

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS AND SPACE SCIENCE
Volume 18 Issue 3 Version 1.0 Year 2018
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Exact Solution to the Schrodinger Equation with Manning-Rosen Potential Via WKB Approximation Method

By P. I. Amos., B. I. Ita., H. Louis, O. U. Akakuru, N. A. Nzeata-Ibe,
A. I. Ikeuba, T. O. Magu & Udeze C. L

University of Calabar

Abstract- In quantum mechanics, exact solutions to equations play an important role because they contain a wealth of important information regarding the system under consideration. Here, we present the use of Wentzel-Kramers-Brillouin (WKB) approach to obtain the exact energy spectrum for Manning-Rosen potential and also, eigen energy solutions of special potential considered were also obtained.

Keywords: schrodinger equation, manning-rosen potential, WKB approximation.

GJSFR-A Classification: FOR Code: 029999p

EXACT SOLUTION TO THE SCHRODINGER EQUATION WITH MANNING-ROSEN POTENTIAL VIA WKB APPROXIMATION METHOD

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Exact Solution to the Schrodinger Equation with Manning-Rosen Potential Via WKB Approximation Method

P. I. Amos.^a, B. I. Ita.^a, H. Louis^b, O. U. Akakuru^c, N. A. Nzeata-Ibe^d, A.I. Ikeuba^d, T. O. Magu^x
& Udeze C. L^v

Abstract- In quantum mechanics, exact solutions to equations play an important role because they contain a wealth of important information regarding the system under consideration. Here, we present the use of Wentzel-Kramers-Brillouin (WKB) approach to obtain the exact energy spectrum for Manning-Rosen potential and also, eigen energy solutions of special potential considered were also obtained.

Keywords: schrodinger equation, manning-rosen potential, WKB approximation.

I. INTRODUCTION

Vital information regarding quantum mechanical systems are readily obtained from exact solutions to equations for the system under consideration. For instance, the exact solution of the Schrodinger equation for the hydrogen atom and simple harmonic oscillator provided strong evidence supporting the validity of the quantum theory. However, many quantum systems are treated as approximations because exact solutions are few [1-4]. The bound state energy equation and the unnormalized radial wave functions have been approximately obtained for the Manning-Rosen potential by using the super symmetric WKB approach and the function analysis method [5]. The analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for an arbitrary spin-orbit coupling quantum have been solved [6].

One of the earliest and simplest methods of obtaining approximate eigenvalues of a one-dimensional Schrodinger equation in the limiting case of large quantum numbers was originally proposed by Wentzel, Kramers, and Brillouin which is known as the WKB approximation method [6-10]. In the lowest-order approximation, the WKB quantization condition is:

$$\int_{r_1}^{r_2} \sqrt{2m(E - V(r))} dr = \pi \hbar \left(n + \frac{1}{2} \right), n = 0, 1, 2, \dots \quad (1)$$

In general, Eq. (1) yields moderately accurate eigenvalues as analytic functions of the parameters contained in the potential.

To properly use the WKB approximation for three-dimensional problems with spherical symmetry, it is necessary to apply the one-dimensional WKB formalism to the radial Schrodinger equation

$$\frac{\partial^2 \Psi}{\partial r^2} + \frac{2m}{\hbar^2} [E - V_{eff}(r)] \Psi = 0 \quad (2)$$

where the effective potential $V_{eff}(r)$ is

$$V_{eff}(r) = V(r) + \frac{l(l+1)\hbar^2}{2mr^2}$$

Such a straightforward application leads to an important difficulty in obtaining exact energy eigenvalue solution because the WKB reduced radial wave function at the origin has a behavior which is different from that of the true wave function [11]. For this reason, Langer [12] suggested that the strength of the angular momentum $l(l+1)$ should be treated as an adjustable parameter K , not as a fixed quantity. Langer pointed out that K should be replaced with the term $\left(l + \frac{1}{2}\right)^2$ in the lowest order quantization formula which have great physical meaning. The replacement of $l(l+1) \rightarrow \left(l + \frac{1}{2}\right)^2$ regularizes the radial WKB wave function at the origin and ensure correct asymptotic behaviour at large quantum numbers [9-16].

In this work, our aim is to solve the Schrodinger equation for the Manning-Rosen potential via the WKB approximation method. The Manning-Rosen potential takes the form:

$$V(r) = - \left[\frac{Ce^{-\alpha r} + De^{-2\alpha r}}{(1-e^{-\alpha r})^2} \right] \quad (3)$$

where α is the screening parameter and C & D are the depths of the potential. Not much has been done in solving the Manning-Rosen potential via the WKB method.

Author a ^c ^d ^x ^v: Nanomaterials Research Group, Department of Chemistry, School of Physical Sciences, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria.

Author b ^p: Physical/Theoretical Chemistry Unit, Department of Pure and Applied Chemistry, School of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria. e-mail: louismuzong@gmail.com

Author v: Department of Computer Science, School of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria, Nigeria.

This paper is organized as follows: Section 1 has the introduction, a brief description of the semiclassical quantization and the WKB approximation for the radial solution is reviewed in section 2. In section 3, the radial Schrodinger equation with Manning-Rosen potential is solved. Finally, we give a brief discussion in section 4 before the conclusion in section 5

$$(-i\hbar)^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \psi(r, \theta, \phi) = [2m(E - V(r))] \psi(r, \theta, \phi) \quad (4)$$

The total wave function in Eq. (3) can be defined as

$$\psi(r, \theta, \phi) = [rR(r)] [\sqrt{\sin \theta} \theta(\theta) \Phi(\phi)] \quad (5)$$

And by decomposing the spherical wave function in Eq. (4) using Eq. (5) we obtain the following equations:

$$\left(-i\hbar \frac{d}{dr} \right)^2 R(r) = [2m(E - V(r)) - \frac{\bar{M}^2}{r^2}] R(r), \quad (6)$$

$$\left(-i\hbar \frac{d}{d\theta} \right)^2 \theta(\theta) = \left[\bar{M}^2 - \frac{M_z^2}{\sin^2 \theta} \right] \theta(\theta), \quad (7)$$

$$\left(-i\hbar \frac{d}{d\phi} \right)^2 \Phi(\phi) = M_z^2 \Phi(\phi) \quad (8)$$

where \bar{M}^2 , M_z^2 are the constants of separation and, at the same time, integrals of motion. the squared angular momentum $\bar{M}^2 = (l + \frac{1}{2})^2 \hbar^2$.

Considering Eq. (6), the leading order WKB quantization condition appropriate to Eq. (3) is

$$\int_{r_1}^{r_2} \sqrt{P^2(r)} dr = \pi\hbar \left(n + \frac{1}{2} \right), \quad n=0, 1, 2 \dots \quad (9)$$

where r_2 & r_1 are the classical turning point known as the roots of the equation

$$P^2(r) = 2m(E - V(r)) - \frac{(l + \frac{1}{2})^2 \hbar^2}{r^2} = 0 \quad (10)$$

Eq. (9) is the WKB quantization condition which is subject to discussion in the preceding section. Consider Eq. (6)-(8) in the framework of the quasiclassical

a) *Semiclassical quantization and the WKB approximation*

In this section, we consider the quasi-classical solution of the Schrodinger's equation for the spherically symmetric potentials. Given the Schrodinger equation for a spherically symmetric potentials $V(r)$ of eq. (3) as

method, the solution of each of these equations in the leading \hbar approximation can be written in the form

$$V^{WKB}(r) = \frac{A}{\sqrt{P(r, \lambda)}} \exp \left[\pm \frac{i}{\hbar} \int \sqrt{P^2(r)} dr \right] \quad (11)$$

b) *Solutions to the radial Schrödinger equation*

The radial Schrodinger equation for the Manning-Rosen potential can be solved approximately using the WKB quantization condition Eq. (9). Since the potential of interest slowly varies, we assume that the wave function remains sinusoidal. Hence, we use the effective potential and plug it into the WKB approximation of Eq. (10) and to obtain the exact solution, we consider two turning points.

Given the effective potential of the centrifugal term as:

$$V_{eff}(r) = - \left[\frac{Ce^{-\alpha r} + De^{-2\alpha r}}{(1-e^{-\alpha r})^2} \right] + \frac{(l + \frac{1}{2})^2 \hbar^2}{2mr^2} \quad (12)$$

The wave equation (12) is not an exactly solvable problem even for $l = 0$ because of the centrifugal barrier term. Therefore, to solve eq. (12) analytically, we use an approximation scheme of the exponential-type proposed by Greene and Aldrich [12,13] to deal with the centrifugal term:

$$\frac{1}{r^2} = \frac{\alpha^2 e^{-\alpha r}}{(1-e^{-\alpha r})^2} \quad (13)$$

the potential in Eq. (12) can also be written in the form

$$V_{eff}(r) = - \frac{Ce^{-\alpha r}}{(1-e^{-\alpha r})^2} - \frac{De^{-2\alpha r}}{(1-e^{-\alpha r})^2} + \frac{\alpha^2 \hbar^2 (l + \frac{1}{2})^2 e^{-\alpha r}}{2m(1-e^{-\alpha r})^2} \quad (14)$$

Subs. Eq. (14) into Eq. (9), we have

$$\int_{r_1}^{r_2} \sqrt{2m} \left(E_{nl} + \frac{Ce^{-\alpha r}}{(1-e^{-\alpha r})^2} + \frac{De^{-2\alpha r}}{(1-e^{-\alpha r})^2} - \frac{\alpha^2 \hbar^2 (l + \frac{1}{2})^2 e^{-\alpha r}}{2m(1-e^{-\alpha r})^2} \right) dr = \pi \left(n + \frac{1}{2} \right) \quad (15)$$

Let

$$\bar{M}^2 = \frac{\alpha^2 \hbar^2 (l + \frac{1}{2})^2}{2m} \quad (16)$$

$$\int_{r_1}^{r_2} \sqrt{2m} \left(E_{nl} + \frac{Ce^{-\alpha r}}{(1-e^{-\alpha r})^2} + \frac{De^{-2\alpha r}}{(1-e^{-\alpha r})^2} - \frac{\bar{M}^2 e^{-\alpha r}}{(1-e^{-\alpha r})^2} \right) dr = \pi\hbar \left(n + \frac{1}{2} \right) \quad (17)$$

making the transformation $z = \frac{e^{-\alpha r}}{1-e^{-\alpha r}}$, we obtain

$$\frac{-\sqrt{2m}}{\alpha\hbar} \int_{z_1}^{z_2} \frac{1}{z(1+z)} \sqrt{E_{nl} + Cz(1+z) + Dz^2 - \bar{M}^2 z(1+z)} dz = \pi \left(n + \frac{1}{2} \right) \quad (19)$$

$$\frac{-\sqrt{2m}}{\alpha\hbar} \int_{z_1}^{z_2} \frac{1}{z(1+z)} \sqrt{-(\vec{M}^2 - C - D)z^2 + (C - \vec{M}^2)z + E_{nl}} dz = \pi \left(n + \frac{1}{2} \right) \quad (20)$$

$$\frac{-\sqrt{2m(\vec{M}^2 - C - D)}}{\alpha\hbar} \int_{z_1}^{z_2} \frac{1}{z(1+z)} \sqrt{-z^2 + \frac{C - \vec{M}^2}{(\vec{M}^2 - C - D)} z + \frac{E_{nl}}{(\vec{M}^2 - C - D)}} dz = \pi \left(n + \frac{1}{2} \right) \quad (21)$$

Let $\frac{C - \vec{M}^2}{(\vec{M}^2 - C - D)} = b$, and $\frac{E}{(\vec{M}^2 - C - D)} = -c$, we have

$$\frac{-\sqrt{2m(\vec{M}^2 - C - D)}}{\alpha\hbar} \int_{z_1}^{z_2} \frac{1}{z(1+z)} \sqrt{-z^2 + bz - c} dz = \pi \left(n + \frac{1}{2} \right) \quad (23)$$

$$\frac{-\sqrt{2m(\vec{M}^2 - C - D)}}{\alpha} \int_{z_1}^{z_2} \frac{1}{z(1+z)} \sqrt{(z - z_1)(z_2 - z)} dz = \pi\hbar \left(n + \frac{1}{2} \right) \quad (24)$$

where we obtain the turning points z_2 & z_1 from the terms inside the square roots as

$$z_1 = \frac{-b - \sqrt{b^2 - 4C}}{2}$$

$$z_2 = \frac{-b + \sqrt{b^2 - 4C}}{2}$$

let $2z + 1 = y$; $dz = \frac{dy}{2}$

subs. Eq. (25) into Eq. (24), we obtain

$$\int_{y_1}^{y_2} \frac{1}{y^2 - 1} \sqrt{(y - y_1)(y_2 - y)} dy = \frac{-\alpha\pi\hbar(n + \frac{1}{2})}{\sqrt{2m(\vec{M}^2 - C - D)}} \quad (26)$$

For computing the integral in equation (26), we use the integral expression [13,14]

$$\int_{y_1}^{y_2} \frac{1}{y^2 - 1} \sqrt{(y - y_1)(y_2 - y)} dy = \frac{\pi}{2} [\sqrt{(y_1 + 1)(y_2 + 1)} - \sqrt{(y_1 - 1)(y_2 - 1)} + 2] \quad (27)$$

where the limits y_1, y_2 are real numbers, with $y_1 < y_2$. Comparing equation (27) with equation (26), and solving for E_{nl} gives

$$E_{nl} = -\frac{\alpha^2\hbar^2}{2\mu} \left[\frac{\left(l + \frac{1}{2} \right)^2 - \frac{2\mu C}{\alpha^2\hbar^2} + \left(n + \frac{1}{2} \right)^2 + (2n+1) \sqrt{\left(l + \frac{1}{2} \right)^2 - \frac{2\mu C}{\alpha^2\hbar^2} - \frac{2\mu D}{\alpha^2\hbar^2}}}{2n+1+2 \sqrt{\left(l + \frac{1}{2} \right)^2 - \frac{2\mu D}{\alpha^2\hbar^2} - \frac{2\mu C}{\alpha^2\hbar^2}}} \right]^2 \quad (28)$$

II. CONCLUSION

In this paper, we present the exact energy spectrum for present for Manning-Rosen potential using the Wentzel-Kramers-Brillouin WKB approach. The energy eigen values and the corresponding total normalized wave functions expressed in terms of the hyper geometric functions for the system are also obtained.

REFERENCES RÉFÉRENCES REFERENCIAS

1. S.H. Dong, Factorization Method in Quantum Mechanics, Springer, 2007.
2. W.C. Qiang, S.H. Dong, Phys. Lett. A 368 (2007) 13.
3. L.I. Schiff, Quantum Mechanics, third ed., McGraw-Hill, New York, 1995.
4. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, third ed., Pergamon, New York, 1977.
5. C.-S. Jia, T. Chen, S. He, Phys Lett A, 377 (2013) 682-686.
6. G.-F. Wei, S.-H. Dong, Phys Lett A, 373 (2008) 49-53.
7. R.N. Fadilla, N.D. Aisyah, H.K. Diponjono, F. Rusydi, Procedia Engineering, 170 (2017) 113-118.
8. M.C. Palmer, M. Takahashi, H.F. Westman, Annals of Physics, 336 (2013) 505-516.

9. E.M. Rabei, S.I. Muslih, D. Baleanu, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 807-811.
10. M.N. Sergeenko. (1998). Quantum fluctuations of the angular momentum and energy of the ground states. *Mod. Phys. Lett. A*. 13, 33-38.
11. M.N. Sergeenko. (1998). Semiclassical wave equation and exactness of the WKB method. *Phys. Rev. A*. Vol. 53, pp. 3798-3811
12. R.E. Langer. (1937). On the Connection Formula and the Solutions of the Wave Equation. *Phys. Rev.* 51, 669 -676
13. R. L. Greene and C. Aldrich. (1976). *Phys. Rev. A* 14, 2363
14. Hruska M, Keung W Y, and Sukhatme U (1997) *Phys. Rev. A* 55 3345
15. Louis H., Ita B.I., Amos P.I., Akakuru O.U., Orosun M.M., Nzeata-Ibe N.A and Philip M. *IJCPS* Vol. 7, No.1, Jan-Feb 2018
16. Louis H, Ita B.I., Amos P.I., Akakuru O.U., Orosun M.M., Nzeata-Ibe N.A and Philip M. *IJCPS* Vol. 7, No.1, Jan-Feb 2018

GLOBAL JOURNALS GUIDELINES HANDBOOK 2018

WWW.GLOBALJOURNALS.ORG