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Mojeeb AL-Rahman EL-Nor Osman * Cuihong Yang ° & Isaac Kwasi Adu ?

Absiract: In this paper, we studied the effect of the specific incidence function for the appearance of backward
bifurcation in malaria transmission model with standard incidence rate. The stability analysis of disease-free
equilibrium (DFE) was investigated, the basic reproduction number R,, was obtained using the next generation
matrix technique, the existence of the endemic equilibrium was also investigated and the existence of feasible region
where the model is well-known shows that the model exhibits the backward bifurcation phenomenon when R, < 1
and the global stability of the endemic equilibrium has been proved. Furthermore, we applied the model to exiting
data of the Democratic Republic of the Congo (DRC) to fit some parameters. In addition to that, we formulated an
optimal control problem with an objective function, with three controls, the preventive using Long-Lasting Insecticide
Treated Net (LLITN) ul(t), the treatment with drug of infected individuals 2 (t) and the insecticide spray on the
breeds grounds for the mosquitoes ug(t), has been used as control measures for infected individuals. Numerical
simulations that were carried out to support our analytic results also suggest that, two control sirategies ul(t) and
Usg (t)together are more effective than other controls in controlling the number of infected individuals in the DRC.
Reducing the number of infected individuals and increasing the number of recovered humans with reduce the
disease transmission.

Keywords: Stability analysis, standard incidence, simulation; backward bifurcation, optimal control.

[. INTRODUCTION

Malaria is a dangerous parasitic disease in less developed countries, especially, in Sub-
Saharan Africa, causing high morbidity and mortality. It is estimated that nearly 300 to
400 million malaria cases occur worldwide, out of which 1.52 million die every year [1,2].
In 2016, an estimated 216 million cases of malaria occurred world wide compared with 237
million cases in 2010 and 214 million new cases of malaria and deaths in 2015. Approxi-
mately 80% of malaria death are concentrated in 15 countries most of them in Africa [3,4].
Five species of Plasmodium can infect humans: P. falciparum, P.vivaz, P.ovale, P.malariae
and P.knowlesi. Among these species of human malaria parasites, P.falciparum is the
most dangerous. The female Anopheles mosquito is the primary vector of malaria para-
site [1,2]. Malaria is a major health problem in the Democratic Republic of the Congo
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(DRC) which is one of the two highest leading contributors to the global burden of ill-
ness [5]. Daily in the DRC, more than 400 children die, and nearly half the deaths is
caused by malaria [6].

Mathematical models of malaria transmission are useful to providing better insights
into the behavior of the disease. These models has played a great role in influencing
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Figure 1: Areas of malaria transmission- Democratic Republic of the Congo provided
by CDC [19]

the decision making processes regarding inter vention strategies for preventing and
controlling the resurgence of malaria. The study of malaria using mathematical modeling
began in 1911 with Ronald Ross [7, 8]. Many researches have studied the transmission of
malaria through mathematical models specifically using SEIR model for humans and SEI
for the mosquitoes [9-16]. A lot of works have also been done on modeling the malaria
transmission and control using SEIR-SEI model [17, 18].

In this paper, we study SEIR-SEI malaria transmission model with standard incidence rate
that was presented by [15] and applied it to estimate parameters with real data of
Democratic Republic of the Congo. Furthermore, we modified the model with three
different control strategies, u1(t), wus(t) and ug(t). Our goal is to minimize the number
of malaria Infected individuals in Democratic Republic of the Congo and advice the
government to set a program to reduce and control the disease from the country.
The rest of the paper is organized as follows: Section 2 presents the model description,
positivity of the solutions, existence of equilibria and bifurcation. Numerical simulations
analysis for the model is given in Section 3. Analysis of optimal control is presented
in section 4. In Section 5, we perform the numerical simulations of optimal control and
the conclusion is given in Section 6.

[I.  MATHEMATICAL MODEL

a) Model description

We study a SEITR — SEI seven dimensional malaria transmission model consisting of
two groups of populations, host (human) and vector (mosquito) populations. The host
population is divided into four compartment: Susceptible Sy (t),Expose Ej(t), Infectious
I;,(t) and Recovered Ry(t) humans respectively. The vector population is divided into
three compartment: Susceptible S,,(t), Exposed E,,(t) and Infectious I,,(t) mosquitoes
respectively. We assume that the mosquitoes never recover from malaria infection. Thus,
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the total number of host and vector populations are represented by N;, = Sy, (t) + Ex(t) +
In(t)+ Rp(t) and N, = Sp(t) + B (t) + I, (t) respectively. oy, is the biting rate of female
mosquitoes (assume to be constant), which depends on many number of environmental
and climatic factors. The number of bites per humans is o, 3> Nm , the force of infection
from vector to host, denoted by A, and it is defined as:

M = Brom 3 (2.1)
Notes By the same way, the force of infection from host to vector is denoted by A, and it is
defined as:

Also, we assume that recovered human can transfer the infection to mosquitoes, but it is
transmission rate is less than infected human transmissiomrate that is (8,,,<5). human
enter the susceptible compartment through birth or immigration rate (recruitment rate)
Aj,. The parasite will be passed onto human at infection rate A, and that human will shift
to the exposed compartment. Human enter the infection compartment at the rate «y,,
after infection humans recover, they will mo ve to the recovered compartment at rate v,
and die from malaria at rate 6. The recovered individuals can again joined the susceptible
compartment after losingit’s temporary immunity at rate p. Humans leave the
population through the natural death rate p and the infectious human leaves
the population also at malaria death rate 0. The rest of the model parameters are listed
in Table 1. Applying all the above assumptions the model is described by the following
seven nonlinear system of differential equations.

( dS, mndm
dth Sy V- ffh Sp — pSp + pRy,
dEh O'm/BhI
dc}t N, Sh — (an + p) En,
dth = apEy — (v + p+ )1,
dR
dth = Wln — (p+ 1) Ry, (2.3)
d 1, m
Dy Bndnt Bnbln) g o
dE  (Budut B )
m m h+ mhilh _
d?t = 0Om N, S — (am + Q) E
Em B, — I
| @ ally, — Cly,

With the initial conditions: S,(0) > 0,E,(0) > 0,1,(0) > 0, R,(0) > 0, S,,(0) > 0,
En,(0) 20, [,,(0) > 0.

b) Positivity and boundedness of the solutions
Adding all the human and mosquito equations in (2.3) we respectively obtain

Ny

= A, — uN;, — 61 2.4
dt h KN h»y ( )
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and
N,
dt ¢ (25)
It is clear that the solutions NNV,, of the equation (2.5) approach the equilibrium point AT’"
when t — 0o. Also, it follows from equation (2.4) that

Ny, Ny, . Ay,
2 <A, —uN d — <0 N, > — 2.6
= h— HiVp o an ar = if h_u7 ( )

By using the standard comparison theorem [20,21], it can be verified that the basic
dynamical features of model (2.3) will be discussed in the following lemma.

Lemma 2.1. Let (Sy, Ep, I, Ry, Sm, Em, I,) be the solution of the model (2.3) with initial

conditions S, > 0, E, > 0,1, >0, R, >0,5,, >0,FE,, >0 and I,, > 0. The closed region
U = {(Sts B I, B Sy By In) € RLIS) + B+ Ty + B < 238, Sy B+ I < 22}
is positively invariant and attracting under the flow that is explained by the system (2.3).

¢) Existence of equilibria
i. Disease-Free Equilibrium and Reproduction Number

When there is no disease, that is E, = I, = Ry, = E,, = I, = 0, the system (2.3) has
a disease-free equilibrium (DFE) F, , which is obtained by setting the right hand side of
the model (2.3) to zero and defined by
Ah Am

a070707_70a0)a (27)
1%

Py = ;

Using the next generation techniques [22, 23], the stability of Py can be established as
follows. Initially, we define x = (Ey, I, Ry, Ev, Im, Shy, Sm)T. The model (2.3) is rewritten
in the following form

d

580 = F(t2(t) = V(¢ 2(2)), (2.8)
where
B O'mBJ}{TmeSh 7 B (Olh + ,U)Eh
0 —op b + (7h+,u+5)lh
0 —Yndn + (p+ )Ry
F(t,x(t)) = |22lnletbonlo)l | and  V(t,2(t)) = (tm + €) By
0 — A, + 22ZmEh — pRy 4 pS),
Om ,BnLI +Bm Ry)S
I 0 | __Am+ ( hNh nitn) h_{_gsm_
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Notes

Consequently, it was found that the system (2.8) has DFE, z, = (0,0,0,0,0, 22, ATT"),
which is identical to Py, of the model (2.3). So, the derivatives DF(FP,) and DV(F,) are
written as

F 0
0 0

V 0

DF(Py) =
(P) 5

, and DV(F) =

Y

where F' (non-negative) and V (a non-singular M-matrix) are 5 x 5 matrices defined as
the following respectively,and J3, J4 are matrices associated with the transmission terms
of the system (2.3) and all eigenvalues of J; have positive real parts.

0 0 0 0 omBh K, 0 0 0 0
0 0 0 0 0 —ap Ko 0 0 0
F=10 0 0 0 0 , and V=0 —y K3y 0 0},
0 0 0 0 0 L 0 0 0 —a, (
Letting
0 0 0 0 ombh el 0O 0 0 0
a 1
0 0 0 0 0 T;Q % 0 0 O
Ro = p(FV™') = |0 Do 000 IR e w00
ImPm m ImPm m 1
0 gAfj CAhhM 0 0 0 0 0 7 (1)
_0 0 0 0 0 11 0 0 0 <7m4 ]
Thus,Rg can be defined as
R — Um\/BhMAhAmahamKlKQK3K4K5 (2 9)
0= .

CAR I Ko K3 Ky ’

Where Ky = (ap + p), Ko = (yn + p+0), K3 = (p+ p), Ky = (o, + () and K5 =
(Bm K3 + Bmnyn)- Hence, according to the above, the following stability result follows.

Lemma 2.2. The DFE, Py is locally asymptotically stable if Ry < 1 and unstable if
Ro > 1.

ii. Endemic equilibria and backward bifurcation
Let Sy, By, Ir, Ry, Sk, EY . LY represent the arbitrary equilibrium points of Sy, Ej, I, Ry,
Sy B, I, respectively. Furthermore, using the technique employed in [20] and let

and N, = o, . ;
Ny Ny

(2.10)

Ap, Ay, are the force infection of human and mosquito at the equilibria points, respectively.

To express the equilibria point in terms of A\;, A}, setting all the derivatives in model (2.3)
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to be zero and solving, we obtained the following

S =

R} =

S

By,
I*

AL K1 Ko K3
K1 Ko Ks(A;+p)—pym Ay’
B A K2 K3\
T K1 Ko K3(A ) —pynAy
_ Ahath,)\;;
T K1 Ko K3\ 4p)—pyn Ay

_ Apynon Ay, (2.11)
K1 K2 K3 (A +1)=pyn Ay

= —Am

A +0)?
— _AmAy,
T Ka(+Q)?

amAm Ay,

mo (KA, +0)°

Substituting (2.11) into (2.10) and after simple calculation we obtained

TmBron A N (K Ko K3 (A, + 1) — pynan )

A= , 2.12
h CRKAAL (N, + O(K Ko K3 4+ KAy (2.12)
N = TmmBsAy, (2.13)

(K1 K2 K3 + Kg)p)'

where K¢ = ay, K3+ Ko K3+ a7y Also, substituting (2.13) into (2.12) gives the following
equation in terms of \j:

FOL) =oAL + AL + by =0, (2.14)

where b() = gAhK4K6(O'mO{hK5+CK6)7 b1 = S(RT - 1) and bg = AhC2K12K22K§K4(1—R(2)),
with K = O'mahK5 —|—2,umK6, RT =
0K3 + apyn) + ap Ko Ks). Thus, the positive endemic equilibria of the model (2.3) are
given by (2.14), substituting the positive value of A} into the equations (2.11). Denoting

Ralk _ KumApn K1 Ko K3 Ky

S

KHmAhI(;KZKBK4' and S = U2ah04mﬂhAmK5(Nh(,UhK3+

Thus, by = S(R] — 1). Obviously, the factor by is always positive and b, is positive if Ry
is less than one and negative if Rq is greater than one. Since ag > 0, the existence of
the positive solutions of equation (2.14), will depend on the signs of b; and by. If Ry > 1
then by < 0 and (2.14) has only positive solution. So there is unique endemic equilibrium
whenever Ry > 1. If Rp = 1. then by = 0 and (2.14) has a unique nonzero solution of

* = =0 which is positive if and only if b; < 0 and negative solution if b; > 0 when

bo

R; > 1. Subsequently, no endemic equilibrium exist if Ry = 1 and b1 > 0, the case Ry < 1
makes by > 0. if by which corresponds to R, (2.14), has two positive solutions.

—by — /% — dbobs

A =
h,Large
2()0

*
)\h,Small -

—by + /% — dbobs

b
2b

Thus, let b2 — 4byb, = 0. Solving for the critical value of Ry, denoted by R, gives
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b2
Ro=4/1— . 2.15
2 \/ Abo A2 K2K2K2K, (2.15)

from all the above analysis b? — dboby < 0 & Ry < Ra, b3 — dbgby = 0 & Ry = Ro,

b2 — 4boby > 0 & Ry > Ro. consequently, we have follovvlng results on existence of the
endemic equilibrium.

Theorem 2.3 The model (2.3) has

(i) a unique endemic equilibrium in I if Ry > 1,

(ii) a unique endemic equilibrium in T" when Ry = 1,

(7i) a unique endemic equilibrium of multiplicity in T where Ro = Ra < 1 and R} < 1,
(iv) two endemic equilibria Pf,,... and P§, ., in T when Ry < Ro <1 and R} <1,

(v) no endemic equilibrium otherwise.

Theorem 2.3 establishes that Ry = 1 is the bifurcation value. In fact, a cross Ry =1
the disease-free equilibrium, Py, changes its stability properties, see Lemma 2.2. This
implies that when Ry is less that one, so that an infective replaces itself with less one new
infective, then the disease die out in time.

Consider the system

dy

= = fw.9), (2.16)

where ¢ is the bifurcation parameter, f is continuously differentiable at least in both y
and ¢. The DFE is the line (yo;¢) and the local stability of the DFE changes at the
point (yo; ¢) see [23] our main focus on DFE, Py to investigate the appearance of the
transcritical bifurcation at Ry = 1. Clearly, Ry = 1 is equivalent to

MK KKKy
U2, QN K5

Br =By, = (2.17)
By Lemma 2.2, the DFE F is locally stable when 3, < ; and unstable when 5, > ;.
Thus, B, = B; is a bifurcation value.

Let Sy, = v1, En = yo, In = y3, R = Ys, Smw = Y5, By = ys and [, = y7, such that
Ny, =y +y2+y3+ys and N,,, = y5 + ye + y7. Furthermore, using vector notations we

can write y = (y1, Y2, U3, Y1, Ys, Ye, y7)* and f = (f1, fo, f3, [1, [5, fo, f7)", the system (2.3)
can be written as

dy

- = Tw. ), (2.18)

such that:

— omBrYry
Jr =M+ pys — GRS — 1y,

_ TmBrY7Y1 o
2= Gttt — (@0 112,

fs = anpys — (v + 1+ 9)ys,
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fo=ys — (p+ 1£)Ya,

_ B y3+Bmny _
f5 - Am —Om (y1+;2+y3_}:_yi) Ys Cyl’n (219)

fo = Omputisys — (am + )y,
fr = amys — Cyr,

The Jacobian matrix of the model (2.19) evaluated at, Py, when §, = f3; is given by

—u 0 0 p 0 0 —0omG]
0 -K 0 0 0 0  oufb
0 o ~ K, 0 0 0 0
J(Po,B) =10 0 Vh —K; 0 0 0 (2.20)
0 0 -t _mBwh ¢ o g
0 0  (Zefela Zwfmlh 0 —F, 0
[0 0 0 0 0 @  —p |

It’s clear that the eigenvalues of (2.20) admits a simple zero eigenvalue and the other eigen-
values are real and negative. Thus, the [, is a nonhyperbolic equilbrium when 3, = f;,
that is according to center manifold theorem see [24], there are two important quantities a
and b of the normal form representing the dynamics of the system on the center manifold.
If a < 0 and b > 0, then the bifurcation is forward and if a > 0 and b > 0, then the
bifurcation is backward. Using the approach in [24],we establish the following calculations.

FEigenvector of the Jacobian matrix at Py when 3, = [3;;

Let w = (wy,wy, ws, wy, ws, ws, wr)? and v = (v, v, vs, vy, V5,6, v7) be a right and
left eigenvectors of J(Fy, f3;), respectively. After simple calculation it follows that the
components of the right eigenvectors w are given by

_ (u(K1 K3+ vn K3+apyn)+6K1 Ka) _ apwz  apyaws
W= ey W2, W3 = "p5" Wi = TGK;

_ _ popopAm Kswe _ popomAm Kswe 10, O G A K wo
Ws = CPARK2K3 We = CARK2K3Ky Wr = oA KaK3Ks 0 wo > 0,

By the same way, the components of the left eigenvector v are given by

— — HOhTmam Am K5v7 — HomamAmKsur
v =0, vy= CARK1K2K3Ky U3 = CARK2K3Ky
_ pommAm Brmnv7

Us = 07 Ve = OZhU7’ vy > 07

Vg4 = 79

CARK3Ky ?

The non-zero partial derivatives of f evaluated at P, associated with the system (2.19)

are given by

Pfi . 9Pf . _82fH _ dmbBn
0y20y7 0y30yr7 0y40yr7 Ap

02 fa _ 82 fo — 2 fo _ __omBrp
0y20y7 0ysOyr 0ya0y7r Ap

a2f5 — a2f5 — a'mBmHQAm 82f5 — 2‘7m5m#2Am
0y10y3 Oy20ys3 CA% ’ 8y§ CA%l ’
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fs  _ fs  _ omBmatPAm  0fs  _ omp®Am(Bm+Bmn)

Oy10ys ~ Oy20ys CAZ ) Oy3Oys A7 )

Pfs  _ _omBmp Pfs  _ _omBmnp 0*fs _ 20mBmnp®A

dys0ys Ap 7 O0yadys Ap 7 oy3 CA;, ’
a2f6 — asz — _UmBmIJ2Am 62.106 — 82f6 — _Umﬂth2Am

0y10y3 0y20y3 CA% ? Oy10ya 0y20y4 CA% )

82f6 — _QO'mﬁmhIlem 82f6 — _Um,U'2Am(ﬁm+/Bmh)

0y3 CA;, ’ Oy3dya (A2 )

Pfs _ _20mBunpPAm  Pfs  _ ompBm _0%f6  _ omtBrmn

oy3 CAZ ? y30ys Ap 7 OyaOys Ap
2hH 2fs

ByroBn O™ Byrop, | O™

Thus, from all of the above expression, the factors a and b are given by:

a'_Zkz] 1vkww]8y8y( 075h)
82
= Zz] 1 V2Wili5, 75, ay (Fo, Br) + Zzy 1 UsWilj 5,5, ay ay (Po, B)+
7 02 f 92 f,
ZZ] 1U4w7’w] ay 6’!,( (P()’/Bh> + Z’L] 1U6wlw.7 By ay (P(]?/Bh)

: oy (2.21)

D i jo1 VTWiW 5 8yi8yj (Fo, B7),
2v7w§aham,uomAmK5B

o (PN K3K3 K, ’
7 82

b=73}im vkwiamfggh(Po, i)
7 82 7 82
=i “1wi—ayiaféh (FPo, B) + 22im U2wi—ayz.g§h (Po, Byy) (2.22)

3 ,,2,2A2 2 2
U7w2%§rgga
where B = (1(2(Kg+ omapKs) — (v and = p(pKs+ 0 K3+ apyn) + an Ko K3. Obviously,
b is positive since all the parameters are non-negative. Thus, the local dynamics around
the Py, for 8, = B, depends on the sign of the factor a and also the sign of B.
Rewriting B in term of R} as B = (¢Y(R; — 1). It follows that, from (2.21), if R} < 1
then a >0 and a < 0 if R} > 1.

Theorem 2.4.  The model (2.3) when Rog = 1, exhibits a backward bifurcation if R} < 1
and a forward bifurcation of R} > 1.
By Theorem 2.3 (iv) and Theorem 2.4, the following lemma is established.

Lemma 2.5.  The system (2.3) shows the backward bifurcation when R} < 1 and
Ra < Rg < 1.

iii. Global stability of the endemic equilibrium
In this subsection, we proof the global stability of the endemic equilibrium as in [15]

Theorem 2.6. The endemic equilibrium point, P*, is globally asymptotically stable in T’
when Ry > 0 provided that
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EiRy S
Proof. Let 2 — £» — Zhmh — 20 4
h h h

L(t) = (Sh — 55 —S,’;lng—g) + (B, —E; — EfIn gz)

SRy,

2~ " om s tom 20 2.23
B, EnR, S SaRy (2.23)
gig% > 0. Consider the Lyapunov function

om IS, PR * * 10 1
+((7h+ll«i5)1ffll\7; + (P+,u})llz)<]h — Ih — Ih In #)
R By = By ) + (S = 57, = 5, ) 22

(B — B, — ErIn o) 4 ontS(p— [x — [x Indm),

Then, the derivative of L(t) calculated along solutions of the model (2.3) is given by

Sh

L) = (1- 5)8 4 (1 - Zydhn | (Tl

rhy, _ Luyd,
By, ’Yh+u+6)I;N;; + (,D+M)[;;)<1 Ih) dt

(= )G+ (L= e+ (1= ) e (201 — ) e
—nESEE o [ 5 - B - 1 - S
N [3 — %Z - giﬂ (2.25)
Ry [2- - H S ) (s
VoSt f(IE, RE) [4 — S Enlh I g:gﬂ
oS (s Fo) |1 = i1 — G4
where f (I, Ry,) = Zelitborfle and f(I; R;) = %
Since, the arithmetic mean is greater than or equal to the geometric, clearly
53— fim b 2] <, (2.26)
oo B - oS <0
Furthermore, f(1I}, Ry) is an increasing function which implies that
(1 fg58) <0, (2.27)
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Thus, finally it was found that,

(1—2252) <0, (2.28)

when S,,, < S} and E, < E,,. as a consequence, the conditions (2.23),(2.25),(2.26),(2.27)
and (2.28) ensure that %l(f) < 0. Noting that the additional 2 — £ — Lot _ 2n
h

is not necessary if the malaria confers permanent immunity against re-infection [25]. In
addition to that the equality d‘;gt) = 0 holds only for S, = S}, E, = Ef, I, = I}, R, =
Ry, Sy =S, E, = £} and I,, = I,. Then, the equilibrium point P* is the only posi-
tively invariant set to system (2.3) contained entirely in

{(Sh7 Eh7 [ha Rh7 Sm7 Em7 [m> el Sh = S}; Eh = E}tv [h = [Za Rh :R;kp S’m :S:w Em:E*7
Im =I5}
Subsequentaly, from the LaSalle’s invariance principle [26]. that each solutions of the e-

quations (2.25) with the initial conditions in I' converge to P*, as t approaches to co.
Hence, the positive endemic equilibrium is globally asymptotically stable.

[1I. NUMERICAL SIMULATIONS

6 7
[Py - : : : : : : 4510

1O
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Figure 2: Comparisons of the reported malaria cases of Democratic Republic of the Congo in WHO (red
curve) and the solution of infectious human I, (t) for model (2.3). (a): Simulation of malaria reported
cases in Democratic Republic of the Congo from 2007 to 2015. (b): Prediction of malaria cases for
Democratic Republic of the Congo 2007 to 2030.

In this section, we use our model to simulate the reported malaria cases provided by
WHO of DRC. In our simulation we use the data from 2007-2015 because there was many
local conflicts from 2000-2006 in the country that may affects the data collection. For
this reason, we ignored that period of time. All the parameter values are listed in Table
1. Based on those parameters, we carry out the numerical simulations of our model and
obtain a reasonable result between the infected human of model (2.3) and the real data of
DRC see Fig2(a),(b), indicates that the transmission of disease in DRC has not reached at
a stable period yet and the malaria will become more dangerous in the future. Fig3(a),(b)
and Fig4(a),(b), shows the solution of model (2.3) with parameter values from Table 1, for
Ep, En and Ey, I, Ry, respectively. Figh(a),(b) and Fig6(a), shows the effects of changing
Br,vn and By, on the number of infected humans. Fig6(b) displays the influence of the
initial conditions of S,, on Ij,.
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Figure 4:Solution of model (2.3) with parameter values from Table 1
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Figure 5: Solution of model (2.3) with parameter values from Table 1 of Democratic Republic of the
Congo, (a) The influence of §;, on the number of infectious (b)The influence of o, on the number of

infectious.
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Fligure 0: Solution of model (2.3) with parameter values from Table 1 of Democratic Republic of the
Congo, (a) The influence of S, on the number of infectious (b)The influence of initial size of susceptible
mosquit.

IV. ANALYSIS OF OPTIMAL CONTROL

In this section, the system (4.3) is formulated to estimate the effects of the three control
strategies: uy(t) represents the preventive measure using Long-lasting Insecticide Treated

Net(LLITN), uy(t) is the treatment with drug of infected individuals and the insecticide
spray on the breeding grounds of the mosquitoes represented by uz(t). The control us(t)
measures the rate at which infected humans are treated with the efficacy of treatments
c € [0,1]. Also dy,dy € [0,1] are constants rate. Our objective is to minimize the
number malaria infected individuals, through the optimal control strategies ui(t), us(t)
and ug(t). Malaria is prevalence in the DRC, specially in the rural areas which has
many forest and heavy rainfall and that has increased the mosquitoes population. We
used three control variables, u; (t), us(t) and ug(t) which represent the efforts on preventing
malaria infections through the use of (LLITN), the treatment with drug and the insecticide
spray on the breeds grounds for the mosquitoes respectively, to see the effects of them on
malaria transmission on the (DRC). Our objective function defined as:

Ly
J(ur, uz, uz) = / (ALEp + Aoy, + Asl, + %uf + %ug + C—;ug)dt, (4.1)
0

where Aq, A, A3 are the balancing cost factors due to scale and ¢y, c3 and c3 denote the
weighting constants for making uses of prevention strategies using u;(t), us(t) and us(t)
controls. Consequently, we attempt to expect an optimal control u}, u5 and u} such that,

J(uy, uy, uy) = mind (uy, ug, uz), A = {(ug, ug,u3)|0 <u; < 1,4 =1,2,3}. (4.2)
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(dS, OmBnlm
—h :Ah_ (1-&1) Bh Sh—/LSh—FpRh,
i Byl A
Jm m
d_th =(1—-w) Z Sh — (an + 1) En,
dI
d_th = OéhEh — (’}/h +u+ 0+ CUQ)Ih,
dR
X d_th = (Y + cu2)In — (p + 1) Ry, (4.3)
W = Ny — (1 — U3)O'm (5 h Nﬁ h h) Sm - (C + dlul)Sm,
h
dE,, I+ B R
= (1= ug)om (BT + B h)sm — (@ + ¢+ dyuy) By,
i N
\ d—;n =aFE, — ((+ dyu) L,

The optimal control must conform the necessary conditions that is emanated from the
Pontryagin Maximum Principle [27]. This concept transpose the equations (4.1) and (4.3)
into a type of problem characterised with minimizing pointwise a Hamiltonian H, with
respect to uy, us and us

H = Ay By + Agly + Ay + Gui + Qu3 + Sug

+X\ {Ah —(1- Ul)amﬁﬁlm Sp — puSp + pRh} ;

Pl (1= )28, — (n+ w)Br}
+Xs{anEn — (v + 1+ 0 + cug) i},
FA (v + cu2)In — (p+ p)Ri}, (4.4)

Iy {Am — (1~ ug)o, Celutfmnfi) 5 (¢ 4 dlul)Sm} ,

+)\6 {(1 - u3)0m (Bmlh‘]‘!‘vimth) Sm - (Oém + g + dlUl)Em} )

+)\7 {OéEm — (C + dllLl)[m} N

where A1, Ao, A3, Ay, A5, Ag and A7, represents the adjoint variables.
The system solution is attained by suitably taking partial derivatives of the Hamiltonian
(4.4) with respect to the associated state variables.

Theorem 4.1. Given an optimal control uj,us, us and the solutions Sy, En, I, Ry, Sim, Ep, I,
of the corresponding state System (2.3) and (4.3) that minimize J(uy, ug, uz) over I'. Then
there exists adjoint variables A1, Ao, A3, Ay, A5, Ag, A7, satisfying

—d\, _ OH

Where 1 =1,2,3,4,5,6,7 and with transversality conditions

A(tr) = Xalty) = As(ty) = Malty) = As(ty) = Ae(ty) = Ae(ty) =0 (4.6)
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and

uy = min {1, max(0, é(% (A2 — A1) +di (S As + Ene + ]m)\7)))} : (4.7)

uy = min {1, max(0, é(dh (A3 — )\4)))} : (4.8)
Ref uy = min {1, maz (0, %(U’”(B"%—WSW) (X¢ — )\5))} : (4.9)

Proof. Theorem 4.1 and Corollary 4.1 of [27] gives the conditions of possible existence of
an optimal control based on the convexity of the integrand of J(uy,us,us) with respect

o to uy,us and ug a priori boundedness of the state solutions, and the resulting Lipschitz
a characteristics of the state system of the ODE’s with the state variables. The Hamiltonian
€2 function determines at the optimal control level leads to the adjoint variables. Thus, the
T‘é adjoint equations can be rearranged as
=
d\ T Bnlm OmBrdmS
: P ()T 0 ) (1= ) TP )+
a Om\Pm m
=} F((1 = ) TPl Pun o) ) (06 — A5),
S
dA OmBnlm

'E —2 = —Al + ((1 — ul)( /6}; ))()\2 — )\1) —+ (Oéh + ,U/))\Q — Oéh)\g
2 dt Ny
<
Q
4% +((1—U3)0m(5Nn%Ih+ﬁmth)Sm)()\6 _ )\5)’
o
=) dA OmBrlmS,
© = Ayt ((1- Ul)(#))(& — A1)+ (Y + 40+ cug) g — (9 + cuz) Ay
o dt Ny
:é (1= ug) (228222 )) (A5 — Ae) + (1 = U3)om(ﬁml7v4,%ﬁmth)5m)()\6 — A5),
E d)\4 O-mﬁhImSh
E e ((1—U1)(T}3))(A2—)\1) —pA+ (p+ WA
E - +((17USJ)V%BWLSTTL>(A5 _ /\6) + ((1*u3)0m(5j\7:%1h+5mth)Sm)o\ﬁ . )\5)’

Ne)

=2 d\ 1 —u3)on(Bmdn + Brn R
Ei 2 = (< 3)m{ Bl & Bron ) Sm)(Xe — As) 4 (¢ + dyug) As,
E Y] dt Nh

;C:) d\
g z d_tﬁ = (Qm + ¢+ drur) e + amAr,

Z.
o0
S op d\ OmBnS,
= & d_7 =—Az+ ((1— Ul)#)@\l — Xa) + (€ + dyur) As,
& t N
>
2 V.  NUMERICAL SIMULATIONS OF OPTIMAL CONTROL

In this section, we discuss the numerical outcomes of our various optimal control
strategies on the spread of malaria in Democratic Republic of the Congo. The Table 1
presents the parameter values that was used in the simulations.
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a) Prevention of disease using u,(t) only

In this strategy, malaria prevention control wu;(t) was used to gptimize the objective
function J(uy(t), us(t), us(t)), while we set the other controls wuy,us to zero. In Fig7(a),
there is a significant different between the states with controls (u;(t) # us(t) = ug = 0)
and without controls (ui(t) = wua(t) = us(t) = 0) the number of infected mosquitoes
decreases. The strategy is not effective in reducing the number of infected human and
increasing the number of recovered human in Fig7 (b),(c).

b) Prevention of disease using u,(t) only Notes
In this strategy, us(t) was employed to optimize, the objective function J(uy (t), ua(t), us(t)),

while u; = us = 0. There is no significant different between the cases with controls

and that without control in Fig8(a). In Fig8(b),(c), there is a significant different be-

tween the states with control (us(t) # 0,ua(t) = us(t) = 0), and that without control

(ur(t) = ua(t) = us(t) = 0) after t = 30 in infected recovered humans (decreasing ,in-

creasing) respectively.

¢) Prevention of disease using u,(t) only

In this strategy, us(t) was used to minimize the objective function J(uy(t), us(t), us(t)),
when u; = us = 0. In Fig9(a),(b),(c), there is no significant difference between the cases
with control and that without the control. Thus, the strategy is not effective to reduce
(increase) the number of infected individuals and recovered respectively.

d) Prevention of disease using u,(t) and u,(t) only

In this strategy, malaria prevent controls u(t) and wus(t) were used to minimize the
objective function J(u(t), ua(t), us(t)), when ug = 0. it is clear in Figl0 (a),(b) there is a
significant different between the situations with control and without control. Using the
controls together w;(t) and wo(t) is effective in increasing the number of infected
mosquitoes and that of disease infected humans. Also the strategy increases the number
of recovered human in Figl0(c).

e) Prevention of disease using u,(t) and u,(t) only

In this strategy, malaria prevention controls u;(t) and wuz(t) were used to optimize
the objective function J(uy(t), us(t), us(t)), when us(t). In Figll(a),(b),(c) are similar to
Fig7 (a),(b),(c) only there is a significant different between the cases with control and
that without controls in Figll(a) and there is no difference in the other.

f) Prevention of disease using u,(t) and u(t) only
In this strategy, malaria prevention control us(t) and uz(t) were used to optimize the

objective function J(uy(t), uz(t), us(t)),at the same time u; set to zero. In Figl2(a), it can
be seen that there is no significant different between cases with control and that without
control. In Figl2(b),(c), there is a significant different between cases with control and
that without control. The number of infected humans is reduced as the result of the
intervention. Also increasing the number of recovered humans in Figl2(c). Therefore
the strategy is effective in reducing the number of infected individuals and increasing the
number of recovered humans.

g) Prevention of disease using u,(t); u,(t) and u,(t) only
In this strategy, malaria prevention controls uy (), us(t) and ug(t) were used to optimize
the objective function J(uy(t),ua(t), us(t)). It is obvious in Figl3, there is a significant
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different between the cases with control and that without controls, the number of infected
mosquitoes and infected humans are controlled which is clearly in Figl3(a),(b), and an
increasing number of recovered individuals in Figl3(c). Therefore the strategy is effective
in controlling 7, and I},.

Table 1: Parameter values for model (2.3)

Parameter Description Value Source
¢ Mosquitoes natural death rate 0.0714 [12]
B, Transmission probability from I,,, to Sp 0.048 [12]
Bm Transmission probability from I to Sy, 0.48 [12]
A Mosquitoes recruitment rate 500 [15]
i Humans natural death rate 0.0000472 | [28]
Tm Mosquitoes biting rate 0.39 [29]
Ay Humans recruitment rate 1.5 Fitting
Bnh Transmission probability from Ry to S, 0.048 Fitting
P Loss of immunity rate for humans 0.0146 Fitting
Yh Infectious humans recovery rate 0.003704 | Fitting
4] Humans disease induced death rate 0.0003454 | Fitting
ayp, Progression rate from Ej to I, compartment 0.07333 | Fitting
Qm Progression rate from F,, to I, compartment 0.21 Fitting

1,0
(

Figure 7: Simulations of the model showing the effect of Long-lasting Insecticide Treated Net(LLITN)
only in malaria transmission . Fig 1 (a),(b) and (c) represents the behavior infected mosquitoes, infected
humans and recovered humans respectively. Dashed line represents system without optimal control
(u1 = 0,uz = 0,u3 = 0) and solid line shows the system with optimal control (u; # 0,us = 0,us = 0.).

(a) (b) (c)

Fligure 8: Simulations of the model showing the effect of treatment with drug only in malaria transmission
. Fig 2 (a),(b) and (c) represents the behavior infected mosquitoes, infected humans and recovered humans
respectively. Dashed line represents system without optimal control (uq; = 0,us = 0,u3 = 0) and solid
line shows the system with optimal control (u; = 0,us # 0,us = 0.).

© 2019 Global Journals

Global Journal of Science Frontier Research (F) Volume XIX Issue I Version I E Year 2019



Global Journal of Science Frontier Research (F) Volume XIX Issue I Version [ E Year 2019

(a)

(b)

()

45210° P L 510
= vithout optimal control u=0, ,=0, u;=0 s with optimal control u,=0, u,=0, u;=0 s with optimal control u, =0,
B e with Optimal control u,=0, u,=0, U #0 . e with Optimal control u,=0, u,=0, U #0 e with Optimal corrol u,=0,
a5
35
5
3 4
4
=25 = o
3
B 35
2
15
3
N 1
05 0 25
o 10 20 30 40 50 60 0 10 20 30 40 50 60 4 10 20 30 40 50 60

Figure 9: Simulations of the model showing the effect of the insecticide spray on the breeds grounds
for the mosquitoes only. Fig 3 (a),(b) and (c) represents the behavior infected mosquitoes, infected
humans and recovered humans respectively. Dashed line represents system without optimal control
(u1 = 0,u2 = 0,us = 0) and solid line shows the system with optimal control (u; = 0,us = 0,ug # 0.).
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Fligure 10: Simulations of the model showing the effect of Long-lasting Insecticide Treated Net(LLITN)
and treatment with drug only in malaria transmissio. Fig 4 (a),(b) and (c) represents the behavior

infected mosquitoes, infected humans and recovered humans respectively. Dashed line represents system
without optimal control (u; = 0,us = 0,u3 = 0) and solid line shows the system with optimal control

(u1 # 0,u2 # 0,us = 0.).
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Figure 11: Simulations of the model showing the effect of Long-lasting Insecticide Treated Net(LLITN)
and treatment with drug only in malaria transmission . Fig 5 (a),(b) and (c) represents the behavior
infected mosquitoes, infected humans and recovered humans respectively. Dashed line represents system
without optimal control (u; = 0,us = 0,u3 = 0) and solid line shows the system with optimal control

(u1 7’5 O,UQ = O,U3 75 O)
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Figure 12: Simulations of the model showing the effect of treatment with drug and treatment with drug
only in malaria transmission . Fig 6 (a),(b) and (c) represents the behavior infected mosquitoes, infected
humans and recovered humans respectively. Dashed line represents system without optimal control
(u1 = 0,u2 = 0,us = 0) and solid line shows the system with optimal control (uq = 0,us # 0,us # 0.).
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Figure 13: Simulations of the model showing the effect of Long-lasting Insecticide Treated Net(LLITN),
treatment with drug and the insecticide spray on the breeds grounds for the mosquitoes. Fig 4 (a),(b)
and (c) represents the behavior infected mosquitoes, infected humans and recovered humans respectively.
Dashed line represents system without optimal control (u; = 0,us = 0,u3 = 0) and solid line shows the
system with optimal control (u; # 0,us # 0,us # 0.).

VI. CONCLUSION

In this paper, we propose a differential equation model of malaria transmission with
standard incidence function with three optimal control strategies w(t), us(t) and wus(t).
The primary properties of the model was investigated without the controls. The stability
analysis for DFE was investigated. R is obtained using next generation matrix technique.
Also the stability analysis for EE is verified. The model exhibits the backward bifurca-
tion phenomenon when Ry < 1. Next, we use the model to fit the confirmed reported
malaria cases of DRC. Optimal control strategy was is applied to the model with three
controls uy(t), us(t) and wuz(t). Our simulation results predicated that malaria will be
reduce in coming years which is illustrated in Fig3 (a),(b) and Fig4(a),(b). The number of
infected individuals I,, and I; always lead to decreases under the use of w;(t) and uy(?)
controls together and increasing the number of recovered humans in the country.

Appendix A. Castillo-Chavez and Song(2004)

Theorem A 1. Consider the following general system of ordinary differential equations
with a parameter ¢, where 0 is an equilibrium point of the system

Y — w0, fR xR and feCRxR), (6.1)
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That is (f(0,¢) = 0 for all ¢) such that:
(1) A= D,f(0,0) = g?i (0,0) is the linearization matrix of the system around the equi-
librium 0 with ¢ evaluated at 0.

(2) Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts.

(3) Matrix A has a right eigenvector w and a left eigenvector v corresponding to the zero
eigenvalue. Let f, be the k- component of f and:

82
a = ZZ,z’,j:l Ukwiijg’;((), 0),

62
b= 22,1:1 UkwiWQ},(Q 0)7

Then the local dynamics of the system around the equilibrium point 0 are totally deter-
mined by signs of a and b.

(i) if a > 0,b > 0. when ¢ < 0 with |¢| << 1, 0 is locally asymptotically stable and there
exists a positive unstable equilibrium; when 0 < ¢ << 1, 0 is unstable, and there exists
a negative and locally asymptotically stable equilibrium.

(ii) @ < 0,b < 0. When ¢ < 0 with |¢| << 1,0 is unstable, when 0 < ¢ << 1,0 is locally
asymptotically stable, and there exists a positive unstable equilibrium.

(iii) @ > 0,b < 0. When ¢ < 0 with ¢ << 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ¢ << 1, 0 is stable, anda positive
unstable equilibrium appears.

(iv) a < 0,b > 0. When ¢ changes from negative to positive, 0 changes its stability form
stable to unstable. Correspondingly a negative unstable equilibrium becomes positive
and locally asymptotically stable. Particularly, if a > 0 and b > 0, then a backward
bifurcation occurs at ¢ = 0.
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