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Enhancement of Squeezing in a Coherently
Driven Degenerate Three-Level Laser with a
Closed Cavity

Samuel Mosisa ® Tamirat Abebe °, Milkessa Gebeyehu ° & Gelana Chibsa ©

Abstract- In this paper, we investigated the steady-state analysis of the squeezing and statistical properties of the light
generated by N two-level atoms available in a closed cavity pumped by a coherent light with the cavity coupled to a
singele mode vacuum reservoir. Here we consider the noise operators associated with the vacuum reservoir in normal
order. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the
quantum Langavin equations for the cavity mode operators, we obtain the mean photon number, the photon number
variance, and the quadrature squeezing. The three-level laser generates squeezed light under certain conditions, with
maximum global squeezing being 43%. Moreover, we found that the maximum local quadrature squeezing is 80:2%
(and occurs at A = 0:08). Furthermore, our results have shown that the local quadrature squeezing, unlike the local
mean of the phonon number and photon humber variance does not increase as the value of A increases. It is also found
that, unlike the mean photon number, the variance of the photon number, and the quadrature variance, the quadrature
squeezing does not depend on the number of atoms. This implies that the quadrature squeezing of the two-mode cavity
light is independent of the number of photons.

Keywords: operator dynamics, quadrature squeezing; power spectrum.

l. [NTRODUCION

Squeezed states of light has played a crucial role in the development of quantum physics. Squeez-
ing is one of the nonclassical features of light that have been extensively studied by several au-
thors [1-8]. In a squeezed state the quantum noise in one quadrature is below the vacuum-state
level or the coherent-state level at the expense of enhanced fluctuations in the conjugate quadra-
ture, with the product of the uncertainties in the two quadratures satisfying the uncertainty re-
lation [1, 2, 4, 9]. Because of the quantum noise reduction achievable below the vacuum level,
squeezed light has potential applications in the detection of week signals and in low-noise com-
munications [1, 2]. Squeezed light can be generated by various quantum optical processes such
as subharmonic generations [1-5, 10-12], four-wave mixing [13, 14], resonance fluorescence [6,
71, second harmonic generation [8, 15], and three-level laser under certain conditions [1, 3, 4,9,
16-27]. Hence it proves useful to find some convenient means of generating a bright squeezed
light.

A three-level laser is a quantum optical device in which light is generated by three-level atoms in
a cavity usually coupled to a vacuum reservoir via a single-port mirror. In one model of a three-
level laser, three-level atoms initially prepared in a coherent superposition of the top and bottom
levels are injected into a cavity and then removed from the cavity after they have decayed due to
spontaneous emission [9, 16-21]. In another model of a three-level laser, the top and bottom
levels of the three-level atoms injected into a cavity are coupled by coherent light [22-27]. It is
found that a three-level laser in either model generates squeezed light under certain conditions
[28-34]. The superposition or the coupling of the top and bottom levels is responsible for the
squeezed of the generated light [35-38]. It appears to be quite difficult to prepare the atoms in
a coherent superposition of the top and bottom levels before they are injected into the cavity.
In addition, it should certainly be hard to find out that the atoms have decayed spontaneously
before they are removed from the cavity.
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In order to avoid the aforementioned problems, Fesseha [28] have considered that N two-level
atoms available in a closed cavity are pumped to the top level by means of electron bombard-
ment. He has shown that the light generated by this laser operating well above threshold is co-
herent and the light generated by the same laser operating below threshold is chaotic light. In
addition, Fesseha [28] has studied the squeezing and statistical properties of the light produced
by a degenerate three-level laser with the atoms in a closed cavity and pumped by electron bom-
bardment. He has shown that the maximum quadrature squeezing of the light generated by the
laser, operating far below threshold, is 50% below the vacuum-state level.

In this paper, we investigate the steady-state analysis of the squeezing and statistical properties
of the light generated by a coherently driven degenerate three-level laser with a closed cavity
which is coupled to a single-mode vacuum reservoir via a single-port mirror. We carry out our
calculation by putting the noise operators associated with the vacuum reservoir in normal or-
der and by taking into consideration the interaction of the three-level atoms with the vacuum

reservoir.

[I. THE MASTER EQUATION

Let us consider a system of N degenerate three-level atoms in cascade configuration are avail-
able in a closed cavity and interacting with the two (degenerate) cavity modes. The top and
bottom levels of the three-level atoms are coupled by coherent light. When a degenerate three-
level atom in cascade configuration decays from the top level to the bottom levels via the middle
level, two photons of the same frequency are emitted. For the sake of convenient, we denote
the top, middle, and bottom levels of these atoms by |a), |b)x, and |c), respectively. We wish
to represent the light emitted from the top level by a; and the light emitted from the middle by
az. In addition, we assume that the two cavity modes a; and ay to be at resonance with the two
transitions |a); — |b); and |b)r, — |c)k, with direct transitions between levels |a);, and |c);to be
dipole forbidden.

The interaction of one of the three-level atoms with light modes a; and a2 can be described at
resonance by the Hamiltonian

H =ig[6t*a, — al6F + 6/Fay — alal), 1)

where
o5 = |bk (al, )
o5 = |ehw k(b (3)

are the lowering atomic operators, g is the coupling constant between the atom and the light
mode a; or light mode a, and a; and a9 are the annihilation operators for light modes a; and a,.
And the interaction of the three-level atom with the driving coherent light can be described at
resonance by the Hamiltonian
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5 [olt =62, (4)

[

where 6% = |c) 1 (a|, and Q = 2¢¢, in which e considered to be real and constant, is the amplitude
of the driving coherent light, and ¢ is the coupling constant between the driving coherent light

and the three-level atom.

Thus upon combining Egs. (1) and (4), the interaction of a degenerate three-level atom with the
coherent light and with the light modes a; and a2 can be described by the Hamiltonian

N tatka afa Lt i .
H =ig[6i*a, — aiaf + 0y G — agaf] + —[61F —&H. (5)

We assume that the laser cavity is coupled to a vacuum reservoir via a single-port mirror. In
addition, we carry out our calculation by putting the noise operators associated with the vacuum
reservoir in normal order. Thus, the noise operators will not have any effect on the dynamics of
the cavity mode operators [1, 28, 29]. Therefore, with the help of the expression (1), one can drop
the noise operators and write the quantum Langevin equations for the operators a; and a» as

da K. a
d—; = i — ifar, H], 6)
ddg K . kS
22— e —dlas. H
dt 2&2 Z[G/Qa L (7)

where « is the cavity damping constant. With the aid of Eq. (1), one can easily obtain

ddl o K . ~k
E = —501 —30,, (8)
dd2 . K . ~k
E——2a2—gab. 9

[T1. E(&JAT[()NS OF EvOoLUTION OF ATOMIC OPRATORS

The procedure of normal ordering the noise operators renders the vacuum reservoir to be a
noiseless physical entity. We uphold the view point that the notion of a noiseless vacuum reser-
voir would turn out to be compatible with observation [29]. Furthermore, employing the relation

d . eaon
S(A) = —i(A, i) (10)

along with Eq. (1), one can readily establish that

4 6%) = gltikan) — (akan) + (akoly] + 5 (615 ay
95%) = oltiban) — tifa) — (alo%)] ~ S (o1, (12)
9 6%) = gliotm) — (okan)] + S 4ak) — ()], 13)
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k) = gltottan) + (alok] + S 116k + (1)), 14
k) = allo]an) + (afoh) — (o1Fan) — (alob], (15)
k) = ~gliofan) + (aob)] - S164) + (o1, 16)

where 7% = |a)y, i (al, 7 = [b)k 1k (b], NF = |c)n i {c].

It can be noted that expressions (11)-(16) are nonlinear and coupled differential equations. There-
fore, it is not possible to obtain exact solutions. Then, employing the large-time approximation

scheme on Egs. (8) and (9), one obtains

2

i = — Lok, (17)
K
2

dy = — 5k, (18)
K

Now introducing Eqgs. (17) and (18) into (11)-(16) and sum over the N three-level atoms, it is

possible to see that

d, .\ . 1
%<ma> = —Ye{Ma) + 5<’mb>, (19)
d, .\ Ve, 2,
g (1) = = (i) — o (1mg), (20)
d, . Yo . Q. - -
D o) = =2 ) + T4 — ()], @
d, - - Q
%<Na> = —7Ye(Na) + 5[(7?16} + <mi>]7 (22)
d -~ A N
2 (Vo) = =7e(Np) + 7e({Na), (23)
d . oo
8 = —e() — Figme) + (), @
in which
4q°
Yo = (25)
K
is the stimulated emission decay constant, 1, = Y o, &%, my, = Son, 6F, he = Son_, 6%,

N, = S ik, Ny = S ik, No = SO~ ik, with the operators N, N,, and N, representing
the number of atoms in the top, middle, and bottom levels, respectively.
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Furthermore, employing the completeness relation
o+ + 0k =1, (26)
one can easily arrive at
(Na) + (Np) + (N) = N. 27)
Furthermore, applying the definition given by (2) and setting for any &
G = 1b)(al, (28)
we have
1ha = N1|b)(al. (29)

Following the same procedure, one can easily find /i, = N|c)(b|, . = Nlc)(a|, No = Nla){al,
Ny = N1b)(b|, N. = N|c){(c|.
Moreover, using the definition

m = Mg + mb (30)

and taking into account the above relations, we observe that

mim = N[N, + N, (31)
mmt = N[N, + N, (32)
m? = Nine. (33)

Now upon adding Egs. (8) and (9), we have

La(t) = —a(r) - glok() + ok (1) (34)

where
a(t) = a1 (t) + aq(t). (35)

In the presence of NV three-level atoms, we can rewrite Eq. (34) as

d “ _ ﬁA N
ﬁa(t) =— 2a(t) + A (), (36)

in which )’ is a constant whose value remains to be determined. The steady-state solution of Eq

(34) is

at) = 216k (1) + o0 67)

Taking into account Eq. (37) and its adjoint, the commutation relation for the cavity mode oper-
ator is found to be

[&’ &T] = E[’f]C - ﬁa]v (38)
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and on summing over all atoms, we have
[a,a] = [N, — N, (39)
K
where

N
[a,al] = "[a,afly (40)
k=

1

stands for the commutator (&, a') when the superposed light mode « is interacting with all the N
three-level atoms. On the other hand, using the steady-state solution of Eq. (36), one can verify

that
192
4,0l = N [”] <NC - Na>. (41)
K
Thus inspection of Egs. (39) and (41) show that
N=x2, (42)
VN
Hence in view of this result, Eq. (36) can be rewritten as
d, . K. g .

IV. SOLUTIONS OF THE EXPECTATION VALUES OF THE CAVITY
AND ATOMIC MODE OPERATORS
In order to determine the mean photon number and the variance of the photon number, and the
quadrature squeezing of a single-mode cavity light in any frequency interval at steady state, we
first need to calculate the solution of the equations of evolution of the expectation values of the
atomic operators and cavity mode operators. To this end, the expectation values of the solution
of Eq. (43) is expressible as

a = (4 efm‘//Q Le*”t/Q ! lefﬁt’/Zm ny.
@(0) = @)+ /O dt'e= 12 () (44)

We next wish to obtain the expectation value of the expression of /m(t) that appear in Eq. (44).
Thus applying the large-time approximation scheme to Eq. (20), we get

). 45)

Upon substituting the adjoint of this into Eq. (19), we have
d

() = —plina(t), (46)
where
272 4+ Q2
p= e (47)
27,

We notice that the solution of Eq. (46) for  different from zero at steady state is

(11a(t)) = 0. (48)

In a similar manner, applying the large-time approximation scheme to Eq. (19), we obtain
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N -t
<ma> - 2'70 <’I7’L > (49)
With the aid of the adjoint of Eq. (49), one can put Eq. (20) in the form
d, . .
= () = =S (1), (50)
We also note that for i different from zero, the solution of Eq. (50) is found to be
(my(t)) = 0. (51)
Upon adding Egs. (46)and (50), we find
Ctm(t)) = 2 (1)) — 2 na(1) (52)
dt 2 2

We note that in view of Eq. (48) with the assumption the atoms initially in the bottom level, the
solution of Eq. (52) turns out at steady state to be

(m(t)) = 0. (53)

Now in view of Eq. (53) and with the assumption that the cavity light is initially in a vacuum state,
Equation Eq. (44) goes over into

(a(t)) = 0. (54)

Therefore, in view of the linear equations described by expressions (43) with (54), we claim that
a(t) is a Gaussian variable with zero mean. We finally seek to determine the solution of the ex-
pectation values of the atomic operators at steady state. Moreover, the steady-state solution of
Egs. (21)-(24) yields

. [ 02
(Nw)ss = | 237502 | V- (55)
(Ny)ss = 7222392 N, (56)
(Ne)ss = % N, (57)
(e ss = w?jgm N. (58)

Up on setting n = %, we can rewrite Egs. (55)-(58) as

N 772

(Na>ss - |:1 n 3772:| N7 (59)
N 172

<Nb>ss = |:1 n 3772:| N7 (60)
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. (1472 ]
<Nc>ss = 1+ 3772 N; (61)
(iedes = | —T—| v 62)
Mec)ss = 1+ 3772 .

Initially (when © = 0), all the atoms are on the lower level ((Nc>ss = N) while the number of
atoms on the top and intermediate levels are zero.

V. PHOTON STATISTICS

Here we seek to obtain the global (local) mean photon number and the global (local) variance of
the photon number for a single-mode cavity light beam at steady state.

a) The Global Mean Photon Number
To learn about the brightness of the generated light, it is necessary to study the mean number of

photon pairs describing the two-mode cavity radiation that can be defined as
n=(ala). (63)

On account of the steady state solution of (43) together with (31), the mean photon number of
the two-mode cavity light is expressible as

n= % <Na>ss + <Nb>ss . (64)

With the aid of equations (59) and (60), one can readily show that

50 T |

N W £
o o o
T T T

™
! ! 1

Mean Photon Number

-
o
1
~.
1

M

Figure 1. Plots of nvs. nforvy,. =04, x = 0.8, and N = 50

(27 n?
- (59) 2]
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It is not difficult to see, for Q > ~,, that

27,

3 N. (66)

n =

We see from Fig. (1) that the mean photon number of the two-mode light increases with . In
addition, as shown on Fig. (2) when Q2 (the amplitude of coherent light) and . (the stimulated
emission decay constant) increase the global mean photon number also increases.

Mean Photon Number

Figure 2: Plots of n vs. . and §2 for x = 0.8 and N = 50

b) The Local Mean Photon Number

We seek to determine the mean photon number in a given frequency interval, employing the
power spectrum for the two-mode cavity light. The power spectrum of a two-mode cavity light
with central common frequency wy is defined as

(w) = %Re /OOO dre! @m0 (@t (E)a(t + 7)) s (67)

Next we seek to calculate the two-time correlation functions for the two-mode cavity light. To
this end, we realize that the solution of Eq. (43) can write as

a(t + 1) = a(t)e "2 4 I/ / dr' e (e 1. 68)
0

VN

On the other hand, one can put Eq. (52) in the form

d; p
2

. B 2
J(t) = = Sit) = Sia(t) + Fn (1), (69)

2

in which F;,(t) is a noise operator with zero mean. The solution of this equation is expressible as

m(t 4 7) = m(t)e /% 4 e H/? / dr'er7' /2 [ - gma(t +7) 4+ Fpt+7)]. (70)
0
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In addition, one can rewrite Equation (134) as

Dna(t) = —pina(t) + Fut), (71)

where F,(t) is a noise operator with vanishing mean. Employing the large-time approximation
scheme to Equation (71), we see that

Fa(t +7) = ;Fa(t +r). (72)

Furthermore, introducing this into Equation (70), we have

T : 1. .
m(t+ 1) = m(t)e /2 4 e F7/2 / dr'e "7 /2 [ = G Fult+7) + Fu(t + r’)] : (73)
0

Now combination of Eqgs (68) and (73) yields

alt +7) = a(t)e "2 4 L_erm/2 [m t /T dr'e= =T /2 /T dr'e= (=™ /2
(44 7) = alt)e "+ el gy | 0

7_/

1" 1. -
x / dr'e b /2< = SEalt+7") 4+ Bt + r”))] : 74
0

On multiplying both sides on the left by af(¢) and taking the expectation value of the resulting

equation, we get

ot (alt + 7)) = (@ a2 + —I_ex2| @t @) [ drle
@i+ ) = @l @ae)e "l + 2[< (yin) [ artem (-

!

# [Caretenmi [T et (- a0+ )+ @ OF0 ) |09
0 0

Moreover, applying the large-time approximation scheme to Eq. (43), we obtain

(t) = “;;Na(t). (76)

With this substituting into Eq.(75), there follows

(@ ()a(t+ 7)) = (@l (Ba))e /2 + - e—m/z[

Fata " drte- -
v (@) <t>>/d w72

2 0

/

+ /0 dr'e=(F=m)7'/2 /O dT"e“T”/Q(— %@J(t) u(t+ 7)) + (@l (2)

m(t+7”)>>]- 77)
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Since the cavity mode operator and the noise operator of the atomic modes are not correlated,

we see that
(@' () Falt + ")) = (a' (&) (Fa(t + 7)) = 0, (78)
(@ () Fm(t+7")) = (@' () (E(t+ 7)) = 0. (79)

On account of these results and on carrying out the integration of Eq. (77) over 7', we readily ge

@ at+ 7)) = @ (t)a(t)) que—m/? - %ﬁue—m/ﬂ. (80)

On introducing (80) into Eq. (67) and carrying out the integration, we readily get

~ K w/2m w K/2m ] }
T = — . 81

o= [75] [o=airom) - [l o=t oy

The mean photon number in the frequency interval between ' = —) and w’ = + ) is expressible
as

+A
niy = / F(w')dw’, (82)
-A

in which w’ = w — wy. Thus upon substituting (81) into Equation (82), we find

o= [ oo - [25)  [aaopn)ee ®

and on carrying out the integration over w’, applying the relation

thoq 2 A
/ dr 2 () (84)
_x T¢ta a a

we arrive at

7 8 9 10

Figure 3: Plot of z(\) vs. AMfory, =0.4,Q2 =3,and £k = 0.8
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Ny = ﬁz(/\), (85)

= [ (2)- 2] (2),

One can readily get from Fig. (3) that z(0.5) = 0.5891, z(1) = 0.7802, and z(2) = 0.8978. Then
combination of these results with Eq. (85) yields n195 = 0.58917n, ny; = 0.7802n, and niy =

where

0.8978n. We therefore observe that a large part of the total mean photon number is confined in a
relatively small frequency interval.

c) The Global Variance of the Photon Number
The variance of the photon number for the two-mode cavity light is expressible as

(An)? = ((aTa)?) — (a'a)?. (87)

Since a is Gaussian variable with zero mean, the variance of the photon number can be written

as
(An)? = (a'a)(aal) + (a?)(a?). (88)

With the aid of the steady-stae solution of Eq. (43), one can easily establish that

300

250; 1

200¢ 1

1507 1

(A n)?

1007 1

(aa') = L[(Rp) + (No)] (89)
and
(@) = 2 (me). (90)

© 2019 Global Journals



Since (1) is real, then (a?) = (a?). Therefore, with the aid of Egs. (64), (89) and (90), Eq. (88)
turns out to be

(An)? = (%)2[(<Na> + (V) ((No) + (Ne)) + (1iae)?]. ©OD
Furthermore, upon substituting of Egs. (59)-(62) into Eq. (91), we see that

2 2 4
e 3n° +4n
An)? = (Jen) |20 92
(An) (/@ ) [14—67724-97]4} 92)

This is the steady-state photon number variance of the two-mode light beam, produced by the
coherently driven degenerate three-level laser with a closed cavity and coupled to a two-mode

vacuum reservoir. Moreover, we note that for » > 1, Eq. (92) reduces to

(An)? = [2%Nr (93)
IRED
and in view of Eq. (66), we have
(An)? =72, (94)

which represents the normally-ordered variance of the photon number for chaotic light.

Figure 5: Plot of (An)? vs. . and Q for k = 0.8 and N = 50

We see from Fig. (4) that the global photon number variance of the cavity light increases with 7.
In addition, as shown on Fig. (5) when (2 (the amplitude of coherent light) and ~. (the stimulated
emission decay constant) increase the global photon number variance also increases.

d) The Local Variance of the Photon Number
Here we wish to obtain the variance of the photon number in a given frequency interval, employ-

ing the spectrum of the photon number fluctuations for the superposition of light modes a; and
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as. We denote the central common frequency of these modes by wy. The spectrum of the photon
number fluctuations for the superposed light modes can be expressed as

Aw) = %Re / - dre™ T (R (), At 4 7)) sss (95)
0
where
at) = a'(t)a(t), (96)
At +71) =al(t +7)at + 7). 97)

Applying the realtion [39]
(a(t),nt + 7)) = ()t + 7)) — (A1) (At + 7). (98)

With the aid of Egs. (96), (97) and (54), the photon number fluctuation can be expressed as

Aw) = %Re /0 - dre @06t (t + T)a(t + 7))@t + 7)al (t + 7))

+@af(t+7m)al(t + 1) alt +7)a(t + 7)) (99)

Following the same procedure to determine (80), one can readily get

a ELT V) = {(a dT Le— 7'/2_Le—m'/2
(@03 ¢+ 7)) = (al0)al(0) | e - e (100
a(t)a 7)) = (a2 R e_“T/Q—i'u e rT/2

(@(0alt + 7)) = (@0 | e - el (101
dT &T 7)) = dT2 K e—,uT/Q_ I 6—57/2
@10l ¢+ 7)) = (@0 | e et 102

Upon introducing (100)-(102) into Equation (99) and on carrying out the integration over 7, the
spectrum of the photon number fluctuations for the two-mode cavity light is found to be

M) = (2] MQ il ey = e Rt MQW] T )

ot [l 1o

£=p)?] L (w—wo)? + (k+p)?/4

where (An)? is given by (92). Furthermore, upon integrating both sides of (103) over w, we find

/OO Aw)dw = (An)?,, (104)
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On the basis of Eq. (104), we observe that A(w)dw represents the steady-state variance of the
photon number for the two-mode cavity light in the interval between w and w + dw. We thus

realize that the photon- number variance in the interval between ' = —)\ and w’ = +) can be
written as
+A
(An)i, = Aw)dw, (105)
i
0.9 N
081 N
07 .
0.6 b
ig 0.5 b
N
04r i
0.3 N
0.2 |
0.1 |
0 | | | | | | | | |
0 05 1 15 2 2}.5 3 35 4 45 5

Figure 6: Plot of z/(\)vs. Aforv, =0.4,Q =3,and k = 0.8

in which &' = w — wp. Thus upon substituting (103) into Eq. (105) and on carrying out the
integration over «’, applying the relation described by Eq. (84), we readily get

(An)%y = (An)?2'(N), (106)

o2 o (2] [ () [0 (2,

One can readily get from Fig.(6) that 2/(0.5) = 0.6587, 2/(1) = 0.8074, and 2/(2) = 0.9254. Then

combination of these results with Eq. (106) yields (An)%, 5 = 0.6587(An)22' (), (An)3, = 0.8074(An

and (An)2, = 0.9254(An)?. We therefore observe that a large part of the total variance of the
photon number is confined in a relatively small frequency interval.

VI.  QUADRATURE SQUEEZING

In this section, we seek to obtain the quadrature variance and squeezing of the two-mode light
in a closed cavity produced by a coherently driven nondegenerate three-level laser.
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a) Quadrature Variance
The squeezing properties of the two-mode cavity light are described by two quadrature operators

ay =al +a, (108)
a_ =i(a’ —a), (109)

It can be readily established that

Figure 7: Plot of (Aa_)? vs. n for~. = 0.4,k = 0.8, and N = 50

[_,a.] = 2%[]\7& ~ N, (110)
It then follows that
AayAa_ > (N, — (WY, (111)
K

Now upon replacing the atomic operators that appear in Eq. (39) by their expectation values, the
commutation relation for the two-mode light can be written as

[a,a) = A, (112)
in which

A= [<NC> - <Na>]. (113)

Making use of the well-known definition of the variance of an operator, the variances of the
quadrature operators (108) and (109) are found to have the form
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(Aax)® = A+ 2(al (t)a(t)) + (a°(1)) + (@(1) T (@(t))® 7 (@' (1))* — 2(a(t))(al(1)). (114)
In view of Equation (54), one can put Equation (114) in the form
(Aas)? = X+ 2T (H)at)) + (@2(1)) £ (a(t)). (115)

With the aid of Egs. (64), (90), and (113) one can easily establish that

(Aay)® = %[N + (Ny)ss + 2(ritc)ss), (116)
(Aa_)? = %[N + (Np)ss — 201ie) s (117)

Finally, on account of (60) and (62), the global quadrature variance of the two-mode cavity light

Figure 8: Plots of (Aa_)? vs Q and . for k = 0.8, N = 50.

turns out at steady state to be

an? +2n+1
Aay)?=Len|ZL 012 11
( (L+) k |: 1+3772 :|7 ( 8)
4n? —2n+1
Aa_)?=ley |2 =211 119
and for Q > ~,
47,
(Aas)? = 3’2]\7:2@ (120)
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where 7 is given by equation (66). It can be seen that expression (120) represents the normally
ordered quadrature variance for chaotic light. Moreover, for the case in which the deriving co-
herent light is absent, one can see that

(Aay)? = (Aa_)2 = %N, (121)
which is the normally ordered quadrature variance of the two-mode cavity light in vacuum state.
It is also observed that, the uncertainty in the plus and minus quadratures are equal and satisfy

the minimum uncertainty relation.

b) The quadrature squeezing
The quadrature squeezing of the two-mode cavity light relative to the quadrature variance of the

two-mode vacuum light can be defined as

(Aag); — (Aa_)?
(Aag)? ’

S = (122)

where (Aa4)? is the quadrature variance in vacuum state given by equation (121). Taking into

0.5

0.4- 1
0.3 1
)

0.2 1

0.1 1

00 0.2 04 0.6 0.8 1

Il
Figure 9: Plot of the quadrature squeezing vs.n for . = 0.4.

account equations (118) and (121), (122) yields

m— 2
52177?322' (123)

Equation (123) is indicates that the quadrature squeezing of the light produced by degenerate
three-level laser with the N three-level atoms available inside a closed cavity pumped to the top
level by electron bombardment which has been reported by Fesseha [1, 28].

We observe that in Eq. (123), unlike the mean photon number, the quadrature squeezing does
not depend on the number of atoms. This implies that the quadrature squeezing of the cavity
light is independent of the number of photons.
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The plot in Figs. 9 shows that the maximum squeezing of the cavity light is 43% degree of squeez-
ing and occurs when the three-level laser is operating at = 0.4. Hence one can observe that a
coherently driven light produced by a degenerate three-level laser can exhibit less than degree of
squeezing when, for example, compared to the light generated by a three-level laser in which the
three-level atoms available in a closed cavity are pumped to the top level by means of electron
bombardment [1, 28, 29].

120

e Q

Figure 10: Plot of the quadrature squeezing vs. Q2 and ..

VII.  LocAL QUADRATURE SQUEEZING

Here we wish to obtain the quadrature squeezing of a cavity light in a given frequency interval.
To this end, we first obtain the spectrum of the quadrature fluctuations of the superposition of
light modes a; and ay. We define this spectrum for the two-mode cavity light by

Sy (w) = %Re / - dre @m0 (G (8), ds (t 4 7)) s, (124)
0
in which
ar(t+7)=al(t+7)+alt+71), (125)
a_(t+7)=i(a'(t+71) —alt+ 1)), (126)

and wy is the central frequency of the modes a; and as. In view of Eq. (54), we obtain
(ax(t),ax(t+ 7)) = (ax(t)as(t +7)). 127)
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Then on account of Egs. (108), (109), (125), and (126), one can write Equation (127) as
(a+(t),ax(t+ 7)) = @' @®at+ 1) + @@t)al (t + 7)) + @ @®)al @t + 7)) £ (@a@)at + 7). (128)
Upon substituting of Egs. (80), (100)-(102) into Eq. (128), we arrive at

(a=(t), ax(t + 7)) = [(dT(t)&(t» +(a(t)al (1) £ @' (Ha'(1) = (@t)a(r)

X [F.;—H,fWQ - ’i_“ﬂe“ﬂ] . (129)
This can be put in the form
(s (1), au(t + 7)) = (Aay)? que—fﬂ/? -~ Hfue—m/ﬂ (130)
and
(a_(t),a_(t + 1)) = (Aa_)? [Hfﬂe—mﬂ - Hfue—mﬂ]. (131)

Now introducing (131) into Eq. (124) and on carrying out the integration over 7, we find the
spectrum of the minus quadrature fluctuations for a two-mode cavity light to be

- = @t | o] - [ o) b 092

Upon integrating both sides of (132) over w, we get

+o0
/ S_(w)dw = (Aa_)% (133)

—0o0

On the basis of Equation (133), we observe that S_ (w)dw is the steady-state variance of the minus
quadrature in the interval between w and w + dw. We thus realize that the variance of the minus

quadrature in the interval between w’ = —\ and w’ = +) is expressible as
+A
(Aagy)? = S_(w')d', (134)
Y

in which w — wy = &' . On introducing (132) into Eq. (134) and on carrying out the integration
over ', employing the relation described by Eq. (84), we find

(Aa )%, = (Aa_)*z(N), (135)

where z()\) is given by Eq. (86). We define the quadrature squeezing of the two-mode cavity light
in the A\ frequency interval by

(Aa,)i)\

—— 5 (136)
(A‘L)%i/\

Sta=1-—
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Furthermore, upon setting » = 0 in Eq. (135), we see that the local quadrature variance of a
two-mode cavity vacuum state in the same frequency is found to be
(Aa_)ppn = (Aa_ )iz (N), (137)

in which

2u(N\) = [ = } tan™ ! <2)\> — {2%/71 tan™! <2)\> (138)
K —"%c Ye K=" R
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Figure 11: Plot of S4y vs. A for~. = 0.4, Q =0.1717,and k = 0.8

and (Aa_)? is given by (121). Finally, on account of Equations (119), (121), and (137) along with
(136), we readily get

Sty = (139)

1 2n —n?
S === [T oo}
This shows that the local quadrature squeezing of the two-mode cavity light beams is not equal
to that of the global quadrature squeezing. Moreover, we found from the plots in Figure 6 that the
maximum local quadrature squeezing is 80.2% (and occurs at A\ = 0.08). Furthermore, we note
that the local quadrature squeezing approaches the global quadrature squeezing as A increases.

VIII.  CONCLUSION

The steady-state analysis of the squeezing and statistical properties of the light produced by co-
herently pumped degenerate three-level laser with closed cavity and coupled to a single-mode
vacuum reservoir is presented. We carry out our analysis by putting the noise operators associ-
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ated with the vacuum reservoir in normal order and by taking into consideration the interaction
of the three-level atoms with the vacuum reservoir inside the cavity. We observe that a large part
of the total mean photon number (variance of the photon number) is confined in a relatively
small frequency interval. In addition, we find that the maximum global quadrature squeezing of
the light produced by the system under consideration operating atn = 0.1717 is 43.43%.

Moreover, we find that the maximum local quadrature squeezing is 80.2% (and occurs at A =
0.08). Furthermore, our results have shown that unlike the local mean of the phonon number
and photon number variance, the local quadrature squeezing does not increase as the value of A
increases. We observe that the light generated by this laser operating under the condition 2 > ~.
isin a chaotic light. And we have also established that the local quadrature squeezing is not equal
to the global quadrature squeezing. Furthermore, we point out that unlike the mean photon
number and the variance of the photon number, the quadrature squeezing does not depend on
the number of atoms. This implies that the quadrature squeezing of a cavity light is independent
of the number of photons.
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