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Brillouin (WKB) approach toobtain the exact energy spectrum
for Manning-Rosen potential and also, eigen energy solutions
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I. [NTRODUCTION

ital information regarding quantum mechanical
systems are readily obtained from exact solutions

to equations for the system under consideration.
For instance, the exact solution of the Schrodinger
equation for the hydrogen atom and simple harmonic
oscillator provided strong evidence supporting the
validity of the quantum theory. However, many quantum
systems are treated as approximations because exact
solutions are few [1-4]. The bound state energy
equation and the unnormalized radial wave functions
have been approximately obtained for the Manning-
Rosen potential by using the super symmetric WKB
approach and the function analysis method [5]. The
analytical bound state solutions of the Dirac equation
with the Manning—Rosen potential for an arbitrary spin-
orbit coupling quantum have been solved [6].

One of the earliest and simplest methods of
obtaining approximate eigenvalues of a one-
dimensional Schrodinger equation in the limiting case of
large quantum numbers was originally proposed by
Wentzel, Kramers, and Brillouin which isknown as the
WKB approximation method [6-10]. In the lowest- order
approximation, the WKB quantization condition is:
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In general, Eqg. (1) yields moderately accurate
eigenvalues as analytic functions of the parameters
contained in the potential.

To properly use the WKB approximation for
three-dimensional problems with spherical symmetry, it
is necessary to apply the one-dimensional WKB
formalism to the radial Schrodinger equation
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where the effective potential V,, (r) is
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Such a straightforward application leads to an
important difficulty in obtaining exact energy eigenvalue
solution because the WKB reduced radial wave function
at the origin has a behavior which is different from that
of the true wave function [11]. For this reason, Langer
[12] suggested that the strength of the angular
momentum [(l + 1) should be treated as an adjustable
parameter K, not as a fixed quantity. Langer pointed out

2
that K should be replaced with the term (l +%) in the

lowest order quantization formula which have great
physical meaning. The replacement of I(l+1) -

2
(l + %) regularizes the radial WKB wave function at the

origin and ensure correct asymptotic behaviour at large
quantum numbers [9-16].

In this work, our aim is to solve the Schrodinger
equation for the Manning-Rosen potential via the WKB
approximation method. The Manning-Rosen potential
takes the form:

V) = M] ©)

- (l—e —o<r)2

where a is the screening parameter and € & D are the
depths of the potential. Not much has been done in
solving the Manning-Rosen potential via the WKB
method.
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This paper is organized as follows: Section 1
has the introduction, a brief description of the
semiclassical quantization and the WKB approximation
for the radial solution is reviewed in section 2. In section
3, the radial Schrodinger equation with Manning-Rosen
potential is solved. Finally, we give a brief discussion in
section 4 before the conclusion in section 5
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The total wave function in Eg. (3) can be
defined as

¥(r,6,¢) = [rR(N][Vsindo()®(¢)] (5)

And by decomposing the spherical wave
function in Eq. (4) using Eq. (5) we obtain the following
equations:
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where M? M? are te constants of separation and, at the
same time, integrals of motion. the squared angular

momentum M? = (l + %)2 B2,

Considering Eqg. (6), the leading order WKB
guantization condition appropriate to Eq. (3) is

f:lz./Pz(r)dr=nb(n+%),n=O,1,2... 9)

where 1, & r; are the classical turmning point known as
the roots of the equation

=0 (10)
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eq. (9) is the WKB quantization condition which is
subject to discussion in the preceding section. Consider

Eg. (6)-(8) in the framework of the quasiclassical

a) Semiclassical and the WKB
approximation

In this section, we consider the quasi-classical

solution of the Schrodinger’s equation for the spherically

symmetric potentials. Given the Schrodinger equation

for a spherically symmetric potentials V (r) of eq. (3) as

quantization

Vw(r,6,¢) = [2m(E - V()] $(r,6,4) @

method, the solution of each of these equations in the
leading b approximation can be written in the form

A

o OP [i éf P%(r) dr]

b) Solutions to the radial Schrddinger equation

The radial Schrodinger equation for the
Manning-Rosen potential can be solved approximately
using the WKB quantization condition Eq. (9). Since the
potential of interest slowly varies, we assume that the
wave function remains sinusoidal. Hence, we use the
effective potential and plug it into the WKB
approximation of Eqg. (10) and to obtain the exact
solution, we consider two turning points.
Given the effective potential of the centrifugal term as:
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The wave equation (12) is not an exactly
solvable problem even for [ =0 because of the
centrifugal barrier term. Therefore, to solve eq. (12)
analytically, we use an approximation scheme of the
exponential-type proposed by Greene and Aldrich
[12,13] to deal with the centrifugal term:
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the potential in Eq. (12) can also be written in the form
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Subs. Eq. (14) into Eq. (9), we have

(14)

De—2«r

) ) Ce %"
[APRrydr = [ J 2m (Enl t et

azbz(z%)z

(l—e —o(r)Z -

2m(1—e—ar)2

azbz(l-%)ze—ur) dr = (n N l)
2

Let M? =
2m
) Ce—%T De—2«r M2e—ar
17 J2m (Bu + 55
. . e 4" .
making the transformation z = ——-, we obtain

1
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a

where we obtain the turning points z, & z; from the terms inside the square roots as
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let 2z + 1 = y;dz = = (25)
subs. Eq. (25) into EqQ. (24), we obtain
V2 —anb(n+5)
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For computing the integral in equation (26), we use the integral expression [13,14]
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where the limits y,, y, are real numbers, with y; <y,. Comparing equation (27) with equation (26), and solving for E,,,
gives
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