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General Solution of the Schrodinger
Equation with Potential Field Quantization
and Some Applications

Hasan Huseyin Erbil

Abstract- A simple procedure has been found for the general solution of the time-independent Schrédinger Equation
(SE) with the help of quantization of potential area in one dimension without making any approximation.Energy values
are not dependent on wave functions. So, to find the energy values, it is enough to find the classic turning points of the
potential function. Two different solutions were obtained, namely, symmetric and anti symmetric in bound states. These
normalized wave functions are always periodic. It is enough to take the integral of the square root of the potential energy
function to find the normalized wave functions. If these calculations cannot be made analytically, they should then be
performed by numerical methods. The SE has been solved for a particle in many one-dimension and the spherical
symmetric central potential well, the relativistic theory of Dirac as examples. Their energies and normalized wave
functions were found as examples. These solutions were also applied to the theories of scattering, tunneling and alpha
decay. The results obtained with the experimental values were compared with the calculated values. The calculated
results were consistent with measured experimental results.

Keywords: potential quantization, schrédinger equation, potential wells of any form, energy values of bound

states, dirac equation, tunneling theory, transmission coefficient, a-decay theory, scattering theory.
[. INTRODUCTION

Mechanical total energy (E) is the sum of kinetic energy (T) and potential
energy (U). That isE=T+U. If E=Uthen T=0IfE>U then T>0; If E<
U then T <0 (it is not possible, classically).In quantum mechanics, the total energy is
equal to the eigen value of the total energy operatorH (Hamiltonian). One dimension

n? d?

Hamiltonian operator is given as follows: H = et U(x). This operator is hermitic

and its eigen values are real numbers. The equation of eigen values of this Hamiltonian
is given as follows (time-independent Schrodinger Equation, SE):

= n% d?
A6 = |- 7=15 + U] ¥(0 = Ew) o
The eigen value E can have two values, —E and +E, (E > 0),s0 from
equation(1), the following differential equation is obtained:
d2
L9 4 [k? - m U] () =0, 2)
Where, k?=-m?E for —E and k! =m?E for +E; m? =2 m/h? (3)
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Although we succeed in solving the time-independent SE for some quantum
mechanical problems in one dimension, an exact solution is not possible in complicated
situations. We must then resort to approximation methods. For the calculation of
stationary states and energy eigenvalues, these include the variation method, the
method of Nikiforov-Uvarovthe supersymmetric quantum mechanics, the Wentzel-
Kramers-Brillouin (WKB) and the super symmetric WKB approximations, and the
perturbation theory. Perturbation theory is applicable if the Hamiltonian differs from
an exactly solvable part by a small amount. The variation method is appropriate for
the calculation of the ground state energy if one has a qualitative idea of the form of
the wave function. The WKB method is applicable in the nearly classical limit. The
exact general solution of the differential equation given in Equation(2) has not been
achieved yet. This is problem a very challenging problem for theoretical physicists.

In this study, we followed a simple procedure for the exact general solution of
the time-independent SE in one dimension without making any approximation. We
have applied this simple procedure to various quantum mechanical problems: one-
dimension potentials, spherically symmetric potentials, relativist equation of Dirac,
tunneling effect, theory of alpha decay, scattering theory and presented some examples.

This text was prepared based on the reference [1]. For this reason, most
references in [1] are not given here again.

[[.  SoLuTiON OF THE TIME-INDEPENDENT SE IN ONE DIMENSION

Let us rewrite the time-independent SE in one dimension given in Equation(2):

0 4 k2 — m2 U] () = 0 (4)

dx?

Here, E (in k) and U(x)arerespectively the total and effective potential energies of
a particle of mass m. Two kinds of solutions to the SE correspond precisely to bound
and scattering (unbound) states. When E < U(—o0) and U(+), solutions correspond to

bound states; when E > U(—) or U(+),the solutions correspond to scattering states.
In real life, many potential functions go to zero at infinity, in which case the criterion is
simplified even further: when E < 0, bound states occur; when E > Oscattering states occurs.
In this section, we shall explore potentials that give rise to both kinds of states. We will
solve Equation(4)]in two steps as follows.

a) The first Step
Inspired by the theorem given in [2], we consider the following integral function:

Sx) = [U(x)dx. (5)
If f(x) = S(x)in this theorem, we get:
F(e) = [ S(x) y(x — xo, ) dx (6)

From this function fore = 0, the following is obtained:

lim,_ F(e) = F(0) = lim,_, f:j S(x) 8(x —xg) dx =S(x¢) =S (7)
Now, let us take the potential and wave functions respectively as follows:

S= fxxlz U(x) dx; U(x) = S(xq) 6(x — x¢) =S 6(x — xg)and(x) = F(x) (8)
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Here, 8 (x—Xg) is Dirac function. x; and x,are the roots of the equation E = U(x),
that is the apsis of the classical turning point of the potential function. If we take
Xo = (%1 + x3)/2and d =x; — %1, (X3 >Xq),then we find x;=%xy—d/2, x, =%y +
d/2. (See Figurel).If we take these functions, the SE given in Equation(4) becomes as
follows:

d2?F(x)
dx?2

+ k?F(x) = m?S 8(x — xy) F(x) (9)

To evaluate the behavior of F(x) at x = X, let us integrate the Equation (9) over

the interval [X;, X;] =[x —d/2 , Xy + d/2] and also consider the limit d — 0, then we
obtain the following value:

F'(xg +d/2) — F (xg —d/2) = m?S F(xo) (10)

Equation (10) shows that the derivation of F(x) is not continuous at the x = x,
point, whereas the wave functions F(x) should be continuous at the same point.

To solve the differential equation given in Equation (9), we can perform the
transformation of Fourier of the equation, and then we obtain the following function:
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Figure 1: Regions relevant to a particle of energy E moving in a one dimensional
potential field, U(x).(a) In the domains I and IIl, E < U(x), (unbound state); In the
domain II, E > U(x), (bound state). (b) In the domains I and III, E > U(x)In the
domain II, E < U(x), (unbound state). The roots of the equation E = U(x) are turning
points of the corresponding classical motion. (c) Regions for U(x) < 0 and E < 0.

— — a2 T
F(x) = AeXIG=x0l [A =— /3 a= W_ SF(XO)] (11)
From Equation (11), we get the following functions:
F(x) = A ekGX0forx < x, and F(x) = Ae X&=x0) for x> x, (12)

Substituting the functions given in Equation(12) into Equation (10) and taking
the limitd — 0, the following values are obtained:

k=—SorE—imSZ (13)

The same values given in Equation(13) can also be obtained from
Equation(11).To find the integral constant A, the function F(x) can be normalized to 1:

X0 +oo
f A A* ePKEX0)dx + f A A e 2kx0)dy = 1,
oo %o

From this equation, we obtain the coefficient of normalization as:

|Al = vk =vVmS/h (14)

From Equation(12), by the linear combinations of these functions, we have also
the following functions:

F(x) = A ek(x—x0) 4 B g k(x—x0) (15a)
F(x) = %A[ek(x—xo) + e—k(X—XO)] = A cosh[k(x — x¢)] (15b)
F(x) = %A[ek(x‘xﬂ) — e kK&=x0)] = A sinh[k(x — xo)] (15c¢)
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b) The second Step

Let us assume the wave function y(x) to be (x) = F(x) e!¢®) (we assume that
G(x) is a real function). If we substitute this function into Equation(4), we get:

F' (%) — F(x) G*(x) — kK?F(x) — m? UX)F(x) +i1[2F (x)G (X) + FX)G x)] =0 (16)

From the real and imaginary parts of Equation(16), we can have the following
two equations:

NOteS F' (x) — FX)G %(x) — k?F(x) — m? UX)F(x) = 0 (17)
2F(X)G (%) +FX)G ' (x) =0 (18)
From Equation(17), the following equations are obtained:
For F(x) = AekGx0);  F(x)[miUX) +G*(x)] =0 (19a)
For F(x) = Ae *x0);  F(x)[m?U(X) + G *(x)] = 0 (19b)
For F(x) = A ek&—x0) 4 B e k&—%0) ; F(x)[m}U(x) + G *(x)| = 0 (19¢)
For F(x) = Acosh[k(x — x¢)]; F)[miUx) +G*(x)] =0 (19d)
For F(x) = Asinh[k(x — x0)]; FG)[mUX) +G*(x)] =0 (19¢)
From Equations(19a)-(19e),the following two equations are obtained:
m?U(x) + G*(x) =0 (20a)
F(x) =0 (20b)
From Equation(20a), the function G(x)is obtained as follows:
G =%+m [/-UX dx =+im; [/U®X) dx = +iQ(x) (21a)
Q) =m, [{U(x) dx (21b)
Thus, the wave function y(x) has been written as follows:
P(x) = F(x)eti 6™ or Y(x) = F(x — x,)eti 6&x=%0) (22)
The functions given in Equation(22)can also be written as follows:
P(x) = Fx)[Ae ¢® + B e 16M)] or (23a)
P(x) = F(x —x()[A ! 6&7x0) 4 B g1 G(x=x0)] (23Db)

In the functions given in Eqs(23a) and (23b):
a) For E>U(x) ; k=mvV-E, G(x) =rn1f\/T(X)dx,
b) For E<U(x) ; k=m;VE, G(x) = mlfde.
As shown in Figurela, the total energy is equal to potential energy at the

points x; = X9 —d/2 and x, =xy +d/2. So, kinetic energy is zero at these points.
Now, let us examine the behavior of the function in the interval [x, — d/2, X, + d/2].
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Now, let us consider Equation(20b), that is: F(x) = 0. Let us assume that the

roots of this equation arex; =Xy —d/2 and x, =xy,+d/2. So, we can write the
following equations:

F(x;) =F(xg—d/2)=0; F(x;) =F(x,+d/2)=0 (24)
From Equation(24), the following expressions can be obtained:
a) For F(x) = Aek®xX0) 4 Be*&=X0); k =m;+/-E =imVE =iK,[K=mVE > 0]
a;1A+a;,B=0; a;A+a,,B=0;
ay = e 14K/2; g = @l dK/2, o = oidK/2, 5 = o-1dK/2

Since A and Bhave to nonzero values, the determinant of coefficients in this
system of equations must be zero. Thus, the following equation can be written as
follows:

= —2isin(dK) = 0. (25)

a11 412
det | |

dz1  dp2

Here let us take d K = q. From Equation (25), we have the following values:
sin(dK) =sin(qQ) =0 - q=nm, [n=1,2,3,4,...integer].
So, we obtain the quantization condition of energy as follows:

Kd= ’Zh—gl [El d=q, [g=nm, (n=1,2,3,... integer numbers)] (26)

Here the coefficient B is obtained as B = —A. Thus the function F(x) is written
as follows:

F(x) = Ale! K&%0) — 71K x=x0)] = 2 { Asin[K(x — x¢)] = B sin[K(x — xo)].

The coefficient B in this function is found by normalizing the function in the
interval [x;,X,], and one is found as follows: |B|= \/m Thus the functions
F(x) and y(x)are written as follows:

F() = /2/d sin [K(x —x0)] ; () = y/2/d sin [K(x — xp)] €6C=0) (27
b) For F(x) = Acosh[k(x —x¢)];k =iK
F(x1) =F(xg —d/2) =0;F(x;) =F(xg + d/2) =0
F(x;) = F(x,) = A cosh(d k/2) = A cos(d K/2) =0
dK/2=q/2=2n—-1)1/2 -5q=2n—- 1), [n = 1,2,3,...integer]

So, we obtain the quantization condition of energy as follows (symmetric case):

Kd= fzh—rzn |E| d=q, [q=(2n—1)m,(n=1,2,3, ..integer numbers)] (28)

The coefficient A in this function is found by normalizing the function in the
interval [xq,X,]. That is|A| =+/2/d . Thus, the functions F(x) and y/(x)are written as
follows:

F(x) =+/2/d cos[K (x — x¢)]; W(x) = \/2/d cos[K(x — x,)] el ¢G>0 (29)
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c) For F(x) = Asinh[k(x —x()];k=1iK;
F(x1) =F(xy—d/2)=0; F(xy,)=F(x,+d/2)=0
F(x;) = —A sinh (d k/2) = —iAsin(dK/2) =0
F(x,) = A sinh (dk/2) =iAsin(dK/2) =0
dK/2=q/2=nmt - gq=2nm, [n=1,2,3,...integer numbers]

So, we obtain the quantization condition of energy as follows (antisymmetric case):

Kd= /Zh—r; [El] d=q, [q=2nm, (n=1,2,3,... integer numbers)] (30)

The coefficient A in this function is found by normalizing the function in the

range [x4,x;] and one is found as follows: |A|l =4/2/d .Thus, the functions
F(x) and y(x)are written as follows:

F(x) = +/2/d sin[K (x — x0)]; W(x) = +/2/d sin[K (x — x,)] el ¢&*0) (31)

It is possible to combine Equations(28) and (30) in one equation as follows
(general case):

Kd= /Zh—r; [El] d=q, [q=nm, (n=1,2,3,... integer numbers)] (26)
Now let us write the kinetic energy of the particle as follows:
2
p
T=-—=E-U
> x)

By integrating this equation from x; to X,and using Equation(8), the following
equation is obtained:

X2 X2 pZ X2 X2 X2
f TdX=f mdxzf [E—U(X)]dx=f de—f U(x)dx =S
X1 X1 X1 X1 X1

From this the following equation is written:
Sk:E(XZ—Xl)—S:Ed—S (32)

From the Figurel, we can observe that:

a) For the case E > U(x), the kinetic energy is positive and[E (x; —x1) —S] > 0(bound
states).

b) For the caseE < U(x), the kinetic energy is imaginary and[E (x; —x;) —S] <0
(unbound states).

c) For the case E = U(x), the kinetic energy is zero and [E (x, — x;) — S] = 0 (minimum
energy state or ground state in bound states).

In addition, for the bound states, in the interval[x;,x;], the kinetic energy is
positive, outside this interval, the kinetic energy is imaginary. The minimum point of
the potential corresponds to ground state. In ground state, the kinetic energy is zero,

namely T =0 and Sy = 0. Thus, at the minimum point of the potential, we can write
that:
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EO(XZ - Xl) —S=0or S = EO(XZ - Xl) = EOd

By substituting this value of S into the equation (13), we get the ground state
energy expression as follows:

2 h?

—_ M g2__ M n232 L

2 h2 2 K2 (33)

Here, Ej represents the ground state energy. The negative sign indicates that the
state is bound and it can be omitted for the positive energies in the calculations.

[11. BouNDARY CONDITIONS

Let us divide the potential field into three domains as shown inFigurel and

represent the functions {; (x), P,(x) and P3(x) in each domain. The wave functions
and their derivatives should be continuous. Because of these conditions, the above
functions must satisfy the following conditions:

Pp(x1) = Pa(xq) ; L|1,1(X1) = L|1’2 (x1); Wa(xz2) = P3(xz) ; L|1’2 (xz) = L|1’3 (X2)
limy,_o, g1 (x) >0 and limy, o, P3(x) =0 (34)

The normalization of the bound state function requires that the functions vanish
at infinity. With these boundary and normalization conditions of the wave functions, we

can find the integral constants, A,B andthe energy E.As it will be also seen above, in
the bound states, we do not need the solutions of the SE. It is sufficient to know only

the classical turning points, x; and x;, of the potential function.

Quantization of the energy values can also be found by means of boundary
conditions. Let us find them now. In bound states, let us apply the conditions given in
Equation(34) to the following functions:

A ek xx0) 4 B ek &=x0). A cosh[k (x — x,)] ; B sinh[k (x — xg)].

a) For the function Aek x=x0) 4 B e~k (x—x0)
According to Figurela, in the domain I, E < U(x), in the domain II, E > U(x), in

the domain III, E < U(x). According to Equations (23a) and (23b), the corresponding
wave functions are written as follows:

P (%) = Agel k&%) g~ Qx—x0) (35a)
P, (%) = [Aek %) 4 Bye~k (x—X0)] g1 Qx—X0) (35b)
Ps(x) = A3e—ik (x=%0) @=Q(x—x0) (35¢)

Here, Q(X - Xo) = my fﬂ —U(X - Xo) dX, k= ml\/—_E = lml\/E .

Boundary conditions:
Y1 (xq) = Wa(xq), P2(x2) = P3(x2), lljll (x1) = llllz(Xl),
W2 (x2) = P3(x;) lim 4y () >0 and  lim 3(x) > 0

From these conditions, four linear equations are obtained as follows:
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ajpazazan | [A;
aziazazsa | |A;
aziaszaszass | [B;
Ag1d42a43a44 | [A5

=0 (36a)

For this system of equations to have a solution different from zero, the
determinant of coefficients should vanish, namely;

d113d123d13d14
dp1dppdp3dng
d31d3zd33dz4
d41d42d43344

=0 (36b)

If it is taken as follows
X, =x9—d/2, X, =Xg+d/2, Q'(—d/2)=Q'(d/2) =k, k=iK, dK=gq
From Equations(36a) and (36b),following equation is obtained:

o[T1a-(1-DQ(-d/2)+(1+)Q(d/2)[ -1 4 e219] = 0 (37)

For the equality in Equation (37) to be realized, it has to be q=nm, (n=
1,2,3,...). Thus, we obtain the quantization condition of energy as follows:

Kd= ’Zh—rzn |E| d=q, [g=nm, (n=1,2,3,... integer numbers)] (38)

b) For the function coshlk (x — x,)]
According to theFigurela, in the domain I, E < U(x); in the domain II, E >

U(x) ; in the domain III, E < U(x). According to the equations given in Equations(23a)
and (23b), the corresponding wave functions are written as follows:

P1(x) = A coshik (x — xo)] e 1¢&0); s, (x) = A, cosh[ k (x — x,)] e 6&%0)
P3(x) = Az cosh[—ik (x — xq)] el 16G=x0): x =x,—d/2 and x, =%y + d/2
According to the conditions given in Equation(34)it can be written that:
Y1 (x1) = P (xg)ory; (x) — Pa(x1) = 0 (39a)
P2 (x2) = P3(x)ord,(xz) — Ps(xy) =0 (39b)
From (39a) and (39b), two linear equations are obtained as follows:
ayj A1 +apAs =0; aA; +apA; =0 (39¢c)
ay; = e 6(4/2) cos (d k/2) , aj;p =0:a,, =0, ay, = —e%4/2 cos (d k/2)

For this system of equations to have a solution different from zero, the
determinant of coefficients should vanish, namely:

a11a1z| _

det |
dpz1dp;

0 - - %e—G(—d/2)+G(d/2)[1 + cos(d k) = 0 (40)

In Equation (40), —%e—G<—d/2>+G<d/2) #0, k=mVv—E=imvE=iK,(E >0,
K= rnle}f). So,1+ cos(dk) =1+ cos(idK) =1+ cos(dK) =0. From this last
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equation, we have that:dK=q=nm, (n=1,3,5,7,..0dd integers). This is also
written as follows:
dK=q=2n—-1mn, (n=1,2,3,... integers) (41)

The solution of the system of equations in (39¢c) gives: A; =0 and Az = 0. The
coefficient A, = A is found by the normalization of the function, y,(x) = A, cosh[ k (x —

X0)] el 6=x0) pamely:

xo+d/2
f Acosh[k (x — xq)] e ¢&*0) A* cosh[k (x — x)] eI 6&*0) dx =
Xg—d/z

_AA[dK+sin(dK)] _ AA'd _ d|A]®
- 2K o2 2

So, the normalized wave functions in the bound state are as follows:

1- |Al=42/d=.2K/q

P(x) = Acos[ K (x —xq)] e S&*or(x) = A cos[ Kx] e ¢® (42)

¢) For the functionsinhlk (x — x,)]
According to the Figurela, in the domain I, E < U(x), in the domain II,

E>U(x),in the domain III, E < U(x). According to Equations(23a) and (23b), the
corresponding wave functions are written as follows:

W1 (x) = Ay sinh[ik (x = x)] 'O 5 s, (x) = A, sinh[ k (x — xp)] ! C&—0)
lng(X) = A3 Slnh[—l k (X - Xo)] ei i G(X_XO); X1 =Xy — d/2 and Xy =X+ d/2
According to the conditions given in Equation(34) we have:
W1 (x1) = W2 (xq) or Yy (x1) — Pa(x1) = 0 (43a)
P2 (x2) = P3(x2) or Yy (xz) — P3(x2) =0 (43b)
From Equations(43a) and (43b), the following two linear equations are obtained:
aj1Ay +apA; = 0; ax Ay +apA; =0 (44)
ay = —ie 642 sin (dk/2) ; a;; =0; ay; =0 ; ay =ie@/2sin (dk/2)

For this system of equations to have a solution different from zero, the
determinant of coefficients should vanish, namely:

|=0 > e SCUDHEWDin2(dk/2) =0 (45)
In Equation (45),e ¢C4/D+6/2) % 0, k=m;v-E=imVE=iK,(E>0,K =

m;VE).So, sin?(d k/2)= sin?(id K/2) = sin?(d K/2) = 0.From this last equation, we
have the following value:

dK=q=2nm, (n=1,2,3,.. integers) (46)
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The solution of the system of equations in Equation(44) gives as A; =
0 and A3 =0. The coefficient A, =A is found by the normalization of the
function P, (x) = A, sinh[ k (x — x¢)] el ¢®=%0) namely:

xo+d/2
j Asinh[k (x — xg)] e' ¢&*0) A*sinh[k (x — x,)] e 6&%0) dx =
Xo—d/z

_AA[-dK+sin(dK)] _ AA*d

=1- |Al=42/d=2K/q

2K B 2
So, the normalized wave functions in the bound state are as follows:
P(x) = Asin[ K (x — x)] el C&*or(x) = Asin[ Kx] e 6™ (47)

Equations(41) and (46)can be combined as follows:
dK=q=nm, (n=1,2,3,4,.. integers) (48)

So, in the bound states, the normalized wave functions are as follows:

P(x) =/2/d cos[K (x — x¢)]e! «Gxand(x) = /2/d sin[K (x — x¢)]e! (&%) (49a)

Or, P(x) =+/2/d cos[Kx)]elc®and Y(x) =+/2/d sin[Kx)]e! ¢® (49b)
. ) _ hZ q2 _ qZ. _ hZ
The energy value is as follows: E; = S = Mh (my, = ) (49c¢)

Now, in bound states, let us see the relations between the potential areas (see
Figure 2):
a) According to the partial integration [ udv =uv — [vducan be written as follows:

S$=5, = fxxlz U(x)dx = [x U(X)]ii - fxxlz x U'(0dx = x, U(xp) — %1 U(xy) — Sy

X2
S, = f x U (x)dx ;U(x;) = U(xy) = Eq; d=x;—xq,
X1
Thus, the following can be written:
Sy =Ed—S; or Ed=S, +5, (50a)

b) Total energy = kinetic energy + potential energy; E = T 4+ U(x). From here, with the
following integration:

JoEdx=[Tdx+ [[PU) dx~ Ed=S,+8, (50b)
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0 > X
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(a)

“U (x)
U(x)
X4 X, > X

0 >

Se=Sp— Sk
(b)

Figure 2: Potential area in the bound state: (a) U(x) > 0 and E >0 ; (b) U(x) <
0 and E<O

If Equations(50a) and (50b) are compared, it is seen that S =S, = fxxlz xU' (x)dx.

¢) According to Equation(8): E=——55%=——-§2 - Sp = | E|

2 h?

Kd=q » [22[Eld=q - [El =

hZ q2 q2
2 m d2

d) From Equations(50a) and (50b), we obtain the following equation:

Se=my 7 (q-2)

Thus, from Equations (50a)-(50d), let us rewrite these potential areas as follows:

fxz Ux)dx =2 mh ; (Potential energy field)

Sk = f x U (x)dx = my, o 1 (q - 2); (Kinetic energy field)

qZ
SE=Sp+Sk=mh?;

According to Equations (51) for q=2, S, =0,

(Total energy field)

for q=nm, (n=1,2,3,...), the excited states occur.
Thus Equations(51a)-(51c)indicate that potential areas are quantized.

© 2019 Global Journals

=my 55— S =2mh%

(50c¢)

(50d)

(51a)
(51b)

(51c)

the ground state occurs;
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Notes

[V.  SUMMARY

It is possible to summarize the results above as follows.We can write the general
solutions of the SE in one dimension as follows:

P(x) = AekXet 16X or P(x) = A ek G=x0)eti G((x—x0) (52a)
Px) = Ae **et 160 or P(x) = A ek (X0)et 1G(x—x0) (52b)
W) =[Ae* + Bekx]et 60 or Y(x) = [A ek X0 + B e kEx0) et Gkx—x0) (52¢)
P(x) = A cosh(kx) et 6™ or Y(x) = A cosh[k(x — xq)] et 6xx0) (52d)
Y(x) = A sinh(kx) e*16® or Y(x) = A sinh[k(x — x,)] et 6G0) (52e)
P(x) = Aek¥Ei6() 4 B kxFiG() g
W) = A ek GFICE™0) 4 B g—k(x—x0)FiG(x—x0) (52f)
In these functions, we have the following values:
a) For E>U®X); k=m+V-E , GX) =m, [{/-UX) dx (53a)
b) For E<U®X); k=m+vE , G(X) = my [/U(x) dx (53b)

m mass or reduced mass of particle, h Planck constant, h = h/(2 1),
m; =vV2m/A. x; and x, (X, >x) are, depending on E, the roots of the equation E =
U(x), that is the abscises of the classic turning points,and xq = (X1 +X3)/2 ; d =%, —
Xq-

This solution is similar to the WKB approach but is not certainly the same.
There is approximation in the WKB method, but there is no approach in the method
we have given here. Our procedure gives exact results. Those who are familiar with the
WKB approach can easily see the differences between the two.

In bound states, the normalized wave functions are as follows [G is taken as real
function):

P(x) = A cos[ Kx] ef 6@ or y(x) = A cos[ K (x — xg)] et ¢&x=%0) (54a)

P(x) =B sin[ Kx] et 6® or y(x) = B sin[ K (x — x,)] et! 6&x=x0) (54b)

A=B=./2/d=2K/qK = m/[E[ = =7 /[E[ ; G(x) = m, [ /[UK)] dx

X, and X, are the roots of the equation:|E| = |U(x)| or |E| = |U(x — X()|.From these, we
have the following equations:

Xo = (X1 +%2)/2 ; d=%; —X;35%1 =%X9—d/2 ; X, =%0+d/2; E=U() ;
|El = [UGx)| = UG or|E| = [U(xg —d/2)| = [U(xo + d/2)];

2 |E] = |U(xo —d/2)| + |U(xo + d/2)| (54c)

2 hZ 2 2 hZ
Kd=q - fh—rzn|E|d=q = Bl =% = my, 5[my =] (55)
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For q =2 groundstate occurs;forq=nm,(n=1,2,3,...) excited states occur.
The energy values are also given by the following formulas:

2 h?
E=-58=--551;8, = /TlEl;stp(Xo,d)=2mh% (56a)
Si(x0,d) = my, 3(q—2) (56b)

We can give the practical procedure to find the energy values as follows:

As seen in Equation(55), the total energy values depend on d; so the d value
should be calculated to find the energy values. It can be calculated by one of the

equations given in Equation(54c), but to find the values of d and energy E, the practical
procedure can be given as follows:

First, solving the equation |U(x)|= myq%/y, (y =d>?), the following values
are found as follows: x;, X5, d(y) = x; —Xq, dy(y) =d(y) *d(y). Then, the equation

y =d;,(y)is solved,and the yvalue is found. So, the energy value is obtained as
follows(especially, this rule provides convenience in numerical solutions):

2 2 2 42
Bl =my &-=m, 5 =7 (57)

42~ 2md?
For q = 2, the ground state occurs; forq =nm, (n =1, 2,3, ...)the excited states occur.

V.  EXAMPLES OF ONE DIMENSIONAL POTENTIALS

a) Potential: U(x) =a|x|?, (a>0, p>0)
i. FEnergy
According to the practical procedure above:

1/ 1/

B _ g e [myg?]
E=U®=axP=my—> xy=—|——| ;xx=|——
y ay ay

211/p 212/p
g . I I _ _a™Ma
d=x, Xl_z[a yl ; da(y) =d=*d 4[a yl ;y=da(y)

_ [a z—p]—z/(p+2) . q2

v B (5.1.1)

~ lmy ¢?

Forq = 2, the ground state occurs; for q=nmn, (n=1,2,3,..), the excited
states occur.
In the formula given in (5.1.1), if p=2 and a =% mw?, it is found

that Eq
Eg =§ h w ground state energy for q=2;E; = nTn hw, (n=1,2,3,..)excited state

=% hw. This is the energy of the simple harmonic oscillator. We have

energy for q = nm. The well-known energy of the simple harmonic oscillator is E, =
(n +%) hw, (n=0,1,2,...). The ground state energy E, =% h w is the same but the

excited energy E; =E, =% hw is different. This difference is observed in the

experimentally measured energy spectra of nuclear nuclei, but this phenomenon cannot
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4. Cooper, F.; Khare, A., Sukhatme, U., Supersymmetry in Quantum Mechanics, 2001,

World Scientific.

be explained in harmonic oscillatory models. This event can be explained here. I think
that the latter is more accurate because there is no approximation in ours solutions.

For the same potential, the ground state energy obtained from super symmetric
quantum mechanics (SQ) is as follows [4]:

p/(p+2)
0.8862 T'(2+=) ;2 2
= [—(2 ) l (5.1.2)

2

From Equation (5.1.2), for p=2 and a =% m w*“, we find approximate value as

follows: Ey= 0.999985 lh w = lh w . As seen that new solution gives complete results.
#2,211/3

In this potential for p =1 (V-Form potential),E, = 0.794 [ is obtainedfrom the
1/3
formula given in Equation(5.1.1); obtained Eg = 0.763 [—a] from SQ; obtained
#2,2711/3 #2,211/3
Ey ~ 0813 [“= from

WKB method. These three values are approx1mately the same; however the new
solution is complete.

ii. Wave Functions

2 IXI(p+2)/2

GG =my [{IUE]dx = [73 [ JUR)dx= Q) = |57 Va=ri——
P(x) = Acos[Kx)]e! °® = /2 K/q cos[Kx]e 2™ = /2/d cos[Kx]e'?® (5.1.3a)

P(x) = Bsin[Kx)]el¢® = /2 K/qsin[Kx]e Q™ = ./2/d sin[Kx]elQ® (5.1.3b)

2 |x|(P+2)/2
\/'— |X| _mnhw XZ.

In the case of simple harmonic oscillator, G(x) = Q(x) =

2h
The well-known wave function of the harmonic oscillator is as follows.
U, (p) = A, /2H, (p)i[p = /? X] (5.1.4)

Here, H,(p) is Hermit polynomials. If Equations (5.1.3a) and (5.1.3b) are
expanded in series, polynomials are obtained. So, the well-known function given in
Equation(5.1.4) of harmonic oscillator is an approximate function.

b) Infinitely high square potential well or finite square potential well

We consider a particle of mass m captured in a box limited by0< x < a. The

corresponding potential is given: U(x) = 0for 0 <x < a; U(x) = oo for x < 0 and x >a.

i. Energy
The turning points of this potential are given by the following equation: U(x) =
E.From this equation, we can find the classical turning points of the potential function
as follows:x; = 0 and x, = a; X = (X1 +x2)/2 =a/2, d =x,; —x; = a. By substituting
this value of d into the equation, d K= q, and then solving for|E|, we can have the
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2 2
energy value as:Eq = h—q—z =my 2—2; for q =2 the ground state occurs; for q=nm,

(n=1,2,3,...) the excited states occur.

2 2
The well-known energy infinitely high potential well is E,= @ 1;) .The well-

known energy finite potential well is found the following equations:

[E|
Uo—|E|

(a) For the states of even parity: = tan {% [2 m(U, — |E|)]1/2}
|E|
IEI
It is seen that two energy Values are the same for infinitely high potential well,
but they do not are the same for finite potential well.

(b) For the states of odd parity: |- cotan{ [2 m(U, — IEI)]l/Z}

ii. Wave functions
Here,  U(x) = 0.50,G(x) = m; [/JUX)[dx = 0
W(x) = A cos[Kx]e' ¢® = \/2/acos[K x] = /2 K/q cos[Kx]
W(x) = Bsin[Kx]el ¢® = ,/2/asin[Kx] = \/2 K/qsin[K x]
W60 = Acos[K(x = 3)] =2/acos [K(x - D] = VZKgeos [k(x - 3)]
() = Bsin [K(x - %)] = \/2/asin [K(x - %)] = J2K/qsin [K(x - %)]
¢) Trigonometric potential well

We  consider the  potential energy of the  particle, U(x)so
that U(x) = U, cotg?(mx/a),[Uy >0, a>0and 0 <x<al.

i. Energy 5 2
The roots of the equation: E; = U(x) = my - L > U, cotg?[mx/a]l = my q7;
1 my, g2 /
xlz—Earccotg U—s% ——arccotgl _hq_ d=x; —x ;y=d=d
2
y = Tf—zarc cotg? l I:Jl—:)‘q?l Eq = my, = = mhq? ) (5.3.1)

Equation(5.3.1)is not solved analytically. So, it may be solved by the numerical
method for the exact values. We have for q = 2, the ground state; for q=nm, (n=
1,2,3,...) the excited states.

ii. Wave Functions

G®=mw=mfwmmm=m4"mww=

2ma?Uu
= m1f\/U0 cotg?(mx/a) dx = Tzo [sm (,_)]
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P(x) = Acos[Kx)]el¢™® = /2 K/qcos[Kx]e! ™) = /2/d cos[K x]el ¢
P(x) = Bsin[Kx)]e! 6™ = /2 K/qsin[Kx]e! ?®) = /2/d sin[K x]el ¢

d) Infinitely high parabolic potential well )
We consider the potential energy of the particle, U(x) = U, (— — ;) Uy >0,a>
0,x>0].

Ref i. Energy )
X

2
The positive roots of the equation of E = U(x) = U, (3 - ;) = my q; are as follows:

< ‘quhq +2yUp qvmhvnmq2+4yUo] ‘J;thq2+2yU0+qvmhvnmq2+4yUﬂ
1=

2y Uy 2y Uy

d; = d* = (x5 — x1)?

a \[[mhq2+2yU0 +qvmyymyg? + 4y Uy
2

y Uy

2

_\[[mhq2+2YUo — qvmyympq? + 4y Uy
y Uy

The root of the equation of d, =y is as follows:

q2 2
2 m — q mp Uy h?Ug
/a andE =m - / q—- Eg
y= U h y a2 2m a2

We have ground state for q = 2;the excited states forq =nm, (n=1,2,3,...)[2].

Form=1 and A =1, this energy value isE, =§ n % For this potential, the

energy values obtained from Supersymmetric WKBand standard WKB, respectively,
are as follows:

E, = /ZUO[Z +/1+8a2U,| — 2 UpandE, = /ZUO[Z + 1+ /222U, | — 2 U,

ii. Wave functions

G(x) =m1f\/|U(x)|dx= mlf\/m&:mlf ’Uo (g_g)z dx =

=m [0 (2-%) dx= Q0+ QG0 = [ [a nGo - 1]

P(x) = Acos[Kx]et!2®: y(x) = Bsin[K x]et! 2®

2. Erbil, H. H;IREPHY Vol.1, 2007, N.4, 197-213.

|Al = |B| = y2/d = /2K/q
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e) Potential U(x) = ax? + b /x?
We consider the potential energy of the particle as U(x) = ax?+ b /x?%, where a
and b are positive constants.

i. Energy
The roots of the equation of U(x) = ax?® + b/x? = =my

e [ e - [ i

From these grandeurs, we get as follows:
Eq—8
;a :d3, = Eq/a—2/b/a;

Eq+6
q
=X — X4 = — [——
d3; = X3 =% ’ 2. T
Eq+6 Eq—6
— _ — ’q _ ’q - 42, = —
d42—X4 X9 > a > a ,d42 Eq/a 2 b/a

From these equations, we can easily obtaindz; = —ds, =d, d? =E;/a—2/b/a

a2 = Eqare as follows:

2
7> We get the positive energy value

=+vab+ /ab+amhq2=\/ab+ /ab+a%q2 (5.5.1)

For q = 2 ground state occurs; for q=nm, n=1,2,3,...) excited states occur.

From the solution of the equation of Eq = =m, =

as follows:

For m =1 and h = 1, this energy becomes:

=+ab+ /ab+%n2n2 ,(n=1,2,3,...). (5.5.2a)

The energies obtained from Super symmetric WKB and Standard WKB|2]
respectively are as follows:

=\/Zal2n+1+ E+2bl,(n=0,l,2,3,...)

=+v2a[2n+1+v2b], (n=0,1,2,3,..). (5.5.2¢)

It can be assumed that the values given in Equations (5.5.1) and (5.5.2a) are
more accurate because there is no approximation.

ii. Wave Functions

G(x)=m1f\/|U(x)|dx= mlf\/@dx= mlf ’ax2 + % dx =
= mlé{\/b+ax4+\/B[ln(xz)—ln(b+\/6\/b+ax4 )]} = Q%)
Q(X)=\/;{\/b-l—ax‘*-l—\/_[ln(xz)—ln(b+\/_\/b+ax4)]}
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P(x) = Acos[Kx]el ™ and Ji(x) = Bsin[K x]el ¢™;

Al = [Bl = y/2/d = y2K/q

VI. THE RADIAL SCHRODINGER EQUATION FOR SPHERICAL SYMMETRIC POTENTIALS

The time-independent Schrodinger equation (SE) in three dimensions is given as
follows,

AP(F) + 22 [E - VH] P(E) = 0 (58)

Here, E and V are the total and potential energies, respectively, m is the mass or
reduced mass of particle. Spherical polar coordinates x = rsin(0)cos(¢p), y=

rsin(0) sin(¢p), z = rcos(0)are appropriate for the symmetry of the problem. The SE
given in Equation(58), expressed in these coordinates, is as follows:

2

ﬁ

+——] W(r,0,§) + 7 L2(0, )W(r, 0,9) + 7 [E— V(,6, $)]¥(r,6,4) =0  (59a)

1 92

Ao _ 9?2 o4 L 9
L2(6, ) = 755 + cotg(®) 35 + o5y 742

(59b)

The potential energy of a particle which moves in a central, spherically
symmetric field of force depends only upon the distance r between the particle and the

force center. Thus, the potential energy should be V(r,6,¢) = V(r). Solution of
Equations (59a) and (59b) can be found by the method of separation of variables. To
apply this method, the solution is assumed to be in the following form:

Y(r,06,¢) = R(r) Y(O, dp)or¥(r,6,d) =R(r) |jm > (60)

In Equation(60), R(r) is independent of the angles and Y(6,¢$)or |jm> is

independent of r. Substituting Equation(60) into Equation(59a) and rearranging it, the
following two equations are obtained:

TRO 2RO 4 20 y()] - SJRE) = 0 (61)
£2(8,$) Y(6,0) +CY(0,0) =0 (62)

where Cis constant. Equation(62) is independent of the total energy E and of the
potential energy V(r), andtherefore, the angular dependence of the wave functions is
determined by the property of spherical symmetry, and admissible solutions of
Equation(62) are valid for every spherically symmetric system regardless of the special
form of the potential function. The solutions of Equation(62) can be found in any
quantum mechanics and mathematical physics textbooks and the solutions are known

as spherical harmonic functions, Y,,(0,¢), where C=£(£+1),(£=0,1,2,3,..)
arepositive integer numbers and p=—¢,—¢+1,—¢+2,..0,1,2,...,£. Equation(61) is
the radial SE. Substituting C = #(¢ + 1) and F(r) = r R(r)values into Equation(61), the
radial wave equation is obtained as follows:

62F(r)
ar?

— [E-UMIF®) =0 (63)
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h2 e(e+1)

Here, U(r) = V(r) +—
dimensional differential equatlon and is the same as Equation(2). In Equation(2), the

is the effective potential energy. Equation (63)is one

free variable is x, while in Equation (63) the free variable is r. So, the solution
procedure of one dimensional differential equation has been given above in Equations
(52a)-(57). Now let us give some examples.
a) Coulomb type central potential well

The potential energy of hydrogen- like atom isV(r) = —Z e?/r.Ifthe centrifugal
potential function is added to this potential V(r), we have the following effective
potential function:

h? e(e+1)
2m 1"2 ’

U(r)———+ 2,a—Ze and b=—

i. Energy
The classical turning points of this effective potential are given by the following

2
equation: —§+%= —|El = —m,, q;. From this equation, we can find the classical

turning points of this effective potential function and d,as follows:

ay—/aly2—4bm 2 ay+aly2—4bm yya2—4bm q2
p, = Yoy hyq;rzzy\/y hy a2 Cdy = (ry—1y)% = [ 9’|

2 mhq2 2 mhq mlzlq4
. . mp q?[my q2+4 b 2 2
The root of the equation of d, = yisy = %, and |Eq| = my, 3—2 = my q;
B = 2metz2 _ m et 72 — _E 72 [ _me4] (6 1 1)
97 2[4 ¢+4 £24q2] | 2R% [£(4+1)+q2/4] O [e(e+D)+q2/4]” L0 T 2m2) o

We have the ground state for q =2; the excited states for q=nm, (n=
1,2,3,...). For the hydrogen atom; Z = 1 atom number, m electron mass, e electron

charge and in the ground state isf =0. From Equation(6.1.1), Ey=—13.6 eV is
obtained. This is the well-known ground state energy of the hydrogen atom. The well-

known excited state energy of hydrogen-like atoms is given as follows:E, = —E;— =

(n=1,2,3,...). There is no obviously £ =0 quantum number in this formula, but in
Equation (6.1.1)this number of quantum is clearly visible [5].

ii. Wave Functions

/ b
G(r) = mlj,/IU(r)I dr = ii—;nj,/—U(r) dr=\]2h—rznj\/§—r—2 dr = Q(r)

Q(r) =2 I\/ar—b —+vb arctan( b)

F(r) = Acos[Kr]el ®MandF(r) —fcos[Kr] iQ(r) = ’ 2K cos[K r]el Q)

q
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F(r) = Bsin [% r] el AWandF(r) = \E sin [% r] el UM = \/% sin [% r] el QM)

w(r,6,$) = R() Y(0,4) = 2 Y(6,$) = "= |jm > (6.1.2)

In Equation(6.1.2),m is not mass, it is magnetic quantum number. The known
wave function of the hydrogen atom is an exponential function including Laguerre
polynomials. Our results are more accurate because there is no approach.

b) Spherical symmetric square well(infinitely high or finite)

Consider a particle of mass m captured in a box limited by 0 <r < a.The
corresponding central potential can be given byV(r) =0 for 0<r<a; V(r) =
o for r< 0 and r > a. With this potential, the effective potential is as follows:

b hz hZ
U =5 ; [b=r— ¢+ D =myt(f +1), my = —]
i. Energy
2
With this effective potential, the equation U(r) = r% = mhyq can be written. From

this equation, the classical turning points and some grandeur are found as follows [5]:

2
I q mh»rz a,; dy=(r,—r1) [a q mh]'
m 2.2
From the solution of the equation of d, =y; we can obtain y = h88 _ and
[Vb+,/my q]
the energy value as follows:
Vb ’ h? 2
E, =1 fz“_h‘” = [Jee+ 1) £ q (6.2.1)
For q = 2ground state occurs; for g=nm, (n=1,2,3,...), excited states occur.
The known allowed energies are given as follows [3]:
hZ
Ene = 5——Bne (6.2.2)

Here, B,¢, the n™ zero of the #™ spherical Bessel functions. Equation(6.2.1) can
be written as follows:
h? 2
E, =E,, = [/ +1) £nmn]. (6.2.3)

2m a2

Some values of B,, and energies calculated according to Equations(6.2.2) and
(6.2.3)[with sign + in Equation(6.2.3)] are given in the Tablel.

© 2019 Global Journals

Global ]()urna| of Science Frontier Research (F) Volume XIX Issue I Version I E Year 2019



Global Journal of Science Frontier Research (F) Volume XIX Issue I Version I E Year 2019

Table 1: Some Energy Values of the Infinitely High Spherical Symmetric Square Well

(Unith?/(2 m a?)
nf Bne E,, From (6.2.2) E,, From (6.2.3)
1s 3.142 9.872 9.870
1p 4.493 20.187 20.755
1d 5.763 33.212 31.260
2s 6.283 39.476 39.478
2p 7.725 59.676 59.250
2d 9.095 82.719 76.260

ii. Wave Functions

G(r)=mlf\/mdr=\/Zh:r;f\/mdrzmlf\/édrz\/zh:r;f\/édr

G() = mlj\/g dr = %%ln(r) =€+ 1D In(r) = Q(r)

F(r) = A cos[K r]el¢® = A cos[K r]e! @@

F(r) = Bsin[K r]e! @ = gin[Kr)]e! QM

F() = Acos [ 1] €160 = A cos [ r] el 00

F(r) = Bsin [% r] el GO = Bgin [% 1«] el QM .

W(r,0,0) = R() Y(6,¢) = ~2 Y(8,¢)

¢) Three dimensional isotropic harmonic oscillator potential

The potential energy of three dimensional isotropic harmonic oscillators is given

Al = Bl = y/2/d = J2K/q

(6.2.4)

as follows: V(r) = % m w?r?. With this potential, the effective potentialU(r) is as follows:

U(r) = % m w’r® +

i. FEnergy

2m

n2e(e+1) 1

a2l =1 2 —
s=art+5[a=-mo” and b=

h2e(£+1)

2m

2

|

From this effective potential, the positive roots of the equation E,= my, — = U(r) are:
y

— 2
r = ’—E;: ; Ty = /E;-:S; [Eq=mhq;; 8= /Eé—élab]
With these roots, d =1y —1r; = /E(::S— /E;:S; dy=y=dx*d=d>

2
By substituting this value of d, into the equation, y = mhq;, and then solving

for E,, we can obtain the appropriate energy as follows:

© 2019 Global Journals

1
Eq—g

o[+ 1)+ + 1) + %]

(6.3.1)

Notes



For q = 2 ground state occur;for q =nm, (n=1,2,3,...) excited states occurs.
The known energy values are given as follows [6]:

E,=Q2n+¢+3/2)hn, 0n=0,1,2,3,....) (6.3.2)

Some values of the energies calculated according to Equations(6.3.1) and
(6.3.2)are given in theTable2.

Table 2: Some energy values of the isotropic harmonic oscillator (unit Aw)

Notes

nt E,, [according to (6.3.2)] E,, [according to (6.3.1)]

1s 3.500 1.571
1p 4.500 2.430
1d 5.500 3.217
2s 5.500 3.142
2p 6.500 3.927
2d 7.500 4.597

ii. Wave Functions

2m 2m b
G(r)=mlwaU(r)Idr:\[;fw/U(r) dr:jﬁf\/aﬂ-}_r_?dr:

= Q(r) ZmI%{\/ar4+b—\/B]n[2 vb+ :211"4+bl}

F(r) = A cos[K r]e! @ = A cos[K r]e' ?®) = A cos [g r] el AW

F(r) = Bsin[K r]le! *®= B sin[K r]e! ®®) = B sin E r] el Q0

Al = Bl = {/2/d = 2K/q ; ¥(1,6,) = R() Y(8,4) = =2 Y (6, $)

1
The known radial wave functions are [6]: R,,(p) = A pf*le” 5p2£ﬁ+l/ 2(p?).

Here, p = ym w /A r and £ is the Laguerre polynomial.

d) Three-dimensional isotropic harmonic oscillator with spin-orbit coupling,(Shellmodel
in nuclear physics)

The nuclear shell model describes no interacting particles, moving in the common
potential well, which is formed by all particles of the nucleus. The dimensional isotropic
harmonic oscillator potential with spin-orbit coupling is originally used as the nuclear
average field for shell model calculation of the spherical nuclei. The simple potential
energy of a three dimensional isotropic harmonic oscillator is given by:

Vo(r) = %m w?(x® +y?+2z%) = % m w?r?.

The spin—orbit interaction potential must be added to this simple potential. The
spin—orbit interaction potential is given by:

hZ 1 dVO (r)
2m2cr dr

- - 1
Vo (1) = £3; {£3=30G+D ¢+ 1) =56+ DI}
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Here ¢, s and j are the orbital, spin and total angular momentum quantum
numbers of a particle, respectively. It is possible to find the derivation of this expression

in any quantum mechanics text book. If V,g(r)is calculated, the following value is
found:

h

V{’sj (r)=- P
2.2

accepted, Vy (r) = — Ll—wcz [j G+1)—2(+1) - %] = —Cpsjis  obtained.  Thus, the

harmonic oscillator simple and effective potentials with spin-orbit coupling become as Notes
follows:

2.2
(DCZ [G+1) —£(£+1)—s(s+1)] =—Cpy. If s=1/2 (for fermions) is

2
V() =Vo() + Veg (1) ; U =ar? = Cp +b/r2ila=1ma?, b=2"£(£+1)]
i. Energy

From this effective potential, the positive roots of the equation Eq= mh = U(r)
are as follows:

(Eq+Cypsj )-8 (Eq+Cps )+5
i = [ 8= (B, + Cpyj)’ — 4ab]

With these roots: d =1, — 1y = / 1% g, =y=d+d=d2

By substituting this value of d, into the equationy = mh , and then solving it
for Eq, we can obtain the appropriate energy as follows:

= % hw [ 0+ —C+ \[(,/t’(i’ +1)—-C)2+ qu, [C;=Cpy/(h0)]  (6.4.1)

For q = 2 ground state occurs; forq =nn, (n=1,2,3,...) excited states occurs.
The known energy values (with first order perturbation) are as follows [3, 6]:

i+ D) = £+ 1) = s(s + Do (6.4.2)

Here,n =0, 1, 2,.., integer numbers and C;, is a positive parameter. In Table3,
some energy values calculated according to Equations(6.4.1) and (6.4.2) are given, with
the values:

Co=0.015hw, s=1/2and ¢ = = [j(+ 1) — £(£ + 1) — 3/4]hw

Table 3: Some energy values of the isotropic harmonic oscillator with spin-orbit
coupling

States According to (6.4.2) (unit Aiw) According to (6.4.1) (unithw)

1d;, 3.493 3211
1f; 4.515 4.083
1f, 4.489 4.061
1g;), 5.519 4.986
1gy)2 5.485 4.955
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Notes

ii. Wave Functions

G(r) = mlj,/|U(r)| dr = zh—rznj,/U(r) dr = Q(r)

2m (1
Q(r) = ?{E\/ar4—cgsjr2+b

2ar® —Cyy

Va

a

Vb
2

Cou:
& lnlz\/ar‘*—cgsjrz +b+

In [2\/b(a r* — Cpr? +b) — Cpyr% + 2 b] + \/Bln(r)}
F(r) = A cos[Kr]el 6™ = A cos[Kr]e! ™) = A cos [g r] el QM

F(r) = Bsin[Kr]e! 6™ = Bsin[K r]e! ¢ = B sin [% r] el QM

Al = B = y/2/d = J2K/q 9(x,6,¢) = RD) Y(8,4) == Y(6,4)

1
The known radial wave functions are [6]: R,,(p) = A pf*le” §p2L£+1/2 (P?).

Here p = ym w /A r and L is the Laguerre polynomial.

e) Three axial deformed harmonic oscillator potential anisotropic harmonic oscillator
potential (Nilsson model in the nuclear physics)

i. FEffective potential
The nucleus in the shell model is assumed to have a spherical shape. Therefore,
particles move in a spherically symmetric potential. There are, however, convincing
arguments that nuclei with the neutron and proton numbers sufficiently far from the
magic numbers have no spherical symmetry ellipsoidal shapes. In this case, it is said to
deformed shell model. In deformed shell model calculations, it is used the three
dimensional anisotropic harmonic oscillator potential which is given as follows:

Vo(x,y,2) = %u(wixz + wiy? + w?z?) (6.5.1)

Here pis mass or reduced mass. In the case of deformed nuclei, it is generally
restricted to axially symmetric nuclei and it taken the z-axis as symmetry axis. So, it is
accepted wy = wy, # w, = w,in the anisotropic harmonic oscillator potential. The
motion of a particle in an axially symmetric potential, with additional symmetry plane,
perpendicular to symmetry axis was described by Nilsson. The no-spherical nuclei have
the shape of an ellipsoid of revolution. It is, however, possible that some transitional
nuclei have shapes of a three axial ellipsoid. It is also possible that the shapes of excited
states differ from the ground state shapes and that some exited states have three axial
ellipsoidal forms. In the three axial cases, w, # wy, # w,. The no-axial shape is
characterized by two parameterse and y.For € > 0, y = 0%ituation corresponds to the

axially symmetric prolate ellipsoid, y = 60%corresponds to the oblate ellipsoid. When y #
0° andy # 60°, the ellipsoid has no axial symmetry, and the projection quantum
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number of the total angular momentum on any axis is not one conserved quantity. The
angular frequencies wy, wy, w, are connected with the deformation parameters €andy

by the following expressions:

wy = wo(gy)[1 - % € COS (y + 2Tﬁ)] (6.5.2a)
wy = wo(g,Y)[1 — % € CoS (y — 2?ﬁ)] (6.5.2b)
w, = wy(gy)[1 —% g cos(y)] (6.5.2¢) Notes

If it is required a constant volume as deformation changes, it needs:

Wy Wy W, = Wiy (6.5.3a)

From Equation (6.5.3a) we get the following value:
wo(5,Y) =3 wee[27 —9€® —2e3cos (3y) /3 (6.5.3b)

Let us express the potential given in Equation (6.5.1) the following spherical
coordinates:

x = rsin(0) cos(¢), y = rsin(0) sin(¢p), z = rcos(0) (6.5.4)

If the potential given in Equation(6.5.1)is calculated by considering
Equations(6.5.2a) and (6.5.4), the following is obtained:

Vo(r,&y) = %u w3or?[A(g,y)cos?(8) + B(g,y) sin?(8)cos?(¢p) + C(g, y) sin?(8) sin?(p)]

[3—2 € cos (y)]? [3+2 € cos (g"‘Y)]Z

A(E' Y) - [27-9 £2—2 £3cos (3)]?/3 ) B(E' Y) - [27-9€2-2 e3cos (3y)]?/3 ;
_ [3+2 € cos (%—y)]2
Clev) = [27-9 €22 3cos (3Y)]?/3 (6:5:9)

Let us express the function given in Equation (6.5.5) in the terms of spherical
harmonic functions, YZ(6,$) = Y§, (q = 0,—2,42), as follows:

sin?(0)cos?(¢p) = % [5 — 2 V5 wYZ + /30 n(Y$ + Y2,)]
sin2(0)sin®(¢) = % [5 — 2 V5 mYZ — V30 m(Y? + Y2,)]
Vo(r e, y) = nw(eVr? =2 pwy B(e y)r? (6.5.6)

w?(e,y) = i P*(e,y)

2 i 2m
B*(e,v) =52 A(ev)-3(B(e,y) + C(&, Y))]\/;YOZ +[B(e,v) — Cle, ] 7o (Y7 + Y2))]
The spin-orbit interaction potential is given as follows:
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2 1 dVy(rey)

T2 r a <t s> {<f.s>=

N | =

Vo (5, y,1) = G+ 1) — €+ 1) —s(s + DI}

If V,g; (g, v, 1)is calculated, the following value is found:

Veg (&,v,1) = Coo B (&) hrgg ; Coo = =% [i(i+1) = £(£ + 1) = s(s + 1]

Thus, the anisotropic harmonic oscillator potential with spin-orbit coupling
P l becomes as follows:
otes

1
V(rey) =[5 Hw3or? + Cooh weo] B2(s,Y) (6.5.7)
With this potential, the effective potential U(r,€,y) is obtained as follows:
1 2
U(r,gy) = [E Hw3or? + Cooh oooo] B2(e,y) + e (£ +1) (6.5.8)

Here, wgyis the isotropic oscillator angular frequency. The Coulomb potential
must be added to the potential given in Equation (6.5.8) when the proton levels are
calculated. The Coulomb potential in the spherical case, neglecting the effect of the
surface, is as follows:

3r  1/r\?
(Z—l)ez Z_RO_E(R_O) , for I'SRO

V.(r) =
() 1 , for r>Ry

Here, Ry is the radius of the spherical nucleus and Zis the charge number. Thus,
in the nucleus, r < Ry, we have as follows:

(Z—1)e?
2 R}

_3(z-1)e?

V.(r) =b, +a.r?, [a. = IR,

, b ] (6.5.9)

In the quadratic deformed case, the Coulomb potential is obtained as follows:

3(Z—1)¢e?
V.(r) = %{—8.9723 —3.3241¢+8.14235V15 + e +ar?, for r<Ro)
0
Z—1)e?(R
VC(I‘) = (R—){TO — 476142 — 1.58717 ¢+ 3.88768Vv1.5+¢ , for r> Ro}
0

Because in the nucleus r < R, in the case quadratic, the Coulomb potential can
be rewritten as follows:

Global ]()urna| of Science Frontier Research (F) Volume XIX Issue I Version I E Year 2019

V.(r) = b () + a.r? (6.5.10)

B (Z — 1)e? 3(Z—-1)e?

a =— ———=—, be(e) = (—8.9723 —3.3241 ¢ + 8.14235V15 + ¢)

It is seen that for € = 0, Equation (6.5.10) is equal to Equation (6.5.9). -

On the other hand, the total wave function is Y(r, 0, $) = R(r)|[£jm >= @ | £jm >

and the radial SE is written as follows:
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d*F(r) 2 .
az |[jm > +ﬁ [E—U(r,&y)]F()|[£jm >=0

d2F(r)
dr?

|£jm > + 22 F(r)[E - U(r, &, y)]|£jm > = 0 (6.5.11)

In Equation (6.5.11), [E — U(r,&,v)]|#jm > is calculated as follow:

[E—U(r, &, V)][£jm >= E|[£jm>—U(r, &, y)|£jm >
, Notes
1
U(r, g, Y)[£jm > = [ 5 wogor? + Cooft 0000] B (e, V)]1£jm > + 2 ur? (¢ + 1]|£jm >

e W]1em > = 512 Ale)-3(B(e) + Cle )] (245 + [BGey) — Clem)] (A (47 +

Y2} 4jm >= 2;[2A(8.Y)-3(B(8. Y) + C(s,v))]\/%Yozli’jm > +[B(g,y) — C(g, \')]\/%[Yz2 +
Y%,]|¢jm > (6.5.12)

If we calculate YZ|#jm > = ay|fjm > and [Y? + Y%, ]|4jm > = ayy|[#jm > in
Equation (6.5.12), by the Wigner-Eckart, we have found the following values:a,, =

i i2 2
0 anday, (¢,j, m) = ’ﬁ% = a,y. Thus, B2(g,v,a,) are written as follows:

Bevan) =22 4 @3B @0+ CE)] [ (6513)

So, we have found the effective potential for anisotropic harmonic oscillator as
follows;

1 hZ
U(1; &,v,a5) = Eumgo B2(g,y,a20)r% + Coofi oo B2 (5, v, az0) + Zu—rzf(# +1) (6.5.14)

In the case of electric charged particle, the Coulomb potential should be also
added to this effective potential.

ii. Energy
Let us write the effective potential given in Equation (6.5.14) as follows:

U(r; g,v,a2) =U@) =ar? + r% +8 (6.5.15a)

2
a= %I“lo‘)(z)o BZ(EIYI aZO) ) b = Zh_u‘g(‘g + 1) , 8 = COOh 0‘)00 BZ(E’YI aZO) (6515b)

The positive roots of the EquationU(r) = E = E; are obtained as follows:

85— _8\2_ _ —_8)2
. :\/E 5 (Ezaa) tab rZ:\/E 6+\/(E236) Zab (6.5.16)

From Equations (6.5.16) one is obtained the following values:

E—-6 E—8)?2—-4ab E-8§—-—J(E—-8)2—4ab
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1| [E-6 E—8)2—4ab E-8§—(E—-8)2—4ab
ro(E)ZE\/ +\/(Za ) a +\/ \/(Za ) 4

2
Solving the equation Eq; = my :—2, we find the following energy values:

Notes E(n,¢,j,m) = E, = %(zm +8+ J4a(b +myq?) +4Vab & +82),[m, = A2/ W] (6.5.17)

For q = 2 ground state occurs; for q=nm, (n=1,2,3,...) excited states occurs.

In Table 4, some energy values calculated according to Equations (6.5.17), with
the value: Coo= —0.005 [+ 1) — (£ + 1) — 3/4]

Table 4: Some energy values of the three-axial harmonic oscillator with spin-orbit
coupling and a few deformation parameters, calculated according to Equation (6.5.17),

(Unit Awy)

States E(n,#,j, m) E(n,4,j,m) E(n,?,j,m)

. e=0, € =0.35, ¢ =0.35,
[n(£) jm > o D R

y=0 y=0 y =30

1f7/25/2 4.05725 4.26292 4.24841
1f5/25/2 4.08772 4.72319 4.66325
1g9/25/2 4.95055 4.96802 4.97658
1g7/25/2 4.99146 5.23363 5.21707
2d 5/25/2 4.58982 5.39758 5.32077
1h 11/25/2 5.87240 5.77594 5.79967
1h 9/25/2 5.92375 5.95938 5.96804
2f7/25/2 5.30836 5.57777 5.55877
2f5/25/2 5.33431 6.16217 6.08410
1i 13/25/2 6.81291 6.64084 0.67543

iii. Wave functions

2 b
G(r)=m1f,/|U(r)|dr=\[%f ’ar2+r—2+8 dr = Q(r)

1 (2 §Log[2ar?+68+2vavb+art+r2§
Q(I‘)=Z/h—2u{2*\/b+ar4+r28+ gl va J+

Va

2vb (Loglr?] — Log|2b + 126 + 2vby/b + ar® + 178 )}

F(r) = A cos[Kr]e! 6™ = A cos[Kr]e! ™) = A cos [% r] el QM

F(r) = Bsin[Kr]e! ™) = Bsin[K r]e! ™) = B sin [g r] el QM

|Al = Bl = /2/d = \/2K/q
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¥(r,0,¢) = R() [4jm > =" |¢jm > (6.5.18)
This problem has been examined in detail with numerical calculations and
comparisons in [7].

1) Periodic potential of arbitrary form

Periodic effective potentials are as follows: U(r) = U(r + P). Here P is the period
of the potential. As the derivatives appearing in Hamiltonian operator are the same for

the new variable (r + P), so we have the following SE: Notes
(H—E)F(r) =0 and (H—E)F(r+P) =0 (6.6.1)

The two functions F(r) and F(r + P) may, therefore, differ only by a constant
factor as B, to be F(r + P) = B F(r). By applying this new relationship to F(r + 2 P), we

obtain as follows: F(r + 2 P) = B F(r + P) = B?F(r) and step by step, one sees that it has
as follows:

F(r + nP) = B"F(r) (6.6.2a)
By successive shift to the left, it would result in the same:
F(r —nP) = B7"F(r) (6.6.2b)
Under these conditions we see in given Equations (6.6.2a) and (6.6.2b) if |B] >
1, then F(r) tends to infinity when r - co; and |B| < 1, then F(r) tends to infinity when

r » —oo, So, for F(r) remains finite for r = +o0,it is necessary that |B| = 1,that is to say
that B to be a phase factor (here y is any real number) as follows:

B=elY (6.6.2c)
Thus, the energy and the radial SE have respectively to be as follows:
U(r) =U(r+nP)=E (6.6.3a)

F(r+nP) = e*"YF(r), (nis integer) (6.6.3b)

i. FExample
Potential: U(r) = Uysin (ar)?, [Uy > 0 and a > 0 constants, P = 1/a].

ii. Energy
Solution of Equation U(r) = U(r + nP) = Egives:r; = —nP — i arcsin (,/E/Uy );

1 . .
r,=—nP+ ~ arcsin (VE/Up ). From these equations we have as follows:

2
d=r,—r, = farcsin(,/E/UO) and E=E, = th—z , [my, = A%/(2 m)].

This last equation cannot be solved analytically. Solving numerically this equation
the energy values are obtained. For q =2 ground state occurs; for q=nm, (n=

1,2,3,...) excited states occurs.
iii. Wave functions

G(r) = mlf [U(r)| dr = %\/U_Ocos(a r) = Q(r), [m; =vV2m/A]
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F(r) = A cos[Kr]e! 6™ = A cos[Kr]e! ™) = A cos [% r] )

F(r) = Bsin[Kr]e! ¢ = B sin[K r]e! €™ = B sin [% r] el QM)

Al =B = y2/d = {2K/q
From F(r + P) = BF(r) we can write B = F(r + P)/F(r) = 1.
This problem has been examined in detail in[8] with the examples.
g) Trigonometric and Hyperbolic POschl-Teller potential wells

i. Trigonometric POschl-Teller potential well
The trigonometric POschl-Teller potential is given as follows:

V() = hZzZlZ [K(K_1) n AQ-D ] Uy [é n i]

(6.7.1)

sin?(ax)  cos (ax)? y 1-y
h%a?
UO:Zm' A=x((k—-1), B=A(A-1), k>1, A>1, y = sin?(a x)
a. FEnergy

Roots of the equation U(y) = Eare y; and y,. If they are calculated, they are

found as follows:

_ E+AUg—BUg—/—4 AE Ug+[E+(A—B)Ug]? _ Y = E+A Ug—B Ug+/—4 A E Ug+[E+(A—B)U; ]2

1 2E v Y2 2E

According to y = sin?(ax) - x = i arcsin [\/y], we can write the following values:

1 1

Xy = aarcsin[\/z] , X, = aarcsin[\/y—] , d=x; — x4

The exact solution of the equation m;vVEd = q gives the exact energy values.
But this equation cannot be solved analytically, it can be solved numerically.

This equation can also be solved approximately as follows:

1 1 1
arcsin(X) = X » x4 za\/y—, Xzza\/y—, dzxz—xlz&[\/z—\/z]

The solution of the m;vVEd =q, [m; = V2 m/A] gives the approximate energy

values as follows:

E=Up[A+B+q?+2/AB+q2)] =Ug[VA+ B+ 2]

(6.7.2)

For q = 2 ground state occurs; for q=nm, (n=1,2,3,...) excited states occurs.

b. Wave functions

— 2m A B
GG = mlf VGO dx = ’?f \[UO [sinz(a X) + cos?(a X)] dx = Q)

F(x) = A cos[K x]e' ¢® = A cos[Kx ]! ?™®) = A cos [% X] el Q)
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F(x) = Bsin[K x]e! ¢® = B sin[K x]e' ?® = B sin [% X] el Q)

Al = B = /2/d = J2K/q (6.7.3)

ii. Hyperbolic POschl-Teller potential well
The hyperbolic POschl-Teller potential is given as follows:

2,2 _ —
U(x) = e [_K(K D, A0-D - U, [é+i (6.7.4) Notes

2m Lsinh?(ax) = cosh 2(ax) - y 1+y

o leOLZ

S U, = o™ A=x(k—-1), B=A(A—-1),kx>1,1>1,y =sinh?(ax)

; a. FEnergy
Roots of the equation U(y) = Eare y; andy,. Solving this equation, they are

found as follows:

; _ —E+AUg+B Ug—/4 AE Ug+[E—(A+B)Ug]? _ —E+A Ug+B Ug+/4 A E Ug+[E—(A+B)Ug]?

z 1= 2E Y2 = 2E

—  According to y = sinh?(ax) - x = % arcsinh [ﬁ], we can write the following values:

ii 1 1

o X; = aarcsmh[\/i] , Xy = aarcsmh[\/z] , d=x, — x4

S

£ The exact solution of the equation mvVEd = q, =2 m/h] gives the exact
<= energy values. But this equation cannot be solved analytlcally, it can be solved
~ numerically. This equation can also be solved approximate as follows:

i arcsinh(X) = X - Xy~ Y1 Xp BNz drx, —x; = \/_ \/_

K The solution of the m;vVEd =q, =+v2m/h] gives the approximate energy
5 values as follows:

E E=Uy[-A+B—q?+2/A(-B+q2)] = U[V=A+B—q |2 (6.7.5)
f For q = 2 ground state occurs; for q=nm, (n=1,2,3,...) excited states occurs.

f b. Wave functions

£ /2 m A B

3 = N = |[—- U dx =

- &) mlj UG dx h? J\[ 0 [sinhz(a X) + cosh?(« X)] *= Q)

- F(x) = A cos[K x]e' ¢® = A cos[Kx ]! ™) = A cos [% x] el QM)

F(x) = Bsin[Kx]e! ¢® = B sin[K x]e! ™) = B sin [% X] el )
|

Al = [B] = y/2/d = 2 K/q (6.7.6)

This problem has been examined in detail in [9].
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h) Saxon-Woods type central potential

Saxon-Woods type potential function is given as: V;(r) = — Yo___. [a, Vo,Rp ]

1+e(T—Rp)/a?
are parameters. The spin-orbit interaction potential energy term can be added to this
potential. The spin-orbit interaction potential energy term is given as follows:

2
Vi (1) = — 7 :lzcz ! dvl(r) G+ 1) -2+ 1) —s(s+ 1)], [nis reduced mass].

If this function is calculated, the following potential is found:

1 r/a leCZVO e—Rg/a

Visj = —Coy rTZ’a {Coq = i (G+1) -2 +1) —s(s+ DIJ}.
1+e ]]
The centrifugal energy is given by V.(r)= i m:rl) r12. The Coulomb potential

Ve (r) for charged particles must also be gotten if they exist. So, the effective potential
can be obviously written asU(r) = V;(r) + Vg + Vo (r) + V, (r) orit is obviously as
follows:

Vo 1 er/a n2e(f+1)1
—Ry112 + - + ch (I‘)
[1 + e[ a ]]

2 r
The classical turning points of this effective potential cannot be found
analytically and, therefore, it must be found numerically. The classical turning points

are the roots of the equation U(r)= —|Eq| = -m, q°/y. Let these roots
ber,(y) and r,(y). With these roots, first,d?> = [r,(y) —r;(y)]? = d,(y)is found, and
after solving the equation d,(y) =y, the following is found y and E,= myqg*/y. For
q = 2 ground state occurs; for q=nm, (n=1,2,3,...) excited states occurs.

U(r) =—

1. Numeric calculations

Let us calculate the energy values of Cu(29,68). We have taken the potentials as
follows:

Ve (1) = (Z — 1)e? 2 §°§3 r? , [Coulomb potential in the sphere].
Vo

V() = - 1 + e(r—Ro)/ap ’

(Saxon — Woods potentials)

a(L,S,]) =05[JJ+1) —L(L+ 1) — S(S+ 1)]

21 Vo e(™=Rs0)/aso

h
VLS] (r) = _Z_I.l; (X(L, Sl ])a_s()[l + e(r—RSO)/aso]Z ’

(spin — orbit potential)

For protons: U(r) = V(r) + Vi5 (r) + V. (r) + V, (r)
For neutrons: U(r) = V(r) + V5 (r) + V. (1).

The parameters in these potentials have been calculated by the method of Volya
[10, 11] and their values are: agy = ay = 0.662; R, = Ry = 5.142885; V, = 47.655271;
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V,, = 28.422020;R,, = 4.726557. The values of dareobtained by solving the following

2 2
equation:U(ryg — d/2) + U(ry +d/2) = -2 Zh_uj_z and energy values have been calculated
2 2
with the following formula: E; = — zh_pj_z' The results are seen in the Tableb.

Table 5: A few energy values of the Cu (29, 68) nucleus with Saxon-Woods potential

(unit MeV)
States Eq(MeV) (neutron) E, (MeV) (proton)
1s1/2 -45.6256 -33.9536
1p3/2 -15.1995 -11.3653
1p1/2 -15.1987 -11.3644
1d5/2 -6.5021 -4.9028
1d3/2 -6.5011 -4.9015
2s1/2 _45.6061 -33.9536
1£7/2 -3.4830 -2.6484
2p3/2 -95.1702 -18.8825

i) Relativistic Dirac equation in a central potential and its solution
Consider a Dirac particle (spin is1/2) of mass m captured in a central potential
well, V(r). With this potential, Dirac Hamiltonian can be written as follows[12]:

Hp =a.p+Bm+ V(r) (6.9.1)

Here, we have relativistic units: A=c=1,p = —i V,d= ((xx,ay, (xz) and Pare
hermitical 4-operators acting on the spin variables alone. Including the position vectorf
and the velocity o = di/dt. Dirac Hamiltonian given in Equation (6.9.1) is invariant by
rotation and reflection, then:

[Hp, J] =0, [Hp, P] =0

Here, T total angular momentum and P parity operators. We are looking for the
eigenvalues and eigenfunctions of this Hamiltonian. It is convenient to write the
functions of solution as:

o = ( , X = , V= 6.9.2
b/ X7 X (6.9.2)
Projecting ¥ on 3 = +1 and = —1 sub-spaces, there is also as follows:
1 (P 1 _ (0
La+pw=(7), ta-pw= (X) (6.9.3)

® and y are functions of r and of the p —compenant of the spin on the z-axis. We may
as well consider them as function of the radial variable r and angular variables (6, ¢, ).
Let us assume that ¥ is a common eigenfunctions of the operators J?, ], and P. We
denote by (JM) the quantum numbers determining the total angular momentum. We
denote the parities by the @ quantum number, namely:

® = +1for the states of parity (—1)171/2 :@ = —1 for the states of parity (—1)~1/2.

© 2019 Global Journals

Notes



Notes

®2=1 (6.9.4)

Then, we may write the following equations:

() =100 () 0()=m()- P () =comes(S) e

‘yﬁf (6, @, ) is the function of total angular momentum (JM) formed by the composition
of the spin-1/2 and the spherical harmonics of order 1. The parity of this function is

(—1*. According to the composition of angular momentum, L can have two following
values:

L=¢=]4+®/2 and L=¢ =]—®/2 (6.9.6)

Two functions y%’ (6,p,) and ‘y%, 6,0, have the opposite
parity. Y (6, ¢, 1) and Y}, (6, ¢, ) have the parity (=1))*®/2and (—1))®/2respectively.

Following Equation (6.9.5), ® andx are functions of (r,8,¢,p) variables and
they have parity (—1)%®/2and (—1)~®/2respectively. These functions® andy have
been product of two functions, the one is function of r, and the other is function of total

angular momentum function. Consequently, if ‘Pg] represents a state of angular

momentum (JM)and of parity (—1)*®/2, it can be written as following form:

Mo_ 1 F(r‘)‘y% >
Ya) = (i oMy (6.9.7)

Therefore we want to solve the following eigenvalue problem:
Hp W5, = EW}) (6.9.8)

To solve Equation(6.9.8), it should be separated angular and radial variables in

the operator Hp. We introduce the radial momentum p, and radial velocity a, as
follows:

o.0)/r (6.9.9)

Here T is unit vector and o is Pauli spin matrix vector. Let us consider the
following vector equation:

(G.A)(3.B) = (A.B) +i3.(AxB) (6.9.10)

Here, A and B are any two vectors. According to Equation (6.9.10) it can be
written as follows:

(@.5)@p) = (6.0)(@.P) =t.p+id.L=rp, +i(1 +3.L) (6.9.11)
Hence, multiplying on the left by «,/r and using the property a? = 1, we get:
GF=o|p +: (1+3.L)| and 1 +3.0)=)> 12 +1/4 (6.9.12)
It can also be shown that:
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(1+3.0)wY = —2(2) + DpYY (6.9.13)

Substituting Equation (6.9.12) and Equation (6.9.13) into (6.9.8), the following
equation can be obtained:

| (p = DB g+ v(n) | Wl = E WY (6.9.14)

The following two equations can also be shown:

(6.0Yy ==Y}, and G.DY), = Uy (6.9.15)

Substituting the function (6.9.7) in (6.9.14) and using the expression (6.9.9), the
following two equations are obtained:

[ L+ 20D (1) = [B - m — V(IF() (6.9.164)

[+ 2R = [E+m - V()]Ow) (6.9.16b)

This system of radial equations plays the role of the radial equation of the non-
relativist theory. The normalization expression of the function ‘Pm], after integration
over angles is given by the following expression:

(WM, W) = [ UFMI? +0()]?) dr (6.9.17)

Putting T=® (J + 1/2) in Equations(6.9.16a) and (6.9.16b) let us rewrite them
in the matrix form as follows:

dF (r)

e ) =i (o) =4 (6) (6.9-182)
dr

—1/r [E+ m— V(r)]

A= (—[E —m—V(r)] T/r ) (6.9.18b)

Differentiating Equations (6.9.18a) and (6.9.18b), we obtain the following equation:

dF (r) d?F(r) ©
d dr _ dr? _ i F(r _ F _ F
ar{doe@ |~ | dae(r) |~ dr? (@(r)) =B (@)) =g (Q) (6.9.19)
dr dr?

Here, B = i—? + A? and ¢ is eigenvalue of B matrix and it has been calculated as follows:

g =m?—E2+ r—i +2EV(r) - V()% +/2/r* = [V (1)]? (6.9.20)

Equation (6.9.20) contains the central potential and the spin-orbit interaction
potential, whereas, there is Laplace operator in the relativistic energy operator. When
Laplace operator is expressed in spherical coordinates, it occurs the centrifugal potential
energy term as L(L + 1)/r2. Therefore, it should also be added this potential term to
the expression (6.9.20). If we put t° = (J + 1/2)2111 Equation (6.9.20), we can rewrite it
as follows:
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Ue () = 2EV(r) =V(D?; U; = (J+1/2)*/r?; UL = L(L+1)/r?

Unes () = [0+ 1/2)2 /14~ [V P

Urel (r) = Ure (r) + U] (r) + UL (r) - Urez (r)

Upe2 (1) = Upe () + U] (r) + Uy (r) + Uy, (1)

Notes

Urei (r) = Ure (r) + U] (r) + UL (r) T Urez (r)

g =m’—E*+ U, (), (i=1 2) (6.9.21)
According to Equation (6.9.19) we can write the following two equations:

d?F(r)
dr?

We see in Equation (6.9.22) that F(r) = ©(r), then it is sufficient to examine only F(r).
So, from Equation (6.9.22), we can write the following equation:

d?e(r)
dr?

g F(r) =0 ;

£§0O() =0 (6.9.22)

d2F(r)
dr?

+ [ — U JF(r) =0, (a=E?—m?) (6.9.23)

From the other side, the radial SE which is given in Equation (63)can be written
as follows:

% +[B-U.IF®) =0, [=23E, U, () = 22 U()] (6.9.24)

If Equation (6.9.24) is compared with the Equation (6.9.23), it is seen that both

equations are the same form. So they have the same form solution. Let U(r) = U (1).
Now let us see the solution of Equation(6.9.23) for the bound state.

i. Energy
For a> U(r)bound state; k=i,/|a]=iK , G(r)=[,/-U(r)dr.r; and ry,

(r; < ry)are the roots of the following equation:
a—U(@)=0or (m*—E?»)—-U() =0 (6.9.25)

The bound state energies are given by the solution of the following equation:

Kd=gq, [d=r, —r;, K=4/la| = /|(E2 —m?)| = Vm? — EZ, (m > |E|] (6.9.26)
For q = 2 ground state occurs; for q=nm, (n=1,2,3,...) excited states occurs.

ii. Wave functions
Now let us find the function F(r) in bound states. In bound states, always
E > U(r), thatis a > U(r). Therefore:

K =.\la|]=|E2—m2|= ym2 —E2=K>0
G(r)=i j,/U(r) dr=i j,/—|U(r)| dr = j\/|U(r)| dr = Q(r)
F(r) = A cos[Kr]e! 6™ = A cos[Kr]e! ¢ = A cos [% r] )
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F(r) = Bsin[Kr]e' €™ = Bsin[Kr]e! ®™ = B sin [% r] el Q)

|Al = |B| = y2/d = J2K/q

According to Equation (6.9.7), we can write the complete wave function as follows:

FOYY \ _ 1 FOUS\ _ koo (Yo
WM:E( ]>=_< ]>=Q< 1) 6.9.27
o \iewul) T \iFmy) T iy e

This function is eigen-function of Dirac Hamiltonian in the bound states.
iii.  Application to an atom of hydrogen-like

The following central potential can be taken for an atom of hydrogen-like:

7 e?
V() = - —
r

Here Z is atomic number and e electron charge. With this potential, we consider
two case solutions:
a. Relativistic case (Dirac equation)
o Fnergy

2EZe* b
U(r) = Uy (r) = — +—=

by = (j+1/2)* + L(L + 1) — Z2e* — /12 — Z2¢*
b, = (j+ 1/2)° + L(L + 1) — Z2e* + /72 — 72¢*
T=j+1/2, b;=Db; or b,

, (i=1,2)

The roots of the equation [a — U, (r)] = 0 or [(E?2 — m?) — U, (r)] = 0 are as follows:

EZe? —/E2Z%e* — b;(m? — E2) EZe? +/E2Z%e* — b;(m2 — E2)
o (m? — ) T (m? — )

_ 2,/E?Z%¢* — b;(m? — E?)

d=r‘2—r‘1 (mZ—EZ) ’ K:\/m:\/(mZ_EZ)’(m>E)

The roots of the equation Kd = q are as follows:

—_n@® _ / 4bi+q2 .
E - Eq - im 4bi+q2+4‘ 724 (1 - 1! 2) (6928)

For q = 2 ground state occurs; for q=nm, (n=1,2,3,...) excited states occurs.
Let us take the (4) sign in Equation (6.9.28). So we have the following energies:

f 4bi+q? [ 4 bi+q?>

new 1 new 1

=m ; =m |——————— 6.9.29
Erebl 4b1+q2+4 22e4— 4 reb 2 4b2+q2+4 22e4— ( )

e Wave functions

2E Ze?> b, a, b

U(r):Urei(r):_f‘}‘r_Z:__‘}‘r_z, (121,2)

© 2019 Global Journals

Notes



Notes

3i:2EiZEZ» (E; = Egrp; )

b;
IUrel (I‘)l _2 , (1 =1, 2)

G —j\/ Ul dr = | /—‘ 2L dr = Qu()
Qi(r)=2 {,/air —b; — \/Earctan [/ air — bi)/bi]}

=Jmﬁqﬂp=$w—ﬁf=&>o, (m > E))

F,(r) = A cos[K; r]el G = A, cos[K; r]e! %) = A, cos [% r] el Qi)
i

F.(r) = B; sin[K; r]e! %™ = B; sin[K; r]e! %) = B, sin [% r] el Ui
i

|A;| = Bl =\/2/di =\/2 K;/q;

gM 1 F(r)'y%I _1 F(r)'y%I _Fi(0) ,y%[
®] 7 r\ie M7 r\iF M | s M
1 (r)y{”] 1 (r)y{”] 1Y
b.  No-relativistic case [Schrddinger equation (SE)/
o  FEnergy
T=]41/2 5 Upy (1) = 5
Ze2 1 Ze? b
Usepi (1) = — - + E[U](I‘) + UL (D) £ U, (] = i +r_21 )
1
b1=§;J¥4J(L+1)—ZZ4—\h2—2%q
1
by =— | + L(L + 1) — 2%€* + /x2 — 72¢]
2m
o= 2Inl'—::scbi =2mE ; Usc(r) = szscbi (I')
The roots of the equation —|a| — Ug. (r) = 0 are as follows:
_ Ze* —[L%e* — 4 bj|E| _ Ze* 4+ [1%e* — 4 bj|E|
"o 2|E] P 2|E]

JZ2%e* — 4 bj|E|

d=r,—1r = IE| — ; K=.lal =/2m|E|

The roots of the equation Kd = q are as follows:

|E| — Ene"." — 2m Z2e*
schi 8mbi+q2 ’

(i=1,2)

(6.9.30)

(i=1,2)

(6.9.31a)
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So, the following energy values are obtained:

Bl = 2 = 2m s |B] = Eogy = 2n (6.9.310)
If we take by =b, = L(ZL::) in Equation (6.9.31a) we obtain the following energy:
|E| = Egev =2 ;24 - (L+1Z)2+qz - (6.9.31c)
For g = 2 ground state occurs; for q=nm, (n=1,2,3,...) excited states occurs. NOteS

e Wave functions
The wave functions in the no-relativistic case (case of Schrddinger) as follows:

Ze* b a b ,
Ui(r):Uscbi(r):_T‘l'r_z:_;‘l'r_z; [a=Ze*; i=1,2]

6 = [ IT@Idr = ; K = yZmE]
Qi(r) = f E —E—Zi dr=2 {,/ar —b; — \/Earctanifﬁg’/ar— bi)/bi]}

F;(r) = A, cos[K; r]etiGi(D) = A, cos[K; r]et! @) = A; cos [% r] et Qi)
i

F;(r) = B; sin[K; r]etiGi() = B; sin[K; r]et (") = B, sin [% r] et il
i

|A;| = |Bi| = \/Z/di = \/2 Ki/q;

Fi ()Y, .
P _1( i(DYy >=FlT(r)|L]M>

T i F(YN (6.9.32)
Here, |LJM > is the wave function of total angular momentum.
c. Classical solutions of Dirac and SchrOdinger equations for this potential
We consider the following potential:
Ui(r) = Upy () = =2 +b—2 ,[i=1,2] (6.9.33)
With this potential, let us rewrite the following radial differential equation:
2 r
4 [a— U @IFE) =0 (6.9.34)

In Equation (6.9.34); if we take: o= (E?—m?), ay=2E;Ze*and b; =
[t + L(L+ 1) — Z%e* £ V12 — Z%e*|we obtain Dirac equation (DE). If we take:
a=2mE;; a; =2mZe’andb; = [t? + L(L + 1) — Z%e* + V12 — Z%¢*], (h=1) we

obtain Schrodinger equation (SE).
The classical solution of the differential Equation(6.9.34) is as follows:

F(I‘) =C Mk,u(B) + CZWk,u(B)
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My, ®) = e P20 /DR (n—k+1/2,1+21P)

W, @)= e P 2BWH/DE2(n—k+1/2,142,B)
a;
k=—, u=

N JI+4b,, B=2+ar

Here F} and F? are confluent and hypergeometric series, respectively. According
Notes to thefeatures of these series, if p—k+1/2=—-(n—-1), (n=1,2,3,...), the function
of F{ is polynomial. Solving this equation, the values of energy are found as follows:

N =

o  Relativistic case (Dirac energy)
P, =2 (-1 +n)?n? + e*Z?[1 + 2(—1 + n)n]
Pyp, = [—4 (=1 + n)n + 2 e*Z%]b; + 2 b? + e*Z2(—1 + 2 n)/1+ 4 b;
P; = [(—=1 + n)? + e*Z?][n? + e*Z?]
Py = 2 (n—n? + e*Z?)b; + b?

Edy =m [—2® (b = b, and by) (6.9.35)

2 (P3+Pypi)

o No-relativistic case (SchrOdinger energy)

me472[—1=2Db.— +2n (1-n i
ps _ me'Z’[-1-2b, J1+4b;i+2n (1-n+,/1+4b;)] , (b; = by and by) (6.9.36)

scbi 4(n—n2+b;)2

The well-known energy value for this potential (in the relativistic case-Dirac
energy) is as follows:

-1/2

724

Eff =m{1+ ;t, (c=Lh=1n=123.) (6.9.37)

[n—]—1/2+ /(]+1/2)2—22e4]

The well-known energy value for this potential (in the no-relativistic case-

Schrddinger energy) is as follows:

m e* 72
2hZ nZ ’

|Eds| = (n=1,23,..) (6.9.38)

We give some energy values calculated by the new formulas (6.9.29), (6.9.31b),
(6.9.31c), (6.9.38) in Table 6, and by the classical solution formulas (6.9.35), (6.9.36),
(6.9.37), (6.9.38) in Table 7. The values of new solutions have been compared with the
ones of classical solutions. In these numerical calculations, we have taken only the
potentials with b;parameters, because of (lim,,y,U(r) » +o) in the s-states for
b,parameters, so such potential is not accessible in bound states. Electron
mass0.511003 MeV/c?;electron chargee? = 1/137.0360; proton mass938.280 MeV/c?;
hc=197.329 MeV.fm or h=1; Z = 1, m reduced mass.

It seems in Table 6: in second colon; the same n-states have the same energy
values, there are degeneracy; in third colon; the same n and l-states have the same
energy values. There is less degeneracy in these states. In fourth and fifth colons, every
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state has the different energy value, there is no degeneracy. That is that the degeneracy
is completely eliminated with spin-orbit interaction and centrifugal potential energy.
But both of which have almost the same energy values. Then the solutions of SE and
Dirac equations give almost the same energy values for the same potential energy. So,
there is no need to solve the Dirac equation to find the energy values of the quantum
systems, it is sufficient to solve the SE with a well-defined potential.

Table 6: Energy values of the some electron states by new formulas

Statesnl;  |E®|(eV) [Eq"| (V) [Eshil(eV)  Im —Ergpil(eV)
151/ 13.5926 13.5926 13.5988 13.5982
251/, 3.39815 5.50887 5.51128 5.51119
2p1) 3.39815 3.04262 3.04393 3.04391
23/ 3.39815 3.04262 2.10262 2.10261
3512 1.51029 1.37722 1.37781 1.37780
312 1.51029 1.14516 1.14565 1.14565
332 1.51029 1.14516 0.98045 0.98045
3 dss 1.51029 0.85652 0.76098 0.76098
3 ds 2 1.51029 0.85652 0.62180 0.62180

It seems in Table 6: in second and third colons; the same n-sates have almost the
same energy values; in third colon; the same n and l-stateshave the same energy values,
there is degeneracy. In fourth and fifth colons, every state has the different energy
value, there is no degeneracy. That is that the degeneracy is completely eliminated with
spin-orbit interaction and centrifugal potential energy. But both of which have almost
the same energy values.

Then the solutions of SE and Dirac equations give almost the same energy values
for the same potential energy. So, there is no need to solve Dirac equation to find the
energy values of the quantum system, it is sufficient to solve the SE with a well-defined
potential. The energy values of the second and third colons are different from the

energy values of fourth and fifth colon, except for s-states, because of the potential does
not include the centrifugal potential energy term in the second and third colons.

Table 7: Energy values of the some electron states by classical formulas

States |ESS| (eV) |m — Eﬁlls |ESth Im — Efy
nl, i (V) (V) (V)
1517 13.5926 13.5986 13.5991 13.5986
251/ 3.39815 3.39966 3.39966 3.39966
2p1/2 3.39815 3.39966 1.51094 1.51093
232 3.39815 3.39961 1.07204 1.07204
3512 1.51029 1.51095 1.51096 1.51095
312 1.51029 1.51095 0.84990 0.84990
3 p32 1.51029 1.51094 0.65353 0.65353
3ds3; 1.51029 1.51094 0.47116 0.47116
3 ds,; 1.51029 1.51093 0.37773 0.37773
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It seems that our new results are very compatible, because there is any
approximation in our solutions whereas there some approximation in classical solutions.
Both Dirac and SE give almost the same values of energy for potential in classical or
new method. So, whether the new method or classical method, it is not need to solve
Dirac equation, it is sufficient to solve only the SE to find the energy values for a well-
defined potential.

VII. TRANSMISSION COEFFICIENT FOR AN ARBITRARY FORM POTENTIAL BARRIER

a) Determination of the wave functions
From the solutions of Equations (52), let us consider the following functions:

F(I‘) =A ek r+iG(r) +B e—k r+iG(r) (64)

Here, (a) For the case whereE > U(r), k =imyvVE, G(r) =im, [,/U(r) dr.

(b) For the case whereE <U(r), k = m;vE, G(r) = mlfm dr.

Let us divide the potential into three domains, as seen in Figure3. In region
LE > Uy; in region ILE < U,; and in region III, E > Uz. Now, consider that a particle
with total energy E comes from the left to the right as in Figure3 and hits the barrier at

the pointr;. According to the function given in (64), the wave functions can be obtained
for these three regions as follows:

F1 (r) = Alei Kr+Q1(r) + Ble—i Kr¥Qq(r)
F,(r) = AyeKr FiQa(r) 4 B,e Kr#i Q2(r) (65)

Fs (r) = A3ei Kr +Q3(r)

K = m;VE, Q,(r) = mlf /Up(r) dr, (p=1,2,3)
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Figure 3: The unbounded state (potential barrier) and tunneling

In the calculations of the above functions, the fact that the waves travel both M
from left to right and right to left in the region I and only from left to right in the
region III have been taken into account. Since there is no wave coming from right to

left in the region III, so the coefficient B3 must be zero.
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b) Calculation of the transmission coefficient T

To calculate the transmission coefficient T, the coefficients A;and B; in the
functions given in Equation(65)must be found. In order to find these coefficients, the

following boundary conditions are used:

Fi(r)) = Fo(r); F,1(r1) = Flz(r1)§ F,(ry) = F5(ry); Flz(rz) = Flg(rz)

E =U;(ry) = Uy(ry); E = Uy(rz) = Us(ry); m1\/]§ =m /Up(ﬁ =my /Up(rz =K
m;VE = m, ’Up(rl =m ’Up(rz =K

QM =m [JU,D)dr » Q) =m /Up(r) 5 Qp(r) = Q,(rp) =K

In the functions given in Equation(65), there are five unknown coefficients. Four
of them can be found in term of A;. All of the coefficients have been calculated in this
study, but here, only the coefficient A3 is sufficient. According to the signs of the
exponential terms in Equation(65), two expressions for A3 can be found as follows:

For the lower part of signs:

A, = 2exp[(1+DKr; + (1 —DKry, = Qy(ry) +1Q,(ry) +1Qa(ry) + Q3(r2)]
3T exp[2 Kry +2iQ,(r)] + exp[2 Kry, + 21 Q,(r;)]

1

For the upper part of signs:

~ 2exp[(1+)Kr; + (1 —DKry +Qi(ry) +1Qa(ry) +1Qa(rz) — Qs(ry)]

= A
3 exp[2 Kry +21Q,(ry)] + exp[2 K, + 21 Q,(r)] !
The transmission coefficient is defined as follows:
* 2

" A1A}  |A1|2  cosh [2 K d]+cos [2 P]

’2 2
P =Qy(ry) — Qa(ry) = h_rznf VU2 (r) dr

2
Q@ =m, [JT0 ar= |27 [ 0,0 ar

From the literature [13], the transmission coefficient T (or the barrier penetration
probability) which is calculated by the WKB is known as follows:

- 2m pr
T=e28, [g= h—zfrf,/Uz(r)—Edr] (67)
In Equations(66) and (67), r; and r, are abscises of the points that the particle
hits and leaves the potential barrier, respectively and they are found solving the

equation E = U, (r).
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¢) Application to cold emission
i. Calculation of transmission coefficient

Cold emission of electrons from a metal surface is the basis of an important
device known as scanning tunneling microscope (STM). An STM consists of a very
sharp conducting probe which is scanned over the surface of a metal (or any other solid
conducting medium). A large voltage difference is applied between the probe and the
surface. The surface electric fieldstrength immediately below the probe tip is
proportional to the applied potential difference, and inversely proportional to the
spacing between the tip and the surface. Electrons tunneling between the surface and
the probe tip cause a weak electric current. The magnitude of this current is
proportional to the tunneling probability T. It follows that the current is an extremely
sensitive function of the surface electric fieldstrength, and, hence, of the spacing
between the tip and the surface (assuming that the potential difference is held
constant). An STM can thus be used to construct a very accurate contour map of the
surface under investigation. In fact, STMs are capable of achieving sufficient resolution
to image individual atoms.

V(x)

Metal surface

Metal V(x)-E=W —e &x

-V,

Figure 4: The potential barrier for an electron in a metal surface subject to an external
electric field

Suppose that a cold metal surface is subject to a large uniform external electric
field of strength €, which is directed such that it accelerates electrons away from the
surface. The electrons just below the surface of a metal can be regarded as being in a
potential well of depth W, where W is called the work function of the surface. Adopting
a simple one dimensional treatment of the problem let the metal lie at x < 0, and the
surface at x = 0. The applied electric field is shielded from the interior of the metal.
Hence, the energyE, for example, of an electron just below the surface is unaffected by
the field. In the absence of the electric field, the potential barrier just above the surface
is simply U(x) — E = W. The electric field modifies this to U(x) —E =W —e € x.The
potential barrier is sketched in Figure4. It can be seen, in Figure 4 that an electron just
below the surface of the metal is confined by a triangular potential barrier which

extends fromx = x; to X,, where x; =0 and x, = W/(e €). In Equation (66), if it is
put that:
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2m
d=x, —x; =W/(e €) ; m =

K2
2m _
K= ?Ezmlx/f:mlw/—lElzlmlx/W
2V2me € 8me €
QZ(X)=mle—e EX=iTX3/2=i WX3/2

With these values, the following transmission coefficient is obtained:

2 2

cosh [2 K d]+cos [2 Q2(x2)] - cos [Zh_‘/Z'E“WS/Z]_,_COSh [‘;_thmewyz]
e e

T = Tnew =

Here, in calculation of Equation(68), the following equation is used:

cosh(iy) = cos(y) and cos(iy) = cosh (y)

Using the WKB approximation, the probability of such an electron tunneling
through the barrier and consequently being emitted from the surface is calculated as
follows:

X2 X2
T =Ty = €xp l—Zmlj VJUEX) — El dx = exp l—Zmlj VW —e € Xl dx
X1 X1

442 m W3/2] (69)

T=Tuo = exp |~ 352

The above result given in Equation(69) is known as the Fowler-Northeim
formula. This formula is the result of WKB approximation. The formula given in
Equation(68) is exact formula because there is no approximation. It is seen that there
are a lot of difference between them.

ii.  Numerical calculations and comparison of Equations(68) and (69)
The barrier penetration probabilities or the transmission coefficients T have been
calculated from Equations (68) and (69). In the calculations, the electron mass,

m c? = 0.511003 MeV; the electroncharge, e = 1.19999 (MeV.fm)'/? have been taken.
The obtained values for the different metals are seen in Table 8. InTable 8, it can be
seen that the new method is more appropriate than the classical WKB method. In the
calculations of the current-voltage characteristics of a diode in semi conductor physics,
it is expected to have better results. In calculations one has been taken hc=

197.329 MeV.fm
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Table §: Comparison of the transmission coefficients values calculated with classical and
new method

Transmission coefficient Ty, from equation (68) Transmission coefficient T, from equation (69)

Metals Work function

Electric field € (V/cm) Electric field € (V/cm)

W (eV)
5x10° 5x107 1x10” 5x106 5x107 1x107
Na 246  5.12448x107% 0.0206 1.43171x10711 1.28112x107%3 0.0051 3.57928x10712
Al 408  5.07471x107% 0.000052 1.42474x1072* 1.26868x10~%° 0.000013 3.56185x107%°
Cu 470  1.40147x107°0 3.60174x107° 2.36768x10730 3.50368x107°1  9.00435x10~7 5.91919x1073!
Zn 431  3.25862x107%3 0.000020 1.14169x10726 8.14656x1075% 4.91018x107°  2.85422x10~%7
Ag 473  3.68836x107°1 3.15165x107° 1.21464x10730 9.22090x107%2  7.87911x10~7  3.03659x10731
Pt 6.35  4.59212x107°% 1.28249x107° 1.35530x107%7 1.14803x107°° 3.20624x10~1° 3.38826x10~%®
Pb 414 4.19617x107%° 0.000040 4.09691x107%> 1.04904x10~>0 0.000010 1.02423x1072°
Fe 450  9.20656x107°7 8.67486x107° 1.91902x107%8 2.30164x107%7 2.16872x107®  4.79754x10~%°

d) Application to alpha decay in atom nuclei and calculation of half-life
i. Calculation of half-life formula

An o-particle is the nucleus of a helium atom. It consists of two protons and
two neutrons. In the process of a-decay of nuclei, an a-particle is assumed to move in a
spherical region determined by the daughter nucleus. The central feature of this one-

body model is that the a-particle is preformed inside the parent nucleus. The theory

does not prove that a-particle is preformed but it proves that it behaves as if it is [14].

Figureb5 shows a plot, suitable for the purposes of the theory, of the potential energy
between the a-particle and the residual nucleus for various distances between their
centers. The horizontal line E = E,is the disintegration energy. There are three regions
of interest. In the spherical region r <r; we are inside the nucleus and speak of a
potential well with of depth of —U,, where U, is taken as a positive number.
Classically, the o-particle can move in this region with a kinetic energy E, + U, but
cannot escape from it. The region r; < r < ryforms a potential barrier because here the
potential energy is more than the total available energy E,.The regionr >r, is a

classically permitted region outside the barrier. From the classical point of view, an a-
particle in the spherical potential well would reverse its motion every time it tried to

pass beyond r =r; of tunneling through such a barrier. A consistent model for this
process assumes that a-particle is bounded to the nucleus by a spherical potential
wellV; (r) or a spherical effective potential well U;(r) and that the a-particle is repelled
from the residual nucleus by the central Coulomb potential barrierV,(r) or the effective
central Coulomb potential barrier U,(r). The original radioactive nucleus has the

charge Ze and the a-particle has the charge2e. So the Coulomb potential barrier is
asfollows:

_ 2
V() = 252 =2 e =2 (2~ 2)e)

Thus, the corresponding effective potential function is obtained as,

2

c b h
Uz(r)—;+r—2, [b—m*g(*g-}'l)
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This effective potential is depicted in Figureb. There are three domains in this
effective potential.

i)
F 3

Figure 5: Effective potential function for the a-decay process of the nuclei

According to the one-body theory, the disintegration constant Aof an alpha

emitter is given by: A =fT, [T transmission coefficient]. Here f is the frequency with
which the a-particle presents itself at the barrier and T is the probability of

transmission through the barrier. The quantity f is roughly of the order of z(rv o
1—13

where v is relative speed of the alpha particle inside the nucleus. t;,, = 0.693/Ais
used for the calculations of nuclear half-life. The relative speed of the alpha particle
can be found from its kinetic energy that is equal to the difference between the
disintegration energy of the alpha particle, E,, and the ground state energy of the
nucleus, Ej, namely;

K.E.=%mv2 = [Eq — (—|EoD] = Ey + |Eo| (70)

From Equation (70), the following is obtained:

2 (E, + |Eo) 1 m
m M ST 2B+ |EoD)

If the values of 1/v and A =fT are substituted into t;/,; = 0.693/A, then the
followingformula is obtained:

0693 _ 0.693 2 (rl—r3)l _ 2 (r1—-r3) m
tip = = === 0,693 =2- = 0,693 =L /Z(Ea+lEol).

To simplify the numerical calculations, this formula can be rewritten in following form:

_ 2 (ri—r3) m c? 1
ti, = 0.693 = /Z(Ea+|E0|)T (71)

is the reduced mass. (m, and mgare the mass of the nucleus and

mpMmg

Here,m =
nTMg

a-particle).
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ii. Determination of the potential functions
In our numerical calculations, we have taken the harmonic oscillator type central

potential as seen in Figure6. The central potential parts V;(r),V,(r),V;(r) and the
central effective potential parts U;(r),U,(r),Us(r) are as follows:

“U(_l')

\ 111 /

I 1, 11, m B¢
|
I B

Notes

U, Uy | U, ' U,

AU
Figure 6: Central harmonic oscillator type effective potential

V,(r) = -Ug+ar?; U;(r) = Uy, + ar? +% ; [r3<r<ry] [Iregion]

Vi =ar?; Uy =ar?+ % ; l[rl <r<rp] (I1; region)
b .
Vo, (r) = f ; Uy (r) = §+ 7 [rn <1 <T13] (I, region)
V. =§ ;0 Us(r) = §+1% ;0 [ <r< o, (Il region)
Here, R = RO[(A — 3 44V 3] is the total rayon of the nucleus and alpha
particle. From the solution of the equation E, = U;(r) = —U, + ar? + r%, we can obtain
as follows:

_ |(Eq+Up)+/(Eq+Ug)2—4ab _ |(Eq+Ug)—/(Eq+Ug)2—4ab
ry = ; I3 =

2a 2a

From the solution of the equation E, = U,, (r) = E + r% ; we can obtain as follows:

c+y/c2+4b Eq
r, = —2 Ey .
. . b .
From the solution of the equation E, = U;(r) = —Uy +ar? + —, We can obtain as:

_ (E0+U0)—1/(E0+U0)2—4ab . _ (E0+U0)+1/(E0+U0)2—4ab.
r'n = s T2 = ;

2a 2a

d0=r12—r11; d=r2—r1.

2
From the solution of the equation Ej = —%,We obtain the ground state
energy as follows: 0

8 ah?
m

1
Eozx/ab—E Uy+ [4ab— —4+abU, + U3
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With these grandeurs the coefficients of transmission are written as follow:

— ’2 m 7 S
kab = e 2 Pwkb ) Pwkb = h_rzn(frrl U21 (I‘) - EO( dr + f:}j U22 (I‘) - EO( dr) (72)

T . = z = z
new cosh [2 K d]+cos [2 {Q2(r2)—Q2(r1}] cosh [2 K d]+cos [2 Pyew | (73)

Prew = F (frm VUz1(r) dr+ f Uz2 (1) dl’) (74)

wkb 2 (ri—r3) m c? 1

tiz =0.693 == N2 Ea—Eo) Tt (75)
new 2(ry-r3) m c? 1

ti; = 0.693 - Iz Es—Eo) Toen (76)

The parameters aandry,in potentials can be calculated. To calculate the
parameter a,the following equation is used the equation: U;(r) = —U, +ar? + r% =0.

The roots of this equation are found as follow:

,:\/U0+1/U§—4ab_ u :jUO_ UZ—4ab

r ;
1 2a 3 2a
As it can be seen in Figure6, the rll can be taken as sum of the radii of the
nucleus and the alpha particle. That is, since the radius of the alpha particle is
R, = Ry 4'/3and the radius of the nucleus Ry = Ry(A —4)/3, the total radius is as
follows:

R. = Ry + Ry = Rg[ 413 + (A — 4)V/3]

Thus it can be taken as follows:(r;)% = R2 = [U, + U2 — 4ab]/(2a).From this
equation, the value of ais obtained as follows:

_ Uy b _ UgRZ-b

~RZ RY RE

To calculate the parameter r,, the equationU;(r) = U,;(r)is used and the
resolution of this equation gives:

Zx/—aU0+\/—X

rm - 62/3

X=[9a2c+ 323 @27ac? - 4Ug)]

Therefore, the potential depends only on Ry and U, parameters, which simplifies

the numerical calculations.

iii. Numerical calculations
To calculate the transmission coefficient T, (or barrier penetration probability),
Equations (72) and (73) have been used, and the half-life values, Equations (75) and
(76) have been used. The experimental half-life values of the nuclei were taken from
[15]. Calculations were made for twenty nuclei and the results are visible in Tables 9. In
this table, the half-life values calculated from the new formula and WKB formula are
compared with the experimental results. For Ry parameter 1.22value has been taken.
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Firstly, Uy values were changed the interval 5-50 MeV by step 0.001 until t775 / t

value is between 0.999 and 1.001, and one Uygvalue was found. Secondly, U, values
were changed between (Ugy — 1) and (Ugy + 1) by step 0.00001 until the values of

ti72 / ti);gis equal to 1 or close to 1, and thus the best Ujvalue was found. We have

taken calculated values a and r, parameters given Equations given above for every

value of the U, parameters. The half-life values calculated from the new formula and

WKB formula are compared with the experimental results. As seen in the table that

ti7; values have better results than t‘f’}‘; values. One can be seen that the new formula

is more appropriate than classical formula (WKB). Table9 shows that the new formula
gives very good results with the experiment.

In this table; first column is nucleus; second column is the experimental energy
value of the alpha particle; third and fourth columns (I;T " and I;Tf) are the initial and
final state spins (parity) of the nucleus, respectively. Fifth column (¢,) is the orbital
angular momentum of the alpha particle; sixth column is the experimental value of the
half-life of the nucleus; the seventh column is the most value of the parameter Uy;
eighth and ninth columns are the WKB and new values of the half-life of the nucleus,
respectively; tenth and eleventh columns are the ratios of half-lives. In these tables: y
year; d day; h hour; m minute; s second.

Table 9: Comparisonofthe experimental half-life values and the results calculated using
the new and WKB formulas with the harmonic oscillator type well potential for the

parameter Ry = 1.22 fm.

X EJMeV) L' I £t Uy (MeV) ey ey R/ UE/Gn
Wpo 52155 0t  OF 0 2.898y 16.1149 0.00163y 2.898y 0.00056 1
2%0 54075 0t  oOf 0 138.376d 16.8183 0.05718 d 138.376 d 0.00041 1
20Rn 61585 0+  0OF 0 2.40h 9.65884 0.00002 h 2.40h 7.8447%10°° 1
22Rn 63850 0+  0OF 0 239m 10.6042 0.00022 m 23.9001 m 9.26232%10°® 1
28Rn 72630 0+ 0 0 0.035s 6.73448  3.06062*10%s  0.0350003 s  8.74664*107  1.00001
222Rn 55903 0+  OF 0  3.8235d 6.4726  6.39451*10°d  3.82352d 1.67242*10°  1.00001
2%2Ra 66810 0t  0F 0 38.00 s 6.70216 0.00003 s 38.0003 s 6.72179*107  1.00001
2%6Ra 4.8706 0t  0O* 0 1600 y 8.20157 0.04662 y 1600y 0.00003 1
28Th  5.5201 0+ o 0 19116y 6.8677  3.81955*10°%y  1.91161y 1.99809*10°  1.00001
2Z0Th 47700 0+  0F 0 75380y 8.97807 5.33862y 75380.3 y 0.00008 1
22Th  4.0828 0+ (0 0 1.405*10"y 50.9229  3.48334*10"°y  1.405*10"y 2.47924 1
2340 48585 0t  0F 0 2.455%10%y 9.52352 19.4874 y 245501y 0.00008 1
238U 45720 0t  o0* 0 2.342%107y 11.8220 20371y 2.342*10"y 0.00087 1
2%pPu 55932 0t 0F 0 87.7y 7.92354 0.00029 y 87.7003 y 3.29958*10°° 1
20pu 52558 0t  0F 0 6563y 8.31556 0.06286 y 6563y 9.57858*10° 1
22Pu 49844 0t 0F 0 3.733*10%y 9.6180 19.9753 y 373301y 0.00005 1
2Cm 54748 0t 0F 0 4730y 9.13514 0.04485y 4730y 9.48227*10°® 1
2%cm 51617 0% 0F 0  3.40%10°%y 10.0730 13.9342y 3.40%10°y 0.00004 1
22cf 62169 0t 0* 0 2.645y 7.72806  1.83639*10°y 2,645y 6.94287*107 1
2P0 49792  1/2° 5/27 2 102y 25.4692 0.85586 y 102y 0.00839 1
2P0 75945 972t 1/27 5 0516's 22.0306 0.00006 s 0.516001 s 0.00011 1
2ipe 78289 1 5* 5 0.314s 23.7771 0.00003 s 0.314s 0.00011 1
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29Th 51676  5/2%  1/2t 2 7340y 30.8213 84.5910'y 7340y 0.01152 1

23U 49086  5/2t 572t 2 1592%10°y  10.0846 16.2122'y 1.592%10%y 0.00010 1
ZINp  4.9591 5/2%  3/27 1 2144*10°y  36.7733 90440.2y 2.144*10°%y 0.04218 1
239pu 5.2445 1/2t  7/27 3 24110y 11.0755 1.65331y 24110y 0.00007 1
2lam 56378  5/27 5/2% 1 4322y 10.3320 0.00658 y 4322y 0.00002 1
28%Am  5.4381 5/27  5/2% 1 7370y 11.9873 0.44434y 7370y 0.00006 1
247Bk  5.8890  3/2°  5/27 2 1380y 19.4567 0.41219y 1380y 0.00030 1
2lcf 61758 1/2t  9/27 5 898y 29.3742 1.69578 y 898.001 y 0.00189 1

Here, the general transmission coefficient formula for a potential barrier with an
arbitrary form has been easily calculated without making any approximation. In this
calculation, a new formula that we developed for the solution of the radial SE has been
used. The transmission coefficient obtained from the new method is given by the
formula in Equation(73). In this formula, it could be difficult to calculate the

integral [ /U, (r) dr. If these calculations cannot be made analytically, they should then
be performed by numerical methods.

In the application of the general transmission coefficient formula to the a-decay,
threedimensional harmonic oscillator potential well has been used. The results have
been given in the tables together with the experimental values. The tables also contain

the “ratio” column for comparison. It can be seen in Table 9 that the ratios for taken all
nuclei are equal or close to 1 (one). The deviations from 1 are within the experimental
error. Hence, it is said that the results obtained from the new method are more realistic.

In the WKB method, the wave functionsare sinusoidal outside the potential barrier. But
they are not sinusoidal inside of the potential barrier and they are exponential
functions. That is that the wave functions are sinusoidal while entering into the
potential barrier, but are not sinusoidal in the potential barrier and they are become
sinusoidal again after sorting from the barrier. So, the entering wave into the potential
barrier is sinusoidal, is not sinusoidal in potential barrier, and after the potential barrier
it becomes again sinusoidal. How appropriate is this event? Where as in new method,
the wave functions are sinusoidal everywhere (before the potential barrier, inside the
potential barrier and after the potential barrier), but they have different phases inside
and outside of the potential barrier. Thus, the wave function has different phases inside
and outside the potential barrier, but it advances everywhere as sinusoidal functions. It
can also be said that it is more accurate and realistic. Besides, the WKB method gives
approximately a wave function. In the new method, the wave function is exact because
there is no approximation. That is why the theoretical calculated half-life values match
better with the experimental values. From these, we conclude that the transmission
coefficient given in Equation(73) is more correct and realistic. By using the new
transmission coefficient and half-life formulas, the half-life values of nuclei can easily be
calculated. The general transmission coefficient formula can be used for the other
tunneling phenomenon such as the cold emission from the metals, tunneling diode, and
Josephson joint, reactions in the sun, scanning tunneling microscope, quantum traps
and such.

© 2019 Global Journals

Notes



Notes

VIII.  SCATTERING THEORY

a) Calculation of the scattering amplitudes

Let us consider a spherical wave progressing at the direction of Ozaxis from left
to right, and arriving to a central potential field, sitting at the origin of theOxyz
coordinate system. When we consider scattering, we shall assume that the interaction
between the scattering particle and the scatter can be represented by an effective
central potential energy function U(r), whereris the relative radial variable. The

effective potential U(r)can include attractive and repulsive parts. Such a central
potential is schematically represented in Figure7. The total energy of the incoming
particle beam is E and the incoming particle beam can be represented by the spherical
wave. This progressive spherical wave progress from right to left and arrives to the
point r = ryin Figure7. We divide the potential region into four zones and examine the
motion of particle beam into these four zones.

Zone I is the region before the effective potential from where free particle comes;
zone I, I, and IV are the effective potential regions where the particle beam is
affected. These regions may include attractive and repulsive potential segments. Zone
[V is the region where the particle beam is not able to penetrate because the potential is
infinite. So, the wave function is zero in this region. These are presented with four
regions along with the central potentials in Figure 7.

AU

oo

| 111
I

of r,

Figure 7: General schematic representation of scattering by central potential

We assume that r = ry and r = ryat the interface between zonel and II, and zone
Il and III, respectively. The effective potential segments in the zones are represented as
U;(r), U,(r) and U;z(r) according to the zone numbers. The effective potential U, (r)can
be assumed infinite since the particle does not enter into this region. The central
potential can be taken as zero at much far from the zone I so that the particle is free in
that region and the effective potential is composed of only the centrifugal term due to
the incoming particle angular momentum or spin. The Coulomb interaction potential
should also be added to U;(r)if that is available. The total energy of the incoming
particle and the centrifugal term are always positive and the latter is less than the
former. According to the functions given in Equations(52a)-(52f), the following
functions are determined for the zones that are taken into account as follows:

In the zone:E >0, U;(r) >0 and E > U;(r); k=imVE=iK;(K=mVE);

Gi(r) =imy [/U;(r) dr =iQ,(r); [ml = Zh—l; , Qi(r) =my [ U (r) dr|.
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In the zone ILE > 0, Uy(r) >0 and E < U,(r), k=mVE=K;

Gz(r)=mlj,/U2(r) dr=Q,(); |[k=m;VE =K m; = /zh_rznl

In the zone III, the conditions E < 0(This zone corresponds to the bound state.
So, the negative energy should be taken), Usz(r) < 0andE > Us(r)leads to the
expressions below:

k=imVE=im/—[E[=+K, [K=m/[E]
G3(r) = imlj\/US(r) dr=im1J\/—|U3(r)|dr=i Q3(r)

The wave function in zone I should vanish at large distance. Under these
circumstances, the radial wave functions in the three zones can be put in the forms
below with regard to the general functions given in Equations(52a)-(52f):

Fi(r) = Aje K7 4 o7 1Kr=Qo™ ;B =1, Q;(r) >0, Qu(r)>01] (77a)
F,(r) = AyeKrtiQ() 4 B e~ KrFiQa(n) (77b)
F3(r) = Age” K1 Q™ 4 B e KrFiQs() (77¢)

The wave function in zone IV vanishes since the effective potential in this region
is infinite. Here, Qy(r) is the function resulting from the angular momentum of the
incoming particle. This function Qy(r) can also be taken as zero because it does not
have any contribution to the calculation of the scattering cross-section as it will be seen
soon.

The potential in zone III can also be complex in some cases (usually called the
optical potential). If Us(r) is the optical potential, it can be written as follows:

Us(r) = [Us(r)]et® = Uz (1) + i Uz, (r) = /U2, (r) + UZ, (r)e'? (78a)

Here, tan(@) = Ezj—gg , @ = arctan [Ezj—gg] :k=im;VvE = im;/—|E| = K, [K =

ml\/E];G3(r) =imy [Us(r)dr=im, [{/—|U3(r)| dr =+ Q;3(r)
Q;(r) = J\/|U3(r)| dr = mlj\[\[Ugl(r) + U%(r) dr

Q™) =my [ YUZ () + U4, (r) dr (78b)

In Equations(77a) - (78b), the functions Q,(r) can also be written briefly as follows:

. Qp(r):mlf ’lUp(r)ldrﬁ [p:0'1'2,3]

The terms containing A; and B; in the functions in Equations(77a)-(77c) give
outgoing and incoming waves, respectively. We assume that the amplitude of incoming
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wave at the boundary of zone I and II is constant. The second (77b) and the third (77c)
functions represent the states of the wave in the effective region of the potential.

Applying the continuity conditions on Fp(rj) and Fl;(rj), [p,j =1,2,3] functions, the
coefficients A; and B; in Equations(77a)-(77c) can be determined. These conditions at
the boundary points of the three zones can be written in the following form:

Fi(ry) = F,(ry) ; F’1(F1) = Flz(f'1); F,(ry) = F3(ry) ; Flz (rp) = F,3 (rz) (79)
F. :
Fale) + 52 =05 () =K, (.i=123)

The coefficients A;, A, By, Az, Bz in the functions given in Equations(77a)-
(77¢) can be found by solving five linear equations, which can be obtained by using the
conditions given in Equation(79) for each of the functions given in Equations(77a)-

(77c).The essential coefficient for the scattering cross section is A; as described below.

Therefore, there is no need to give other coefficients here. TheA;coefficient, which
isobtained from four equations, is computed by taking into account the lower and upper
signs in the exponential expressions in Equation(79) as follows:

i. The A coefticient found using the lower signs

A= %(1 +i)e 2iK r1—Qo(r1)+Q1(r1){_1 + (2 — Del2K @r3—r)+2i [Qz(r1)—Qz(F2)+Q3(Fz)—Q3(F3)]} (80a)

ii. The A coefficient, found using the upper signs

A (1+i)e2@-DKr1-Qor1)+Q1(r1)+21[Q2(r1)+Q3(r2)]
1™ (2+i)el2Kr3+2i[Q2(r2)+Q3(r3)] —e[2K 11421 [Q2(r1)+Q3(r2)]

(80D)

The terms with A;in the functions given in Equations (77a)-(77c) representing
the outgoing wave from the center of potential, includes both the scattered by the
potential and the incoming wave. Therefore, we must subtract away the latter to find
the amplitude of only the scattered wave. Thus, we obtain the scattering amplitude and
radial wave function representing the scattered wave as follows:

Cs(ry) = Aje~ U — ¢=Q() | (scattering amplitude) (81a)
iKr iKr
R, (1) = Fsr(r) = Cy(r) = [A;em D — e QD] (81b)

Equations(81a) and (81b) represent the elastic scattering wave by the potential.

b) Calculation of particle currents
i. Calculation of the scattered particle current .
Using Equation(81b) and the equation J(r) = % [R’; (r) % — R (r) %}, the

current of scattered particles per unit area at r = rypointcan be found as follows:

S ()2 (82)

Js(ry) = o
ii. Calculation of incoming particle current
The radial wave function of the incoming beam, passing through zone I and

toward zone II, can be written as:
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Ry(r) = 52 = 1e1 Km0 = ¢ (1)) S, [C,(ry) = e,
Here, C4(ry) = e~Q(1) represents the amplitude of the incoming wave. The

incident current per unite area at r = rypoint can be obtained in the way that is applied
to the current equation:

1 hK 1AK _
]g(rl) = —%;|C (r1)|2 = —1;(3 2Qo(r1) (83)

c) Calculations of scattering cross-sections
i. Calculation of elastic scattering differential cross-section
The probability per unit differential surface of a sphere of radiusry, that an
incident particle is scattered into the differential surface area on the sphere of radius
r;, dS =r?dQ, [dQ = sin(8) d8 d¢ ] is expressed as the ratio of the scattered current to
the incident current, that is:

d& _ d0's _ ]S(rl) N d& _ ]S(rl) I'Z (84)

ds ~ rfdQ T Jg(rp) dQ ~ Jgrp L

The differential elastic cross-section can be expressed in a simple form by putting
Equations(82) and (83) into Equation(84) as follows:

dos _ Cs(ri)Cs(r1) 2 _ ICsrD* 2
dQ Cg(r1)Cy(ry) 1 [Cg(r1)]? 1 (85)

Since the scattering is azimuthally symmetrical, the angle ¢ can be integrated
out so that the expression given in Equations(84) and (85) can be written as follows:

dos _ Js(r1) ICs(r)[*
o = 2T e 1)1‘1 sin(@) =2m CorP =L 12 sin (0) (86)

The expressions (86) show the elastic scattering differential cross sections in the
angled® which is usually measured experimentally.

ii. Calculation of differential inelastic or reaction (no-elastic) cross-section

Differential reaction (capture of particle, emission of particle, inelastic
collision...) cross- section per the solid angle can be found through the difference
between the incoming current and the outgoing current divided by the former. By
analogy with Equation(86), the differential reaction cross-section can be expressed as
follows:

dor _ 2 g (r1) Is(rl)] in(e) = 21 [ICg (rDI2—ICs(rp)| ]

a6 ) ICe ()2 rf sin (6) (87)

iii.  Calculation of total cross sections

The total elastic scattering cross section is the total probability to be elastic
scattered in any direction and it can be determined through the integral of differential
cross-section given in Equation(85) as follows:

o, =]dos = jf]g 1) sin(6) d 6 do

2)s(r) _ 2 1Cs(r)f? 88
TN R TR IE )

o, =4mr
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By analogy with Equation(88), the total reaction cross-section can be expressed
as follows:

2 []g (ro)-Js (rl)]

o, =4mr? o 4mri— o, (89)

In Equation(89), it is seen that if];(r;) =J4(ry), then o, =0, full-elastic
scattering; if J(ry) > Jg(r1), then o, <0,it is taken out of the particle from the target
(emission of particle from target) and if Js(r;) <Jg(ry), then o, > 0,it is captured

(absorbed) the particle by the target. The total scattering cross-section, including all
process [elastic plus reaction (all of no-elastic events)]:

_ _ 2Js(r1) 2 g (r1)=Js (rp)] _ 2
o =0,+0, =41r] —]g(r1)+4nr1 e =4 Tr] (90)

Then the cross-sections oy, o, , 0, can be expressed through theA; coefficients
given in Equations(80a) and(80b).
o, elastic scattering cross-section found using the coefficient (80a) is as follows:

X, =3 etk 4 5Krs 4 2 e4Kricos(2 Kry) + sin(2 Kry)]

X, = —2 e?K(r1tr3)[3 cos(Z(Kr1 — Y)) +2cos(2Y) + sin(Z(Kr1 — Y)) +sin(2Y)]

Os

_ le—4Kr1{X1 +X,} (91a)

4mri 2
o, elastic scattering cross-section found using the coefficient (80b)is as follows:
P, =3e*Kr1 4+ 5e*Kr3 4 2 e*KT1[cos(2Kr;) + sin (2Kry)]

P, = —2 e2K(r1#r3)[3 cos(2Kr; —2Y) + 2 cos(2 Y) + sin(2Kr; — 2Y) + sin (2Y)]

P, = e*Kr1 4 5etKrs _ 2 e2K(r14r3)[2 cos(2Y) + sin (2Y)]

os _ P1+Py (91b)

4T r% P3

In both cases, the reaction and total scattering cross-section o, and o, are as follows:

o o o o o
=1-——and—5=—"2+—"-=1oro, =4mry (91c)
4mrg 4mrg 4mry 4mrg 4mry

In these expressions, Y is given by the following equation:

Y = Qa(ry) — Qa(ry) + Q3(ry) — Q3(r3) = my frr; VIUz (0] dr + my frr; [Us(r)| dr (91d)

The integrals in Equation(91d) can be solved numerically if the
functionsQ,(r) and Q;(r)cannot be calculated analytically. It can be seen from these
formulas given in Equations(91a)-(91d) that the scattering cross-sections (o5 and o)
depend on the total energy E [with K(E)], Y integral and the effective radius ry, ry,
rzof the scatter potential, separately, but total scattering cross-section o, = o4 + o, only

depends on the parameter r;, so the energy E .Here, rycan be considered as impact or
collision parameter, classically.

© 2019 Global Journals

Global Journal of Science Frontier Research (F) Volume XIX Issue I Version I E Year 2019



Global Journal of Science Frontier Research (F) Volume XIX Issue I Version I E Year 2019

d) Examples of the calculation of scattering cross-section

i. Model potentials, wave functions and their ingredients

To calculate a scattering cross-section, a model potential should be considered.
Here as an example, we consider the Wood-Saxon shape potential plus the spin-orbit,
centrifugal and Coulomb potentials. The potential zones are defined in Figure7 and
shown in Figure8 for these model potentials. Wood-Saxon potential depends on three
parameters,(Vy,a. ,R.). The calculations have been thus performed with these
potentials. The scattering affects only relative motion. In the center of mass reference
frame (CM), the scattering cross-section of the incoming (incident or projectile)

particle o() depends on the energy E. = MtEL/(Mp + Mt), where M, and M,

respectively mass of incident (projectile) and target particles; E; Laboratory;and E,
relative energies. The boundary values of the potential zones taken in the calculations:

the maximum potential energy occurs at the distancer, =R, = RO(A;/ 3 +Ai/ 3), the
addition of the projectile (incident particle) radius to the target radius provided that
they are spherical, where A, and A;are the mass number of the projectile and the

target, respectively. The zones and 1, (k=1,2,3) values are shown in Figure8. The
effective potential energy is as follows:

U(r) = Vs (1) + Vi (1) + Vs (r) + Ve(r) (92)

1+Exp [(r—R¢)/ac] ’

Vs (1) = Wood-Saxon potential

h2  1dVye (1)
2 Mizc2 r dr

Vig (1) = <L.S >, spin-orbit potential

<L.S >=%[](]+ 1) —L(L+1) =SS+ 1)]

_ R2L(L+1)

Vs () =r% ; [b oL ], (centrifugal potential),
V.(r) = Cr—“ , [CC = (Zp e)(Zee) = Z, Ztez], (potential energy of Coulomb)

A U(')

/ﬂ

A J
=

ot

Figure 8: Effective Wood-Saxon potential and Coulomb potential zones used in the
calculations
Here, [L,S,]J] are the relative orbital, spin and total angular momentum
quantum numbers between the target and projectile, respectively. M; isthe reduced

mass of the target and  projectile. R. = ROAi/ 3 (Rg is parameter). If
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ree = [Cc ++/CZ+4bE.]/[2E,]is the positive root of the following equation: E, = r%+

C—C—V(r)+V(r) and r, = R, , then we get r;=r;, + ry —r2+[C +C?+4DbE, ]/ 2E.]
Z,and Z; are the charge numbers of the projectile and the target, respectively.

The r3 value is determined by equalizing Vi(r) to E,. Consequently, (r3, r,, ry) values
are obtained as follows:

1 1 Ce+ /cg+4b1~:r
r; = b/Er;r2=Rm=R0 A?)"'Ai ;I‘1=I‘2+—

2E,

The wave functions for zones 1-3 used in the calculation can be expressed in the
following ways, respectively:

h?Lo(Ly + 1)

QO(I') = mhf W dr = w/Lo(Lo + 1) ln(r)
c b+C.r
Q,(r) —mhf — —2 dr = 2m;{+/b+ C.r — Vb arctanh o
b+C.r
Qz(r)—mhf ’ —2 dr = 2m;<{+/b + C.r — Vb arctanh bc

Q3(r) = my, [ U3 dr = my, [ /[Vis (1) + Vigy (1) + Vs ()] dr (93)

Here, my = \/Z_Ml /h and L is the angular momentum of the incident particle.

It is seen from Equation(91c)that even though og and o, have changed with the
parameters Vy and a.; o, = o, + o, has not changed for a certain value of Ry. In other
words, the total cross-section does not depend on the parameters V; and a., and
therefore, does not also depend on the potential. So, Ry parameter can be obtained from
the solution of the equation 4mr? =o; " as follows (o; "
section):

is experimental total cross-

—\/m 10 [CC+JC§+4 b Er]+E JlO o b
20 B, 3/ + JAd]
To calculate o and o,separately, the parameter V, in the range 20-60 by step

0.0001 and a. in the range 0.40-0.60 by step 0.01 have been changed in the potential

until 6@ > 0 and round [0} "] =round [0¢] and floor [0} "] = floor [05?']”, during the

Ry = (94)

calculations. So, rough V, and a., values have been found. Then, with these

P =08 and o, = Gcal} system of equations hasbeen solved

approximate values, {0
and the exact values of parameters V, and a.have been found. With these V; and a.

parameters, the exact oy and o.have been recalculated. We have taken in the
calculations the following values:

e? = 1.439976 MeV fm ; M, = 931.502 MeV /c?;h c = 197.329 MeV fm.
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1. Thermal neutron cross-sections

For example, thermal neutron (E; = 0.025 eV) scattering cross-sections for some
targets have been calculated and compared with the measured values. In calculation,
even nuclei have been taken as targets because of their angular momentums are zero.
So, the relative angular momentums are those of the projectile, they are L=0, S =
1/2, ] =1 /2for neutron. For the calculations of o, o, and o, the formulas given in
Equation(84) which has been obtained by the lower sign functions. The results are
compared with the measured total cross-sections in Table 10. The experimental values
have been taken from [15]. It is seen that agreements are fairly good as seen in Table
10. In this table, first column: target; the second column: from top to down(Rg,V,,
a.) parameters, respectively; the third column: from top to down(R., R, =r;, r1),
respectively; the fourth column: cross-sections; the fifth column: values of calculation;
and the sixth column: values of experiment.

Table 10:[n(0,1) + Xn (Z,N)] Thermal neutron cross-section comparisons with those
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measured
R, R, c
Vv, R ross- , .
TargetXn (Z,N) a(c) r;n sections(mb) Calculations(mb)  Experiment(mb)
2.29845 2.89586 o, - 3390 3390412
H(1.2) 21.3275 5.19431 o, - 0.519 0.519+0.007
0.40 5.19431 o, > 3390.52 3390.52
1.86896 4.27885 o, - 4746 474642
€612 35.2934 6.14781 o, > 3.53 3.5340.07
0.40 6.14781 o, > 474953 474953
1.5543 3.91659 o, - 3761 3761+6
O (8,16) 41,2421 5.47089 g, - 0.190 0.190+0.019
0.40 5.47089 o, - 3761.19 3761.19
1.02922 3.12533 o, - 1992 199246
Si (14,28) 21.3192 415456 o, — 177 17745
0.40 415456 o, - 2169 2169
1.1803 4.03655 o, - 3010 301048
Ca (20,40)  39.0960 5.21685 o, - 410 410420
0.40 5.21685 o, - 3420 3420

iii. 3He Cross-sections on some targetsin the intermediate energy
The cross-sectionso, at three different energies ofsHehave been calculated for 5
different targets[3Be, 12C, 180, 48Si,30Ca]. The calculated cross-sections have been
compared with those measured taken from [15, 16]. The comparisons are made in the

way that is described above and given in Table 11. In this table: Xn [Z,N] target; E;

cal p

laboratory energy of projectile; of* calculated total cross-section; Gtex experimental
measured total cross-section. There is no need for relative angular momentums here.
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Table 11: [He [2,3] + Xn[Z,N] Total cross-section comparison with those measured

Xn[Z N] E; (MeV) Ry(fm) R (fm) R,(fm) 1 (fm) o (mb) ;" (mb)

Be[4,9] 96.4 0.673279 1.40048 2.37051 2.53101 805 805%30
137.8 0.623868 1.29770 219747 2.30905 670 67030

167.3 0.607056 1.26273 2.13825 2.23016 625 625130

C[6,12] 96.4 0.620244 1.42000 2.31455 2.53885 810 810%40
137.8 0.594922 1.36203 2.22006 2.37697 710 710£30

167.3 0.572480 1.31065 2.13631 2.26556 645 645135

0O[8,16] 96.4 0.631332 1.59086 2.50140 2.78546 975 975435
137.8 0.606261 1.52768 2.40206 2.60079 850 850150

167.3 0.595506 1.50058 2.35945 2.52313 800 800%25

Si[14,28] 96.4 0.600731 1.82417 2.69058 3.15392 1250 1250+65
137.8 0.603057 1.83124 2.70099 3.02513 1150 115070
167.3 0.590377 1.79273 2.64420 291119 1065 1065440
Ca[20,40] 96.4 0.544438 1.86195 2.64717 3.28976 1360 1360+90
137.8 0.563942 1.92866 2.74200 3.19154 1280 1280+85

167.3 0.565988 1.93565 2.75195 3.12222 1225 1225+75

The calculation of cross sections through solution of radial SE (RSE) by the
partial wave expansion is very difficult. In many cases, some approximations are needed
for these kinds of solutions. In the present study, firstly, differential elastic scattering,
inelastic (or reaction) scattering and total cross-sections have been calculated without
using any approximation. These calculations have been performed using a simple
method, improved for the solution of RSE, for an incident particle being in a central
field of any form. We have obtained the general formulas of the scattering amplitudes
and elastic, inelastic (no-elastic) and total scattering cross-sections. Secondly, we have
made some applications. In these applications, the potentials have been assumed to
have Saxon-Woods shape plus spin-orbit interaction, centrifugal and Coulomb
potentials. These potentials are very complex potentials. Calculations with these are not
easy. However, it is very easy to make calculations with our method. With these
potentials, first, for the thermal neutrons; the elastic, inelastic (neutron radiative
capture), and total scattering cross-sections of different targets have been calculated.

Then, total scattering cross-sections for 3He particles of three different energies on 5
targets have been calculated. The calculated results have been compared with
experimental results. The results calculated have given satisfactory agreement with the
available experimental results. More cross section calculations can be found in [17].

The calculations have also shown that the total cross-sections depend on the
mean potential range. Thus, it is also proved that the total cross-sections can be
calculated easily using even very complex potentials. The same calculations have also
been performed using optical potentials, but the results have not been included here due
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to getting the same scattering distance and cross-sections. The use of two parameters is
seen to be enough in the agreement of the calculated results with the measured results,
whereas this agreement is ensured using more parameters in the partial wave expansion
method.

[X. CONCLUSION AND SOME EXPLANATIONS

We have found a simple procedure for the general solution of the time-
independent SE in one dimension without using any infinite series or other
approximations. The wave functions, which are always periodic in the bound states, are
given in Equations(52a)-(57). In our procedure of solution, there are two difficulties: one

is to solve the equation E = U(x) to find the energy; and the other is to

integrate,/U(x), namely, to calculate[/U(x) dx to find the exact normalized wave
function.If these calculations cannot be done analytically, then it should be done by
numerical methods. To find the energy values, there is no need to calculate this
integral, it is sufficient to find the classical turning points by solving the equation

E = U(x). Thus, there is no need to know the wave functions to find the energy values
of the states; it is enough to know only the potential energy function.The SE has been
solved for a particle in many potential wells and found their total energies and
normalized wave functions were calculated as examples.

Using this simple procedure, the solution of the radial SE for spherically
symmetric potentials without using any infinite series has been achieved in this study.
The wave functions which are always periodicals are given in Equations(52a)-(57). By
using this procedure, the radial SE has been solved for a particle found in many
spherically symmetric central potential wells and two different solutions have been
found. One of them is symmetric function and the other is anti symmetric function.
From these expressions, it is observed that these functions are periodic and they are
similar to each other in form for all potential wells. This simple solution was applied to
relativistic, scattering and tunneling theories and it yielded good results.

The solution that we propose is a general solution. The points of view supporting
the method we presented here is more realistic which are as follows:

As it is known, the SE is a second order differential equation with variable
coefficients. The solutions of such equations are based generally on series method and

special functions (Hermit, Bessel ...) in quantum physics. In the expanding of power
series, the consecutive relations between the coefficients of the series are found. Some
approaches are taken to make the series convergent and by using them, the energy
values and the wave functions are determined. In all of these solutions, one or more
approximations are used. Some other methods such as perturbation, WKB, variation,
etc. are also applied for solving the SE and approximate solutions are obtained.
However, the solution that is proposed here is neither based on series methods nor
special functions, and no approximation is used. We think that these solutions, which
do not have any approach, are more realistic.

It is seen that the functions found with the known methods and with the present
method are different in form. However, when we do numerical calculations, the results
are not very different from each other and are consistent with their well-known values.
For example the one dimensional harmonic oscillator, our result and the result obtained
by the known methods are very close to each other, but they are not exactly same.

The SE, the fundamental equation of the quantum mechanics, is also known as
the SchrOdinger wave equation. In physics, the harmonic waves are represented with
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periodic functions e.g. sin and cos. However, most of the known solutions of the SE are
in the form of polynomials. Especially the solution of the harmonic oscillator should be
periodic function. However, the known solution is polynomial. As it is seen in the
functions given in Equations(5.1.3) and (5.1.4),0our solution gives sin and cos functions,
which makes it more realistic.

It is said that the quantum mechanics includes classical mechanics. Hence, the
results of the classical mechanics should be obtained from the results found in quantum
mechanics. As it is seen from the functions given in Equation(5.1.4), it is very difficult
to obtain sin and cos functions from polynomials. However, the classical solutions could

be easily obtained if W(x)is taken very small in the functions given in Equation (5.1.3).

In quantum mechanics textbooks, it is said that all infinitely high potential wells
are similar to each other. But when we look at their solutions, we see that all of the
solutions are different in form; whereas our solutions are similar to each other in form
for all such potential wells.

In the quantum mechanics, if there is no exact solution, sometimes, the variation
principle is used to find the ground state energy. The calculations of variation are made
with a trial function, and it is seen that the results are not very dependent on the trial
function. However, the wave functions are not necessary to find the ground or excited
state energy in our solutions. It is sufficient to know the classical turning points of the
potential function.

Special conditions are not required in order to find energy values and the wave
functions. The continuity of the wave functions and their derivatives at the classical
turning points are enough.

The application of our procedure is very easy. Most of the problems that could
not be solved analytically with the known methods can easily be solved using our
procedure. A complete solution of the SE used in all branches of physics has been made.
A problem that has been worked onby many theoretical physicists has easily been
solved. We think that this solution is very useful and helpful for those physicists
interested in quantum mechanics and applications.
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