classical trajectory of a particle with energy
E=-1+4+25i in the double-well potential in the
complex-x plane presented in figure 9. The four turning
points associated with energy E = —1 + 2.5i are 1.3077
+ 0.4956i, 0.6754 - 0.9595i, -1.3077 - 0.4956i, -0.6754
+ 0.9595i which are indicated by red dots. The particle
begins its journey from x=8 and enters into left-half of
the complex-x plane crossing imaginary axis x=0. Then
spirals around left pair of turning points, and then it
returns to right-half of the complex-x plane. So, in this
case, we have two times tunneling through imaginary
axis x=0. Although we take energy E = —1 + 2.5i, the
complex conjugate of E = —1 — 2.5i, we get same result
i.e., tunneling. The trajectory is not periodic because it is
open.

© 2018 Global Journals

V. RESULTS AND DISCUSSION

We investigated the motion of a classical
particle in the classical system using potential V(x) =
x* —x2, in the complex domain by numerically. We
found that the trajectories of the particle in the potential,
x* — x? are always confined to either right-half or left-
half of complex-x plane for a negative real value of
energy. Thus, the potential acts like a double-well
potential, one well is left-half and another well is right-
half of complex-x plane, separated by the imaginary axis
x=0, leads to no effect analogous to quantum tunneling.
Butthe energy of a deterministic particle being complex
in the double-well potential, x*— x?, the corresponding
system presents an effect analogous to quantum
tunneling. We examine the analog to the quantum
tunneling in the complex classical system for different
four energies —1 — 2i,—1 + 2i,—1 + 2.5{ and —1 — 2.5i.
The classical ‘tunneling’ process is less abstract and
hence easier to understand than guantum-mechanical
analog. During quantum tunneling the particle
disappears from one classical region and reappears
almost immediately in another region giving no idea
about the path. For a classical particle, it is clear how
the particle travels from one classically allowed region to
the other ie., it follows a well-defined path in the
complex-x plane.

V. (CONCLUSION

Investigation of the trajectories of particle
having real but negative energy in the potential x* — x?
gives x*—x? acts like double-well potential. Particle
exhibits periodic motion for real energy and confined to
either right-half or left-half of the complex-x plane
separated by imaginary axis X =0 for negative energy.
The open classical trajectories that result from complex
energy are particularly interesting because of their
behavior reminiscent of the phenomenon of quantum
tunneling-a negative energy quantum particle in such
potential tunnels back and forth from one-well to
another-well.
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