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Annotation-

 

This article focuses on the dynamic behavior of a cylindrical shell (elastic or visco-elastic) contacting with 
ideal (or viscous) liquid. The problem of wave propagation in a cylindrical shell filled or submerged liquid has great 
practical importance. The phenomenon of wave-like motion of the fluid in the elastic cylindrical shells attracted the 
attention of many researchers [1, 2, 3, 4, 5, 6]. In these works devoted to wave processes in the elastic cylindrical shell - 
ideal liquid, used and refined classical equations of shells, consider the influence of the radial and longitudinal inertial 
forces, considered the average density of the flow of liquid or gas. In works  [7, 8, 9] analyzes the laws of wave 
processes in an elastic shell with viscous fluid in the model of the linear equations of hydrodynamics of a viscous 
compressible fluid. Unlike other systems are cylindrical shell (elastic or viscoelastic) and liquid (ideal or viscous) is 
regarded as inhomogeneous dissipative mechanical system [10, 11, 12].  
Keywords:

 

the cylindrical shell, viscous barotropic liquid, wave process, dissipative non-uniform, wavy motion. 

I.

 

Statement

 

of the Problem

 
An infinite length of deformable (viscoelastic) cylindrical shell of radius R with 

constant thickness 0h , density

 

0ρ , Poisson's ratio 0ν , filled with a viscous fluid with 

density at equilibrium. Fluctuations of a shell under a load, the density of which is 
denoted p1 , p2

 

, pn

 

respectively, can be described by following [1, 2, 4], equations:
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 Here 

 

( )zr uuuuu ,, θ


= - displacement vector points of the middle surface of the 

shell and membranes for Kirchhoff - Love it has a dimension equal to three

 
( )wuvuuu zr === ;; θ , and to membranes such as the dimension of Timoshenko u

 
is five. Here, in addition to the axial, circumferential and normal movements added 
more angles of rotation normal to the middle surface in the axial and circumferential 

directions [12];  { }Twvu -

 

the displacement vector with axial, radial and circumferential 

components, respectively (“+" sign in front of pn

 

and the sign

 

“-" before the last 
component of the inertial member says that is considered positive motion towards the 
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center of curvature); ( )τ−tRE –  the core of relaxation; 0E –  instantaneous modulus of 
elasticity.  

The amplitudes of the oscillations are considered small, which allows you to 
record the basic relations in the framework of the linear theory. The system of linear 
equations of motion of a viscous barotropic liquid can be written as [12]:  
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Here, in the equations (2) ϑ


=

 

),,( zr ϑϑϑϑ θ


-  the velocity vector of fluid 

particles; ∗ρ and Р- disturbance density and fluid pressure; ∗
0ρ

 

and а0

 

–

 

density and 

sound velocity in the fluid at rest;  ∗∗ µν ,  - kinematic and dynamic viscosity; for the 

second viscosity coefficient ∗λ

 

accepted ratio  ∗λ = ∗− µ
3
2 ;  θrrrrz ррр ,, -  components of 

the stress tensor in the fluid. Equation (1), respectively, kinematic and dynamic 
boundary conditions, which, because of the thin-walled shell, we will meet on the 
middle surface (r=R).  Equations (1) and (2) is a closed system of relations hydro visco 
elastic cylindrical shell for containing a viscous compressible fluid. This for shell obeying 
Kirchhoff-Love hypotheses. Be investigated joint shell and liquid fluctuations, harmonic 
of the axial coordinate z

 

and decay exponentially over time, or time-harmonic and 
damped with respect to z.  

 

II.

 

Method

 

of  Solution

 

We accept the integral terms in (1) small, then the function ( ) ( ) ti Retrtru ωψ −= ,, 
, 

where ( )tr ,ψ -  slowly varying function of time, Rω -  real constant. Next, using the 

procedure of freezing [18], then the integral-differential equation (1) takes the form 
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where, for shell Kirchhoff - Love  
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cos ττωτω dR RR
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∞
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0

sin ττωτω dR RR
S - respectively, cosine and sine Fourier 

transforms relaxation kernel material. As an example, the viscoelastic material take 

three parametric kernel relaxation ( ) αβ −−= 1/ tAetR t ,  ρ – material density shell; E – 
Young's modulus; ν

 
–
 
Poisson's ratio,

 

.12/ 22 Rha =
 
Let's move on to the dimensionless 

axial coordinate Rx /=ξ   and multiply by 
 
system (3). The matrix of the resulting 

system will take the form
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(4) 

Expanding equation (2) and (3) in coordinate form, it is easy to see that the 
relations (2) - (3) break up into independent boundary value problems: 

- Torsional vibrations: 
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- Longitudinal transverse vibrations: 
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Let the wave process is periodic in  and fades over time, then is given a real 
wave number  , and the complex frequency is the desired characteristic value. Solution 
of (2) - (6) for the major unknowns satisfying constraints imposed above the 
dependence on time and coordinates , should be sought in the form [14]  
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Expressions (7) in the form
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,  

where  rσ , zτ , ϕτ , mmm WVU ,, , rϑ , θϑ , zϑ -  Amplitude integrated vector - function; к–
 

wavy number;   С -  phase velocity;   ω  –  
complex frequency; m –  

circumferential wave 
number (the number of district-wave), takes values  When , 
happening Ax symmetrical vibrations.  This approach allows you to seek a solution for 
every fixed value of the wave number of the district  independently.  

In this way С, k, ω  it is well-known real and complex spectral parameters of the 
type of problem.    

To elucidate their physical meaning consider two cases:
 

1)
 
Rкк =

 
; С

 
= СR

 
+iCi, Then the solution of (5) has the form of a sine wave х, whose 

amplitude decays over time;
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2) IR iккк += ; С  = СR, Then at each point  fluctuations established, but х attenuate.                                                                                                                                            

In the case of axially symmetric on the axis r = 0 conditions must be satisfied 

conditions  0== rzr рр θ , rϑ =0.    If the outer surface г  assumed stationary, then  

ur=uz=uφ=0. The superposition of the solutions (8) forms an exponentially decaying 
over time the standing wave that describes the natural oscillations of a liquid and a 
cylindrical shell of finite length with boundary conditions. With infinite length 
sheath similarly specified type of movement (8) will be called  
fluctuations.  In the case of steady-state over time and fading coordinate the 
process, in contrast, is a well-known real rate of ω , as desired be a complex wave 

number k. In contrast to their own, these fluctuations will be called the established. 
Actual values of the ω   in the first case, and k, second frequency have the physical 
meaning of the process in time and the coordinate, respectively. Imaginary part - the 
rate of decay of wave processes in time and , respectively [13]. The value of 1/Imk 
sometimes defined as the interval damped wave propagation. In the extreme case, 
the elastic range spread endless. The degree of attenuation of wave process in the 
time period is characterized by the logarithmic decrement  

                                            
  

 

 

 

The values

 

Сс

 

and Су

 

have physical sense speeds of zero state at its own and 
steady oscillations, respectively, and, in contrast to the elastic (real) case, do not 
coincide with each other at the same frequencies. Two types of oscillations (and set 
their own), you can put two

 

different formulations of the problem. And in the non-
stationary case, namely the Cauchy problem for an infinite shell and boundary value 
problem for the semi-infinite interval changes Z. In either case, the solution is using the 
integral transformation of the decisions of the respective steady-state problems. For 

example, in the case of the Cauchy problem, the main vector of unknowns 
c

Y . It can be

 

in a superposition of waves
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You can also introduce the concept of phase velocity of its own and steady motions

k
c

R
c yc Re

,Re ωω
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kky Re/Im2πδ = . 

Decrement is similar to the spatial

ωωπδ Re/Im2=c                                  (8)
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Similarly, the main vector of unknowns 
y

Y  boundary value problem is calculated 
according to the expression  
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where 
y
kY -  forms steady-state oscillation, the linear combination of which should form 

a Fourier spectrum given boundary perturbation
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Obviously, the solutions (8) and (9) have a meaning only
 

when there are (10) 
and (11). So, there are four possible variants of steady motions, which are discussed 
below, and established their own systems fluctuations shell - fluid inside and outside the 
sheath liquid [15]. Substituting the solution (7) in the system of differential equations 
(2)  - (6) we obtain a system of ordinary differential equations with complex coefficients, 

which is solved by Godunov’s orthogonal sweep method with a combination of method 
of Muller [18] in the complex arithmetic.

 

III.
 

Torsional  Vibrations  
After performing in (5) the change of variables (7) permitting relations 

describing stationary torsional vibrations of the shell liquid, formulated in the form of 
the spectral boundary value problem for a system of two ordinary differential equations 
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The solution of equation (13) is limited at r = 0
 

has the form
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where J1-  Bessel function of the first order, and A

 

is an arbitrary constant. Given the 
immobility of the shell, we obtain the dispersion equation
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from whence 

 

First investigate fluctuations of fluid in the walls. Equations (12) can be 
converted to a single equation for the displacement v
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Hold the expansions (19) only the first term, we obtain 
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dispersion equation of torsional vibrations or dry shell filled with an ideal liquid, 
keeping in (19) on the first two terms, we have the equation
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the root of which, for example, in the case of steady-state oscillations is given by
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The direct solution of the equation (18) comes up against certain difficulties 
caused by the need to calculate the Bessel functions of complex argument. Therefore we 
examine (18) by means of asymptotic representations of these functions at small and
large arguments z. The smallness of z occurs in the low-frequency vibrations. According 
to the known expansion J0 and J1 power series

which was first obtained in A. Guz  [7].  Here we have introduced new designations

in the case of natural oscillations and

                                              ∗+−=
v

inГkn
ω2                                    (17) 

in the case of steady-state oscillations. Here, through the Гn marked the roots of Bessel 
functions assigned to R. As it can be seen from (15), (16) own motion aperiodicity 

always on time, with the anchor points are fixed (the phase velocity Со=0), while the 
steady motion are oscillatory in nature, as the nodal point move at the speed of Су, a 

monotonically increasing from zero to indefinitely with an increase in viscosity or ∗ν . 

These characteristic features of the motion of a viscous medium will appear in the 
following more complex example.

Let us now consider the relation (12) in the case of the internal arrangement of 
the liquid. This problem can be solved in the same way using special features and have 
a dispersion equation  
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The physical interpretation of (18) is provided below. Consider now the situation 
when z  is large enough, which corresponds to a high-frequency vibrations and low 
viscosity. In this case the asymptotic formulas for the Bessel functions have the form  

)
4

sin()2()(),
4

cos()2()( 2/1
1

2/1
0

π
π

π
π

−≅−≅ z
z

zJz
z

zJ  

On the basis of (20) and (21) it is easy to show that for sufficiently large positive 

imaginary part z:   .)(/)( 10 izJzJ −≅    Substituting (1) and further assuming smallness 
∗ν

 
in comparison with the 

2k
ω , to obtain an approximate dispersion equation, which is 

also contained in the [7]                                       
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2
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Rh
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a
k

ω
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Where, in the pursuit of the viscosity ∗v
 

to zero (and also tends ω
 

to infinity), 
we have a trivial result 0→ , which was obtained at low ω

 
from equation (20). 

Equation (22) when an unacceptably high viscosities. In this case, the phase velocity  

unlimited increases with ω. This example shows inconsistencies of various asymptotic 
estimates in the mid-frequency vibrations. Thus, the analysis of wave processes 
asymptotic methods in the first approximation is not possible to establish the limits of 
applicability of formulas and calculations to estimate the error. In this paper for solving 
spectral problems using a direct numerical integration of  permitting relations of the 
type (12) by the method of orthogonal shooting in complex arithmetic. This approach 
avoids the above difficulties associated with the calculation of Bessel functions of 
complex argument. Another advantage is due to the specificity of the orthogonal sweep 
method, which is due to the procedure orthonormality can solve highly rigid system 
with a boundary layer. As a result of a numerical study has found that the problem of 
natural oscillations (12) admits no more than one complex value ω, corresponding 
vibrations of the shell together with the adjacent liquid layers to it. The rest found the 
Eigen values appeared purely imaginary. They correspond to the a periodic motion of a 
fluid with almost stationary shell. Proper form corresponding complex values also are 
complex, that is, the phase of joint oscillations of the shell and liquid is not the same 
along the radius. In the case of steady-state oscillations all the calculated Eigen values k 
and their own forms be complex.   
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Figure 2: Dependence of the logarithmic decrement ( сδ ) on the wave numbers (k) for 

different values of η. 1-0.0009; 2-0.0018; 3-0.18, 4-0.19, 5-0.20; 6-0.22 
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Figure 1: Dependence of the real part of the complex frequencies (Reω ) to wave 
numbers (k) for different values of η. 1-0.0009; 2-0.0018; 3-0.18, 4-0.19, 5-according to 
the formula (20); By the formula (22)
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Figure 3: Dependence of ϑ on the wave number r, for different values of the 
liquid 1-0.0009; 2-0.0018; 3-0.18;4-0.19 
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Figure 4: Dependence of the imaginary part of the complex frequencies (Im) to wave 

numbers (k) for different values of η: 1-0.0009; 2-0.0018; 3-0.18; 4-0.19;--- by the 
formula (22)

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
V
ol
um

e
X
V
III  

 I
ss
ue

  
  
 e

rs
io
n 

I
V

I
Y
ea

r
20

18

74

  
 

( F
)

 viscosity of a 

Notes

© 2018   Global Journals

Own Waves in a Cylindrical Shell in Contact with a Viscous Liquid



 
 
 
 
 
 

                        
 

                      
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:
 

Dependence of the spatial decrement on the wave number k for different 

values of η: 1-0.0009; 2-0.0018; 3-0.18; 4-0.19
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:

 

Dependence of ϑ

 

on the wave number r. When 0018,0,8 == ηω 
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Figure 7:  Dependence of ϑ  on the wave number. When 018,0,8 == ηω  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:  Dependence of ϑ  on the wave number r. When 0018,0,16 == ηω  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9:  Dependence of ϑ  on the wave number r. When 018,0,16 == ηω  
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IV. Numerical Results 

Consider the case of natural oscillations, when the shell is filled with liquid. In 
Figure 1,2,3,4,6,7,8  c and 1,2,4,5 show, respectively, depending on the dispersion curves 

Re ω, Im ω, δ  the wave number k- the first mode, in which the damping coefficients of 
the smallest, and the Eigen values are complex Bat. In accordance with the numbering 

of graphs asked four different values of the coefficient η  1) 0.0009:   2) 0.0018   3)0.15   

4)0.018 (а= 0.6199; 25.0;1;0101.0~;0529.0~
0 ==== νρ Rh .) for the remaining 

parameters according to (1) In Fig. 3,6,7,8,9 to show their own forms Rev for values k 
equal to 1 and 8, respectively. It is easy to notice the difference in the behavior 
characteristic of the dispersion curves 1.2 and 3.4. In the last two cases, there is a wave 
number since a variable with only takes purely imaginary values corresponding to a 
periodic motion of the system. For curves 1.2 with less viscosity real part of the Eigen 
values Reω   nonzero at all wave numbers and the damping rate has a finite limit at 
infinity. The greater the viscosity, the earlier start a periodic traffic (curves 3,4) and the 
higher limit of the damping rate (curves 1,2). It follows that where is a minimum 

critical viscosity ηk, above which a zone of high wave numbers of the first mode, there 
are a periodic wave number. As a result of numerical experiment, it was found that the 

critical values of the coefficient of viscosity ηk, is in the range [ ]0.0125   0.0120 .  Analyzing 

the dependence of energy dissipation on the wave number, two opposite tendencies 
should be noted. As the wave number increases, at a fixed amplitude, tangential 
stresses linearly increase according to (6): c another, as shown in Fig. 3, localization of 
the fluid motion amplitudes near the shell simultaneously results, which leads to a 
decrease in the mass of fluid involved in the motion, as well as tangential stresses. The 
difference in the behavior of curves 1,2 and 3,4 is due to which of the two tendencies 
prevails. At small wave numbers, a linear dependence of the eigenfunction v on the 
radius is observed, that is, the entire mass of the liquid is involved in the motion. As k 
increases, the central part of the liquid begins to "not keep up" with the vibrations of 
the shell, which leads to the localization of the amplitudes. The rate of localization 
depends on the viscosity of the liquid. If the localization occurs slowly, then starting 
from some k (owing to the growth of stresses), the self-motions become aperiodic 
(curves 3,4). If, on the other hand, the average amplitude of the fluid oscillation 
decreases rapidly enough, the motions will always remain oscillatory (curves 1,2). In 
this case, large voltage wave numbers prevail over voltages, and increase with increasing 
localization. In view of the latter circumstance, the damping coefficient always increases 
with increasing k. The linear dependence of the shape on the radius at small k also 
indicates the fulfillment of the flat-section hypothesis on which the elementary theory of 
viscoelastic rods is based. Using the Ritz method one can find the parameters of the 
Feucht core model and determine the limits of applicability of this model in the 
framework of the hydrodynamic theory, but for a narrower class of straight rods of 
circular cross section. Variational equation of the principle of possible displacements, 
equivalent to the relations 
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has the form. Choosing a linear function as the basis 
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,),(),,( rtztzru ϕϕ =                                      (24) 

and after substituting (24) into (23) and the standard procedure, we obtain where the 
parameters β  and a0

 are expressed in terms of the polar moments of inertia of the shell 

I1
 and liquid I0

 as follows                                              
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Where the following relations satisfy                                               

 

                                       
( ) .01 222

0 =−− ωωβiка
                                      (26)

 

Taking into account the relation I1

 

/ I0

 

= 4h, it is easy to see that equation (26) 
coincides with equation (22), which was obtained for the asymptotic solution of problem 
(16) for small oscillation frequencies. In Fig.1,4 The dotted lines show the dispersion 
curves of natural oscillations found

 

from Eq. (22). As follows from the figures, a 
satisfactory coincidence of dotted and continuous lines is observed in the region of small 
wave numbers whose upper bound exceeds unity in this case and increases with 
increasing viscosity of the liquid. In the short-wavelength range, there is a discrepancy 
due to the localization of the oscillation amplitudes near the shell. Small wave numbers 
correspond to the natural vibrations of long finite tubes. We now turn to an analysis of 
the steady-state oscillations

 

of a shell filled with a liquid. Figure 1-9 shows the 
dispersion curves and waveforms for two values of the viscosity coefficient (below and 
above the critical value) 1) 0.0018, 2) 0.018 and the same values of the remaining 
parameters as in (22). In the first case of relatively low viscosity, the results of the 
calculation are in good agreement with the asymptotic solutions of the Goose equation 
(18) at high frequencies.                                                                                               

 

V.

 

Longitudinal  - Transverse  Vibrations

 

This section analyzes the stationary longitudinal-transverse vibrations of a shell 
filled with fluid, which according to (6) can be described by a system of four ordinary 
differential equations          

 

The solution of (25) is represented in the form
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Equation (23) describes the torsional vibrations of a viscoelastic Feucht rod 
according to the relations
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With the boundary conditions 

 

      

.
1

;0)(

;0)(:

;0,0:0

2
0

02
1

2
0

2
10

4

ν
ωρτ

ωρσ

τϑ

−
==+−∇−

=−+++∇=

===

Eh
Cwhu

R
ukivC

uhkwiv
R
u

R
CuDRr

r

z

r

zr

                    (28)

 

 
 

                                 )2(

2

2
00 ηωρ

ϑ
ηωσ

+−







 ++−

=
kiC

r
ikui

p

r
r

               (29)

 

The spectral problems (27), (28), as in the case of longitudinal - transverse
 vibrations were solved by orthogonal shooting. To find the roots of the characteristic 

equation method were used Mueller. 
 

VI.
 

Numerical Results
 

The results of numerical study of natural oscillations. Figure 10 shows the 

dispersion curves ωRe   the wave number k - for the case of an incompressible (С0 = ∞
- dot-dash line) and compressible (С0=0, 1 - solid line) of the liquid. Shell parameters 

and coefficients of viscosity taken following:  h0 = 0, 05; р=1,8; v0 = 0,25; h=6,  011*10

-4); к=-2 η/3.  Here and henceforth given dimensionless quantities for which the units 

of length and mass density are  
0

2
1

0 1,,
ρ

ρ








E
RR . For an incompressible fluid, there are 

two modes, corresponding mainly longitudinal (curve 1) and preferably a cross (curve 2) 
fluctuations in the shell, with complex Eigen values. All other traffic have their own 
imaginary Eigen values, that is a periodic in time. The dashed lines in Figure 10 are 
designated the dispersion curves corresponding to the vibrations of a shell with an ideal 
incompressible fluid. The solution of the latter problem is given below. It should be 
noted that, unlike the dry shell joint oscillations transverse vibrations of said sheath 
fluid density p1, It takes place on a smaller compared to the frequency of longitudinal 
vibrations in the entire range of the wave number. When administered viscosity 
oscillation frequency of the first

 
mode decreases, apparently due to the involvement of 

additional masses in movement of fluid in the boundary layer and in the second mode 
appears critical wave number restricting oscillatory motions bottom region. In [15], who 
investigated the steady oscillations, noted the desire for zero phase velocity of the 

( 

The value of р in the first equation of system (27) is defined through the main 
unknowns according to the expression 

lowest mode with decreasing frequency. Proper motion of the shell and the viscous 
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compressible fluid has an infinite number of modes. The paper S. Vasin et al. [16] using 
asymptotic methods of solving, the latter effect could not be found. Fig.11 shows the 
dispersion curves for the first four events with a minimum of vibration frequencies 
(curves 3,4,5,6) in ascending order of magnitude ωRe . Comparing curves 1.2 and 3.4 
together, we

 
can see that the second worse than the first few vibration modes of the 

shell - compressible fluid to the selected parameters are satisfactorily described by a 
model of an incompressible fluid in the region of wave numbers  k

 
1. This gives 

grounds for the study of the said system in the first approximation neglect the 
compressibility of the fluid. System elastic shell - is a viscous liquid dissipations- 
inhomogeneous viscoelastic body at a radial coordinate. Moreover, in contrast to the 
earlier torsional

 
vibrations here for an incompressible fluid, there are two, and 

compressible - unlimited number of vibration modes. It is interesting to find out how 
this system can be shown a synergistic effect. Figure 11 shows the dispersion curves (2) 
for the following parameters of the shell and liquid:

 
∞=⋅==== −

0
4

3 ;10071,7;25,0;80;05,0 Ctvh ηρ
 

Dash-dotted lines correspond to fluctuations in the dry shell. The dashed lines 
show the frequency dependence for the case of an ideal fluid v = 0. In contrast with the 
previously discussed embodiment, the density p = 8, in this case partial frequency (v =

 0) of the longitudinal and transverse vibrations of the shell with a perfect fluid 
intersect. It is natural to expect that the v near the intersection of partial frequencies 
will be a strong connectedness of both modes, leading to increased energy, resulting in a 
synergistic effect. Indeed, the presence of events demonstrates the effect of the 
conversion of Vina- longitudinal mode in transverse and longitudinal cross-section in a 
change of the wave number in the vicinity of the intersection of partial frequencies. 
Violation of the monotony of growth and synergies. Compared to the previous 
description of this effect there are two features. Firstly, the effect is far from the place 
of approximation curves of two modes, secondly, damping factor curves do not 
intersect. Yu. Novichkov in [17] investigated the coherence of joint oscillations of ideal 
compressible gas and the shell with the help of diagrams wines. As he examined the 
frequency of partial oscillations of gas in rigid walls and an empty shell.

 Returning to Figure 11, we note a similar manifestation of the effect of wines in 
places of convergence curves 4.5 and 5.6. In these areas in Fig. 3 there is a synergistic 
effect for the curves. It is interesting to trace the influence of fluid viscosity on 
connectivity modes. 3.4 Curves in Figure 4 correspond to the value of the viscosity 
coefficient

 

η=0,11 at constant other parameters. In this case, fashion predominantly 
transverse vibrations are defined on a finite interval of the wave of change, and the 
effect

 

of guilt is not observed, indicating a loose coupling modes. Another large increase 

in viscosity (η=0,13, curve 5) leads to the fact that fashion is everywhere transverse 

vibrations becomes a periodic and у

 

longitudinal oscillations appear critical wave 
numbers, limiting the scope of the vibration motions of the top. The physical nature of 
the observed effect is revealed when analyzing the vibrations of a shell filled with a 
perfect fluid. The equations of harmonic oscillations of an ideal liquid is easy to deduce 
from (27), formally putting viscosity coefficients equal to zero.
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General solution of (26) satisfying the finiteness condition unknown at zero, has 
the form
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where А

 

arbitrary constant:J0, Jl,- Bessel functions of zero and first order, respectively. 
The boundary conditions at the r=R similarly written conditions (28) 
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where w - axial movement of the shell, which is not now coincides with the axial 
movement of the liquid. After substitution of the solutions (22) of (23) there is a system 

of homogeneous linear algebraic equations in the unknown А

 

and U1. The roots of the 
determinant of this system are the desired Eigen values, and its decision to define the 

relation between А

 

and U1 .  
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Figure 10: Addiction Reω with the wave number k in the case of an incompressible fluid
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Figure 11:

 

Addiction Im a the wave number in the case of a compressible fluid

 

For an incompressible fluid, there are two real own Bessel functions I0

 

and I1
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Unlike dry shell here second frequency locking is absent and the phase speed at 
low k

 

equal to the
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R
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                                     (34) 

which coincides with the speed of the wave Rezalya (see. the review at the beginning of 

this chapter). In the case of a compressible fluid 0=ν and limiting the phase velocity 
of the transverse mode oscillation in the shell k —  0 is the velocity of waves Korteweg 
Zhukovsky.
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Numerical study showed that the critical value Ck

 

does not depend on the 
viscosity of the liquid, but with increasing η

 

weakening the dependence of oscillations of 

Poisson's ratio, so that the ratio 1)/(min)(max →ϖϖ imim

 

and own form

 

U

 

It becomes 
flat. As follows from the above results, generally within the engineering problem 
statement, we can not adequately describe the longitudinal vibrations of the cylindrical 
shell filled with a viscous fluid via rod theory.  
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