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Hydrogen Atoms 

Zhong-Cheng Liang 

Abstract- This article analyzes the spectral structure of hydrogen atoms according to the motion theory of elastic 
particles. The results demonstrate that optical radiation originates from the elastic vibration of atoms or molecules. The 
quantum state is the equilibrium feature of the classically statistical system, and the quantum transition is the process of 
conversion between different motion modes.  

 
 I.

 

Introduction

 Atomic spectra are discrete line spectra, which are information for understanding 
the composition of matters. In 1913, Niels Bohr proposed the hypothesis of the 
quantum state (stationary state) to explain the atomic stability and the hydrogen 
spectrum [1].

 

The success of Bohr's atom theory promoted the establishment of 
quantum mechanics. The hypothesis of the quantum state is the foundation of quantum 
mechanics. Although quantum mechanics has made significant achievements, the 
interpretation of the quantum state has always been controversial [1-3]. The essence of 
quantum has become

 

the ultimate mystery of nature. Four years ago, the author put 
forward a physical theory based on the elastic particle model [4], made a unique

 
interpretation to

 

the nature of quantum by classical mechanics [4-6], and developed the 
theories of particle fields [4,7,8], motion states [4,5], and statistical thermodynamics 
[4,9].

 

This article analyzes the spectral structure of hydrogen atoms based on the 
motion state theory, and further proves the classical nature of the quantum state. 

 II.

 

Theory

 

of Elastic Particles

 a)

 

Elastic particle

 
Objects are particle systems composed

 

of elastic particles [4-9]. Elastic particles 
are three-dimensional objects that have mass and volume, that can spin and deform. 
Electrons, protons, neutrons, atoms, and molecules are all elastic particles.

 

Protons and 
electrons are indecomposable primary

 

particles, while neutrons are composite particles 
containing one proton and one electron.

 

The composition of any object is protons and 
electrons. 

 
The spatial object structure is the nesting of particles at different levels [5,6]. 

Nucleus and electrons constitute atoms; atoms constitute molecules; molecules 
constitute supra

 

molecule; and so on. The general model describing the nested structure 
is
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           Top-particle ⊇  meso-particles ⊇  base-particles ⊇  sub-particles                (1) 

A top-particle is the object to be studied, while base-particles are the statistical 
units of number conservation. An upper-level particle comprises all particles in lower-
levels. The more levels of particles an object contains, the more complex the structure 
of the object is.  The interaction of the elastic particles originates from two macroscopic 
constraints: the conservation of particle number, and the repulsion of particle volume. 
The elasticity of upper-level particles comes from the motion of lower-level particles. 
For  example, the elasticity of atoms mainly comes from the movement of electrons 
outside the nucleus.  

b)  Spatial state  
The spatial state of an elastic object includes position, posture, and profile. The 

position is represented by the position vector of the center-of-mass, the posture is 
represented by three principal inertia axes, and the profile is represented by three 
principal rotary inertias [5,6].  

Let an object contain 𝑁𝑁  particles, in which the particle 𝑃𝑃𝑖𝑖  has mass 𝑀𝑀𝑖𝑖 , and its 
position in the laboratory coordinate system (𝑂𝑂 − 𝑋𝑋𝑋𝑋𝑋𝑋)  is  

                                  𝒓𝒓𝑖𝑖 = 𝑟𝑟𝑠𝑠 ∙ 𝒓𝒓�𝑖𝑖 = 𝑂𝑂𝑃𝑃𝑖𝑖������⃗ = (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖).                                  (2) 

 

   

                                                     (3) 
 

The posture and profile of an object are determined by the inertial matrix. The 

inertial matrix of the 𝑁𝑁-particle system in the laboratory coordinate system is [10]  

                                    𝑰𝑰 = �
𝐼𝐼11 −𝐼𝐼12 −𝐼𝐼13
−𝐼𝐼21 𝐼𝐼22 −𝐼𝐼23
−𝐼𝐼31 −𝐼𝐼32 𝐼𝐼33

�  ;      𝐼𝐼𝑠𝑠 = 𝑀𝑀𝑠𝑠𝑟𝑟𝑠𝑠2 .                                     (4) 

Where 𝐼𝐼𝑠𝑠  is the scale of inertia. The elements of the inertial matrix are  

𝐼𝐼11 = �𝑀𝑀𝑖𝑖(𝑦𝑦𝑖𝑖2 + 𝑧𝑧𝑖𝑖2)
𝑁𝑁

𝑖𝑖=1

,     𝐼𝐼22 = �𝑀𝑀𝑖𝑖(𝑧𝑧𝑖𝑖2 + 𝑥𝑥𝑖𝑖2)
𝑁𝑁

𝑖𝑖=1

,     𝐼𝐼33 = �𝑀𝑀𝑖𝑖(𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2)
𝑁𝑁

𝑖𝑖=1

,  

               𝐼𝐼12 = 𝐼𝐼21 = �𝑀𝑀𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

,    𝐼𝐼31 = 𝐼𝐼13 = �𝑀𝑀𝑖𝑖𝑧𝑧𝑖𝑖𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

,     𝐼𝐼23 = 𝐼𝐼32 = �𝑀𝑀𝑖𝑖𝑦𝑦𝑖𝑖𝑧𝑧𝑖𝑖

𝑁𝑁

𝑖𝑖=1

.          (5) 

Inertial matrix is a real symmetric matrix. It has three real eigenvalues 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3  

and three eigenvectors 𝐞𝐞�1, 𝐞𝐞�2,𝐞𝐞�3
 according to the theory of linear algebra. We describe 

the profile by the eigenvalues of the inertial matrix,  𝑰𝑰𝑐𝑐 = (𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3),  and describe the 

posture by the angles between the eigenvectors and the laboratory coordinate axes, 

𝜽𝜽𝑐𝑐 = (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3).  

c)  Motion energy  
Motion is a process  in which the spatial state of an object changes with time. 

Changes in position, posture, and profile are called translation, rotation, and vibration, 
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𝒓𝒓𝑐𝑐 = 𝑂𝑂𝑃𝑃𝑐𝑐�������⃗ = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 , 𝑧𝑧𝑐𝑐) = ��
𝑀𝑀𝑖𝑖

𝑀𝑀�𝒓𝒓𝑖𝑖

𝑁𝑁

𝑖𝑖=1

,𝑀𝑀 = �𝑀𝑀𝑖𝑖

𝑁𝑁

𝑖𝑖=1

.

Where 𝑟𝑟𝑠𝑠 is the scale of space length, also known as space quantum. The position vector 

(𝒓𝒓𝑐𝑐) of the center-of-mass (𝑃𝑃𝑐𝑐) of the object is 

                         



 

respectively. The translation is the movement of the center-of-mass in the laboratory 
reference system, the rotation is the spin around the center-of-mass, and the vibration is 
the extension and contraction relative to the center-of-mass. Translation, rotation, and 
vibration are three independent motion modes, and each mode has three degrees of 
freedom. An elastic particle has 3×3 = 9 degrees of freedom, and an object composed of 
N particles has 9N degrees of freedom. 

If the three mode energies of a particle are 𝐻𝐻𝑖𝑖𝑖𝑖 ,  𝐿𝐿𝑖𝑖𝑖𝑖 ,  𝐾𝐾𝑖𝑖𝑖𝑖  (𝑖𝑖 = 1,2,3), then the 
total energies of the three modes are [4-6] 

 

                                                  
(6) 

 

 

d)

 

Energy space

 

The energy space is defined as the set of ordered

 

array {𝔼𝔼ℎ ,𝔼𝔼𝑙𝑙 ,𝔼𝔼𝑘𝑘}

 

[4-6]  

                    𝔼𝔼ℎ = 〈𝐻𝐻ℎ , 𝐿𝐿ℎ ,𝐾𝐾ℎ〉,  
 
𝔼𝔼𝑙𝑙 = 〈𝐿𝐿𝑙𝑙 ,𝐾𝐾𝑙𝑙 ,𝐻𝐻𝑙𝑙

 

〉,    𝔼𝔼𝑘𝑘 = 〈𝐾𝐾𝑘𝑘 ,𝐻𝐻𝑘𝑘 , 𝐿𝐿𝑘𝑘〉.

 

              (7) 

  
 

The energy space is confined to the first octant (+,+,+) of the Cartesian space 
due to the positivity of motion energy. In the energy space, we defined the energy 
vector length (called entire energy) as

 

                                                  𝐸𝐸 = √𝐻𝐻2 + 𝐿𝐿2 + 𝐾𝐾2

 

.

 

           (8)

 

 

  

 

 

 
 

Motion of Elastic Particles and Spectrum of Hydrogen Atoms

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
20

19

21

  
 

( F
)

© 2019   Global Journals

Ref

4.
Z
. 

C
. 

L
ia

n
g,

 
P

h
y
si

ca
l

P
ri

n
ci

p
le

s 
of

 
F
in

it
e 

P
ar

ti
cl

e 
S
y
st

em
(S

ci
en

ti
fi
c 

R
es

ea
rc

h
 

P
u
b
li
sh

in
g,

 W
u
h
an

. 
20

15
).

D
O

I:
10

.1
31

40
/R

G
.2

.1
.2

40
9.

80
04

𝐻𝐻 = � � 𝐻𝐻𝑖𝑖𝑖𝑖
3

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
; 𝐻𝐻𝑖𝑖𝑖𝑖 =

𝑉𝑉𝑖𝑖𝜒𝜒𝑖𝑖𝑖𝑖2

2𝑋𝑋𝑖𝑖𝑖𝑖
,

𝐿𝐿 = � � 𝐿𝐿𝑖𝑖𝑖𝑖
3

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
; 𝐿𝐿𝑖𝑖𝑖𝑖 =

𝑠𝑠𝑖𝑖𝑖𝑖2

2𝐼𝐼𝑖𝑖𝑖𝑖
,

𝐾𝐾 = � � 𝐾𝐾𝑖𝑖𝑖𝑖
3

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
; 𝐾𝐾𝑖𝑖𝑖𝑖 =

𝑝𝑝𝑖𝑖𝑖𝑖2

2𝑀𝑀𝑖𝑖
.

Where 𝑥𝑥 = ℎ, 𝑙𝑙,𝑘𝑘 is the zone index. 𝔼𝔼ℎ ,𝔼𝔼𝑙𝑙 ,𝔼𝔼𝑘𝑘 is called gas zone, solid zone, and liquid 
zone, respectively.

Three planes {𝐻𝐻 = 𝐾𝐾,𝐾𝐾 = 𝐿𝐿, 𝐿𝐿 = 𝐻𝐻} divide the energy space into six phases 

�B�𝐺𝐺±
ℎ�, B�𝐺𝐺±

𝑙𝑙 �, B[𝐺𝐺±
𝑘𝑘]�. B[𝐻𝐻] = B[𝐺𝐺+

ℎ ] + B[𝐺𝐺−ℎ ] is the gas zone, B[𝐿𝐿] = B[𝐺𝐺+
𝑙𝑙 ] + B[𝐺𝐺−𝑙𝑙 ] is the 

solid zone, and B[𝐾𝐾] = B[𝐺𝐺+
𝑘𝑘] + B[𝐺𝐺−𝑘𝑘] is the liquid zone. There are six phase interfaces 

in the energy space, of which the J-type interfaces {S[𝐽𝐽0ℎ ], S[𝐽𝐽0𝑙𝑙 ], S[𝐽𝐽0𝑘𝑘]} are the interfaces 

of zero potential energy, the G-type interfaces {S[𝐺𝐺0
ℎ ], S[𝐺𝐺0

𝑙𝑙 ], S[𝐺𝐺0
𝑘𝑘]} are the interfaces of 

zero chemical energy. The structure of the energy space is shown in Figure 1(a).

The total energy of each mode is the sum of 3N independent square terms and has 
positivity(𝐻𝐻 > 0, 𝐿𝐿 > 0, 𝐾𝐾 > 0).



 

 

Figure 1:  (a) Structure of energy space. (b) Equilibrium surfaces in energy space  

e)  Equilibrium surface  

There are three equilibrium surfaces in the energy space: vibration surface S[𝐻𝐻], 
rotation surface S[𝐿𝐿], and translation surface S[𝐾𝐾]. Their corresponding equilibrium 
equations are  

                             𝐻𝐻 = √2𝐿𝐿𝐾𝐾,       𝐿𝐿 = √2𝐾𝐾𝐻𝐻,      𝐾𝐾 = √2𝐻𝐻𝐿𝐿 .                                              (9) 

S[𝐻𝐻], S[𝐿𝐿]  and S[𝐾𝐾]  represent vibration (radiative) equilibrium, rotation (magnetic) 

equilibrium, and translation (thermal) equilibrium, respectively. Each surface spans four 

phases and extends to three zones,  as shown in Figure 1(b). A matrix describing the 

structure of the equilibrium surfaces is shown in Table 1. The diagonal elements of the 

matrix, {S[𝐻𝐻ℎ], S[𝐿𝐿𝑙𝑙], S[𝐾𝐾𝑘𝑘]}, are stable areas and the rest are excited areas.  

Table 1: Structure of equilibrium surfaces  

 𝐁𝐁[𝑯𝑯]  𝐁𝐁[𝑳𝑳]  𝐁𝐁[𝑲𝑲]  

S[𝐻𝐻]  S[𝐻𝐻ℎ ]  S[𝐻𝐻𝑙𝑙]  S[𝐻𝐻𝑘𝑘]  

S[𝐿𝐿]  S[𝐿𝐿ℎ ]  S[𝐿𝐿𝑙𝑙]  S[𝐿𝐿𝑘𝑘]  

S[𝐾𝐾]  S[𝐾𝐾ℎ ]  S[𝐾𝐾𝑙𝑙]  S[𝐾𝐾𝑘𝑘]  

In Table 2, we list the energy names and parameter definitions on the three 

equilibrium surfaces. Where {𝑋𝑋,𝑋𝑋,𝑋𝑋}  is motion energy. {𝐸𝐸,𝑄𝑄, 𝐽𝐽,𝐺𝐺}  is auxiliary energy. 

{𝑎𝑎, 𝑏𝑏}  is order parameter, which has the relation 2𝑎𝑎𝑏𝑏 = 1. The relations 𝐸𝐸 =
√𝑋𝑋2 + 𝑋𝑋2 + 𝑋𝑋2 = 𝑋𝑋 + 𝑋𝑋  determine the equilibrium equation 𝑋𝑋 = √2𝑋𝑋𝑋𝑋. 

Table 2:  Energy names and parameter definition on equilibrium surfaces  

Equilibrium 
surface  Definition 𝐒𝐒[𝑯𝑯]  𝐒𝐒[𝑳𝑳]  𝐒𝐒[𝑲𝑲]  

Equilibrium 
equation

 𝑋𝑋 = √2𝑋𝑋𝑋𝑋
 

𝐻𝐻 = √2𝐿𝐿𝐾𝐾
 
𝐿𝐿  = √2𝐾𝐾𝐻𝐻

 
𝐾𝐾 = √2𝐻𝐻𝐿𝐿

 

Major energy 
 

𝑋𝑋
 

𝐻𝐻
 

𝐿𝐿
 

𝐾𝐾
 

Ahead energy 
 

𝑋𝑋
 

𝐿𝐿
 

𝐾𝐾
 

𝐻𝐻
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III. Quantum State and Transition 

a) Energy quantum 

According to the principle of objectivity [4-9], any physical quantity  can be 

expressed by the product of scale 𝑥𝑥𝑠𝑠 and digit 𝒙𝒙�, namely 𝒙𝒙 = 𝑥𝑥𝑠𝑠 ∙ 𝒙𝒙� . The scale is the 
identifier and metric of the physical quantity, and its essence is quantum. The energy 
quanta of the N-particle system are defined as the statistical average of three-mode 
energies as 

                       𝐻𝐻𝑠𝑠 = 𝐻𝐻 𝑁𝑁⁄ = ℎ𝑣𝑣, 𝐿𝐿𝑠𝑠 = 𝐿𝐿 𝑁𝑁⁄ = 𝑙𝑙𝑧𝑧,   𝐾𝐾𝑠𝑠 = 𝐾𝐾 𝑁𝑁⁄ = 𝑘𝑘𝑘𝑘.                                  (10) 

In SI system, 𝑣𝑣 is the vibration intensity (frequency) with unit hertz (Hz), 𝑧𝑧 is 
the rotation intensity (magnetic induction) with unit tesla (T), and 𝑘𝑘 is the translation 

intensity (thermodynamic temperature) with unit kelvin (K). Taking the energy unit as 

joule (J), then,  ℎ = 6.6260693 × 10−34 J ∙ Hz−1 is Planck constant, 𝑙𝑙 = 9.2740095 ×
10−24 J ∙ T−1 is Bohr magneton constant, and 𝑘𝑘 = 1.3806506 × 10−23 J ∙ K−1 is 
Boltzmann constant.  

b)
 
Quantum state

 

On an equilibrium surface, the digits {𝑋𝑋�,𝑋𝑋� ,𝑋𝑋�} must be integers when using the 

scale of major energy {𝑋𝑋𝑠𝑠} [4-6]. The quantum state is defined as the state whose digits 
are integers on an equilibrium surface. According to this definition, we have the 
following theorem. 

 

Quantum state theorem. Quantum state {𝑋𝑋�,𝑋𝑋� ,𝑋𝑋�} is the positive integer solution of the 

algebraic equations {𝑋𝑋2 = 2𝑋𝑋𝑋𝑋, 𝑋𝑋2 = 2𝑋𝑋𝑋𝑋, 𝑋𝑋2 = 2𝑋𝑋𝑋𝑋} . 
The quantum state on equilibrium surface S[𝑋𝑋] can be easily determined by 

algebraic equation 𝑋𝑋�2 = 2𝑋𝑋�𝑋𝑋�. For example, Table 3 lists the quantum states of 𝑋𝑋� = 1. 

In the table, the ahead parameter is  𝑎𝑎 = 𝑋𝑋� 𝑋𝑋�⁄ .  

Table 3: Quantum state of 𝑋𝑋� = 1 on equilibrium surface S[𝑋𝑋]

𝑋𝑋� 2 4 6 8 10
 

12
 

14
 

16
 

18
 

20
 

… 

𝑋𝑋� 2 8 18
 

32
 

50
 

72
 

98
 

128
 

162
 

200
 

… 

𝑋𝑋� 1 1 1 1 1 1 1 1 1 1 … 
1 2 3 4 5 6 7 8 9 10

 
… 

All quantum states on the surface S[𝑋𝑋] can be plotted in the YZ plane with Z as 
the abscissa and Y as the ordinate, as shown in Figure 2. We marked the four straight 
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Back energy 𝑋𝑋 𝐾𝐾 𝐻𝐻 𝐿𝐿

Ahead parameter 𝑎𝑎 = 𝑋𝑋 𝑋𝑋⁄ 𝐿𝐿 𝐻𝐻⁄ 𝐾𝐾 𝐿𝐿⁄ 𝐻𝐻 𝐾𝐾⁄

Back parameter 𝑏𝑏 = 𝑋𝑋 𝑋𝑋⁄ 𝐾𝐾 𝐻𝐻⁄ 𝐻𝐻 𝐿𝐿⁄ 𝐿𝐿 𝐾𝐾⁄

Entire energy 𝐸𝐸 = 𝑋𝑋 + 𝑋𝑋 𝐿𝐿 + 𝐾𝐾 𝐾𝐾 + 𝐻𝐻 𝐻𝐻 + 𝐿𝐿
Thermal energy 𝑄𝑄 = 𝑋𝑋 + 𝑋𝑋 𝐾𝐾 + 𝐻𝐻 𝐻𝐻 + 𝐿𝐿 𝐿𝐿 + 𝐾𝐾

Potential energy 𝐽𝐽 = 𝑋𝑋 − 𝑋𝑋 𝐿𝐿 − 𝐻𝐻 𝐾𝐾 − 𝐿𝐿 𝐻𝐻 − 𝐾𝐾

Chemical energy 𝐺𝐺 = 𝑋𝑋 − 𝑋𝑋 𝐾𝐾 − 𝐿𝐿 𝐻𝐻 − 𝐾𝐾 𝐿𝐿 − 𝐻𝐻
Energy quantum 𝑋𝑋𝑠𝑠 𝐻𝐻𝑠𝑠 = ℎ𝑣𝑣 𝐿𝐿𝑠𝑠 = 𝑙𝑙𝑧𝑧 𝐾𝐾𝑠𝑠 = 𝑘𝑘𝑘𝑘

x

a



 

lines of 𝑎𝑎 = 1,2,3,4  in the plot for easy identification. The order parameters outside the 
straight lines are rational numbers that are not integers.  

 
Figure 2:

 
The plot of quantum state on equilibrium surface S[𝑋𝑋]

 
c)

 
Ground and excited state 

 
Let’s consider the quantum state in thermal equilibrium

 
surface S[𝐾𝐾]. In such 

case, it has 𝑋𝑋𝑠𝑠 = 𝑘𝑘𝑘𝑘;  𝑋𝑋� = 𝐾𝐾�,𝑋𝑋� = 𝐻𝐻�,𝑋𝑋� = 𝐿𝐿�. The quantum state equation is 𝐾𝐾�2 = 2𝐻𝐻�𝐿𝐿�, 
and the ahead parameter is 𝑎𝑎 = 𝐻𝐻� 𝐾𝐾�⁄ . Table 4 gives the quantum states of 𝐿𝐿� = 1~10

 
on 

S[𝐾𝐾]
 

surface. In the table, S[𝐾𝐾ℎ ]
 

represents the excited state of vibration. L[𝐽𝐽0𝑘𝑘]
 

is the 

intersection of S[𝐾𝐾]
 

and S[𝐻𝐻], representing a stable state. The first column with 𝐿𝐿� = 1
 

is 
the ground state. 

 
Table 4: Quantum states of 𝐿𝐿� = 1~10

 
with ground state 𝐿𝐿� = 1 on S[𝐾𝐾]

 
surface

 
State

 
𝐋𝐋[𝑱𝑱𝟎𝟎𝒌𝒌]

 
𝐒𝐒[𝑲𝑲𝒉𝒉]

 𝐾𝐾�

 

2  8  18
 

32
 

50
 

72
 

98
 

128
 
162

 
200

 
…

 𝐻𝐻� 2  16
 

54
 

128
 

250
 

432
 

686
 
1024

 
1458

 
2000

 
…

 𝐿𝐿� 1  2  3 4 5 6 7 8 9 10
 

…
 a 1  2 3 4 5 6 7 8 9 10

 
…

 d)
 

Quantum transition
 The quantum transition (or quantum jump) is a process of continuous conversion 

between quantum states. According to the continuous equilibrium equation 𝐾𝐾2 = 2𝐻𝐻𝐿𝐿, 
the motion energy on S[𝐾𝐾]

 
can be expressed by the ahead parameter 

 
𝑎𝑎 = 𝐻𝐻 𝐾𝐾⁄  as 

                               𝐾𝐾(𝑎𝑎) = 2𝑎𝑎𝐿𝐿(𝑎𝑎),𝐻𝐻(𝑎𝑎) = 2𝑎𝑎2𝐿𝐿(𝑎𝑎), 𝐿𝐿 = 𝐿𝐿(𝑎𝑎) .                                   (11)
 

Therefore, we express the rotation energy as  

                                                                                   (12)
 

After the transition from a high-energy state (𝑎𝑎′)  to a low-energy state (𝑎𝑎), part 
of energy is converted to vibration radiation and lost. We express the lost rotation 
energy by the difference of the vibration frequency as  
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Notes

𝐿𝐿(𝑎𝑎) =
𝐻𝐻(𝑎𝑎)
2𝑎𝑎2 .



 

                                  (13) 

The frequency difference of lost energy
 
is called emission spectrum, which can be 

decomposed into two terms  

    𝑣𝑣𝑎𝑎′ 𝑎𝑎 = �̅�𝑣𝑎𝑎′ 𝑎𝑎 − ∆𝑣𝑣𝑎𝑎′ 𝑎𝑎 ;   �̅�𝑣𝑎𝑎′ 𝑎𝑎 =
𝐻𝐻(𝑎𝑎)

2ℎ
�

1
𝑎𝑎2 −

1
𝑎𝑎′2

� ,   ∆𝑣𝑣𝑎𝑎′ 𝑎𝑎 =
∆𝐻𝐻𝑎𝑎′ 𝑎𝑎

2ℎ𝑎𝑎′2
 .    (14)

 

 

�̅�𝑣𝑎𝑎′ 𝑎𝑎 > 0 is the spectral frequency caused by the change of ahead parameter. ∆𝑣𝑣𝑎𝑎′ 𝑎𝑎 > 0 

is the spectral line-width caused by the loss of vibration energy, ∆𝐻𝐻𝑎𝑎′ 𝑎𝑎 = 𝐻𝐻(𝑎𝑎′) − 𝐻𝐻(𝑎𝑎). 
We can obtain the absorption spectrum (𝑣𝑣𝑎𝑎𝑎𝑎′ ) from the emission spectrum (𝑣𝑣𝑎𝑎′ 𝑎𝑎) by 

switching 𝑎𝑎 and 𝑎𝑎′ , and changing the signs of frequency and line-width.  

IV. Spectrum of Hydrogen Atoms 
a) Spectral frequency  

According to Table 4, we obtain the first three series of the emission spectrum as  

                                                                            (15a)

  
                                                                       (15b) 

                                  

                                          (15c) 

Compared with Rydberg formula of hydrogen atoms [1], spectral frequencies 

�̅�𝑣𝑎𝑎′ 1, �̅�𝑣𝑎𝑎′ 2, �̅�𝑣𝑎𝑎′ 3
 

are Lyman series, Balmer series, and Paschen series, respectively. 

Therefore, the emission spectrum with ground state 𝐿𝐿� = 1
 

is the spectrum of hydrogen 
atoms. 

The

 

spectral frequency of hydrogen atoms can be generally expressed as

 

        

                               (16)

 

  
According to formula (16), we know that the ahead parameter is the principal 

quantum number in Bohr’s atomic theory. From Table 4, we find that all three 

quantum numbers �𝐻𝐻�,𝐿𝐿� ,𝐾𝐾��
  

are changed after the transition. In other words, all three-

mode energies {𝐻𝐻, 𝐿𝐿,𝐾𝐾}are continuously changing during the transition.
 

b)
 
Limit frequency

 

Substituting 𝑎𝑎′ → ∞
 
into formula (16) obtains the limit frequency of the a -serial 

spectrum.
 

�̅�𝑣∞𝑎𝑎 =
𝐻𝐻(𝑎𝑎)
2ℎ𝑎𝑎2 =

𝐿𝐿(𝑎𝑎)
ℎ

=
𝐿𝐿�(𝑎𝑎)𝑘𝑘𝑘𝑘

ℎ
   

  
                   (17)  

For examples, the limit frequencies of the Lyman series and the Balmer series are 

�̅�𝑣∞1 = 𝑘𝑘𝑘𝑘 ℎ⁄
 

and �̅�𝑣∞2 = 2𝑘𝑘𝑘𝑘 ℎ⁄ , respectively. According to formula (17),
 
�̅�𝑣∞𝑎𝑎

 
is a

 

variable that depends on 𝐻𝐻(𝑎𝑎). The limit frequency given by the Rydberg formula of 

hydrogen is �̅�𝑣∞𝑎𝑎 = 𝑐𝑐𝑅𝑅H 𝑎𝑎2⁄ , where 𝑅𝑅H = 10967758 m−1
 

is Rydberg constant [1].
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1.

 

𝑣𝑣𝑎𝑎′ 𝑎𝑎 =
𝐿𝐿(𝑎𝑎) − 𝐿𝐿(𝑎𝑎′)

ℎ
=
𝐻𝐻(𝑎𝑎)
2ℎ𝑎𝑎2 −

𝐻𝐻(𝑎𝑎′)
2ℎ𝑎𝑎′2

.

�̅�𝑣𝑎𝑎′ 1 =
𝐻𝐻(1)

2ℎ �
1

12 −
1
𝑎𝑎′2�

; 𝑎𝑎′ = 2,3,4,⋯

�̅�𝑣𝑎𝑎′ 2 =
𝐻𝐻(2)

2ℎ �
1

22 −
1
𝑎𝑎′2�

; 𝑎𝑎′ = 3,4,5,⋯

�̅�𝑣𝑎𝑎′ 3 =
𝐻𝐻(3)

2ℎ �
1

32 −
1
𝑎𝑎′2�

; 𝑎𝑎′ = 4,5,6,⋯

�̅�𝑣𝑎𝑎′ 𝑎𝑎 =
𝐻𝐻(𝑎𝑎)

2ℎ �
1
𝑎𝑎2 −

1
𝑎𝑎′2�

, (𝑎𝑎 = 1,2,3,⋯ ; 𝑎𝑎′ = 𝑎𝑎 + 1,𝑎𝑎 + 2,𝑎𝑎 + 3,⋯ )



 

Compared with (17), 𝑅𝑅H  should be  𝐻𝐻(𝑎𝑎) (2ℎ𝑐𝑐)⁄ . Therefore, regarding 𝑅𝑅H  as constant is 
an approximation.  

We can express the spectral frequency by the limit frequency as 

                                                                                                       (18) 

For example, the spectral frequency  of the Lyman series is  

�̅�𝑣𝑎𝑎′ 1 = 𝑣𝑣∞1 �1 −
1
𝑎𝑎′2

� ,     𝑎𝑎′ = 2,3,4,⋯                       (19) 

c)  Spectral line-width  
We have a differential relation in the continuous transition according to the 

expression of spectral line-width in formula (14)  

                                                                                                                (20) 

Roughly, the line-width is inversely proportional to the square of the ahead parameter.  

The quantum transition is a continuous conversion between different motion 
modes. Because energy conversion takes time, the quantum transition is not 
instantaneous. The transition time (∆𝑡𝑡𝑎𝑎′ 𝑎𝑎) is represented by the reciprocal of spectral 

line-width (∆𝑣𝑣𝑎𝑎′ 𝑎𝑎)  as  

                                                                                                   (21) 

 

  

d)  Hydrogen-like spectrum  
Table 5 gives the quantum states of 𝐿𝐿� = 2~11 on S[𝐾𝐾]  surface. Where L[𝐽𝐽0𝑙𝑙 ]  is 

the intersection of S[𝐿𝐿]  and S[𝐾𝐾]. L[𝐽𝐽0𝑙𝑙 ]  and L[𝐽𝐽0𝑘𝑘]  are both stable states. In this case, 

L[𝐽𝐽0𝑙𝑙 ]  is ground state as 𝐿𝐿� = 2  is the lowest rotation energy, and L[𝐽𝐽0𝑘𝑘]  is meta-stable 
state as it has higher rotation energy.  

Table 5: Quantum states of 𝐿𝐿� = 2~11  with ground state 𝐿𝐿� = 2 on S[𝐾𝐾]  surface  

State 𝐋𝐋[𝑱𝑱𝟎𝟎𝒍𝒍 ] 𝐋𝐋[𝑱𝑱𝟎𝟎𝒌𝒌]     𝐒𝐒[𝑲𝑲𝒉𝒉]      
𝐾𝐾� 2  6  12 20  30  42  56  72  90  110  …  
𝐻𝐻� 1  6  18 40  75  126  196  288  405  550  …  
𝐿𝐿� 2  3  4 5 6 7 8 9 10  11  …  
a 1/2 1 3/2 2 5/2  3 7/2  4 9/2  5 …  

From Table 5, we obtain the first three series of emission spectrum  

                                                                (22a)                     

         

                    (22a) 

                                

           (22a)
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Notes

�̅�𝑣𝑎𝑎′ 𝑎𝑎 = �̅�𝑣∞𝑎𝑎 �1 −
𝑎𝑎2

𝑎𝑎′2
�

𝑑𝑑(𝑣𝑣𝑎𝑎′ 𝑎𝑎)
𝑑𝑑(𝐻𝐻𝑎𝑎′ 𝑎𝑎) =

1
2ℎ𝑎𝑎′2

∆𝑡𝑡𝑎𝑎′ 𝑎𝑎 =
1

∆𝑣𝑣𝑎𝑎′ 𝑎𝑎
=
∆𝜆𝜆𝑎𝑎′ 𝑎𝑎
𝑐𝑐

.

�̅�𝑣
𝑎𝑎′ 12

=
𝐻𝐻(1 2⁄ )

2ℎ
�

1
(1 2⁄ )2 −

1
𝑎𝑎′2

� ; 𝑎𝑎′ =
2
2

,
3
2

,
4
2

,⋯

�̅�𝑣
𝑎𝑎′ 22

=
𝐻𝐻(2 2⁄ )

2ℎ
�

1
(2 2⁄ )2 −

1
𝑎𝑎′2

� ; 𝑎𝑎′ =
3
2

,
4
2

,
5
2

,⋯

�̅�𝑣
𝑎𝑎′ 32

=
𝐻𝐻(3 2⁄ )

2ℎ
�

1
(3 2⁄ )2 −

1
𝑎𝑎′2

� ; 𝑎𝑎′ =
4
2

,
5
2

,
6
2

,⋯

Where ∆𝜆𝜆𝑎𝑎′ 𝑎𝑎 is the spectral line-width in terms of wavelength. For example, a spectral 

line-width ∆𝜆𝜆𝑎𝑎′ 𝑎𝑎 = 1nm corresponds to a transition time ∆𝑡𝑡𝑎𝑎′ 𝑎𝑎 ≈ 3 × 10−18sec.



 

Unlike the case of hydrogen atoms, the order parameter contains half integers, 
which is the spectral feature of hydrogen-like ions. Hydrogen-like spectral frequency can 
be uniformly expressed as  

�̅�𝑣𝑎𝑎′ 𝑎𝑎 =
𝐻𝐻(𝑎𝑎)

2ℎ
�

1
𝑎𝑎2 −

1
𝑎𝑎′2

� , �𝑎𝑎 =
1
2

,
2
2

,
3
2

,⋯ ;   𝑎𝑎′ = 𝑎𝑎 +
1
2

,𝑎𝑎 +
2
2

, 𝑎𝑎 +
3
2

,⋯�    (23)  
 

 Conclusion 

The elastic particle theory shows that particles have three independent motion 

modes of translation, rotation, and vibration. The three-mode energies {𝐻𝐻, 𝐿𝐿,𝐾𝐾} form a 

Cartesian energy space. The energy quanta {𝐾𝐾𝑠𝑠 = 𝑘𝑘𝑘𝑘,  𝐿𝐿𝑠𝑠 = 𝑙𝑙𝑧𝑧,  𝐻𝐻𝑠𝑠 = ℎ𝑣𝑣} are the 

statistical averages  of {𝐻𝐻, 𝐿𝐿,𝐾𝐾}. There are three equilibrium surfaces in the energy 
space, respectively representing thermal equilibrium, magnetic equilibrium, and 

radiative equilibrium. Quantum states �𝐻𝐻�,𝐿𝐿� ,𝐾𝐾�� are those on the equilibrium surface in 
which the energy takes integer.  

The application of particle motion theory to atomic system shows that atoms are 
elastic particles and the optical radiation originates from the elastic vibration of atoms 
or molecules. The transition between quantum states produces a line spectrum. The 
main characteristics of the optical spectrum, including spectral frequency, limit 
frequency, spectral line-width, and transition time, are predicted theoretically, which 
are consistent with the existing observations. The results demonstrate that the quantum 
state is the equilibrium property of particle statistics, the quantum transition is the 
conversion process of particle motion modes, and the quantum randomness originates 
from the classical statistics of elastic particles. 
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