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I.  INTRODUCTION

We begin with the Bernoulli’s distribution. If X is a random variable associated
with a random experiment on a set E with two possible outcomes, then X has a
Bernoulli distribution B(p) given by

b(x;p) = p*(1 - p) ¥ ;x = 0,1 (1.1)

where the parameter p is the probability of success.
If we extend the range (domain) of the independent variable x to {0,1,2,...,n} we
have the Binomial distribution B(n,p) given by

b(;n,p) =(p*A-p)"*;x =012, ..,n (1.2)

where the parameter n is the number of independent trials.

Suppose we impose a further condition on the domain of X, that is selection
(sampling) is made without replacement, then the number of trials (is no longer
independent) gives rise to Hypergeometric distribution H(k,n, N) given by

(DG=)
h(x; k,n,N) =% L<x<U (1.3)
where k,n, N are fixed constants, L = max{0,k — N + n} and U = min{n, k}.

Now, suppose we decide to fix the number of successes we require in (1.2) and
then observe the random number of trials needed to obtain this number of successes,
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then the random number X of trials required to obtain the first success has a geometric
distribution given by

gp) =pg*;x =123, .. (1.4a)

and if the random variable X is the number of failures before the occurrence of the first
success, then we have

g(x;p) =pq*;x=0,1,2,3, .. (1.4b)

Observe that the geometric distributions in (1.4a) and (1.4b) are distributions of
the number of independent Bernoulli trials required to obtain a single success. Hence, a

further generalisation is to seek for the distribution of the random variable X on which
the rth success (r > 1) occurs, such a distribution is called the negative binomial
distribution NB(r,p) and is given by

nb(x;r,p) = (’r‘j)prqx_r;x =rr+1,r+2,... (1.5a)

and if the random variable X is the number of failures before the occurrence of the first
rth success, then we have

nb(x;r,p) = (HT 1)p q%;x=0,1,2,. (1.5b)

One of the most important generalizations of (1.2) above is the discrete
multivariate distribution function that belong to the (one dimensional) multinomial

distribution M(n p; ..., i) is given by

n

m(xl,xz, ...,Xk) = (Xllle---:xk) Pfl p;z p]):k H (16)

where Zle p; = 1 and n,pq,py, ..., pi are the parameters.

To mention but a few, the probability mass functions considered in (1.1) to (1.6)
are often referred as the classical or standard discrete probability mass functions.
However most of these standard pmf is inadequacy in modeling different types of
scenario. Consequent, in recent times, researchers have focused more on generalizing-
improving with the aim of making the functions to be more adequate, that is seeking for
a probability distribution functions that will accommodate and at the same time
applicable in modeling different types of scenario which the former probability
distribution functions could not handle.

In order to improve on the discrete models (1.1) to (1.6) we consider some of the
important contributors and their results in the sequel.

Philippou and Muwafi (1982) introduced the distribution of order k which gives
rise to several studies of distribution of order k as contained in the reference (which

reduce to the respective classical probability distribution for k = 1) some of these
distributions are given by

k
X1+ x93+ -+ X, X q Yi=1%i n
b(x; k, _E E < ) () x =01 [(R)] a7
(x np) X1, X2y ey Xy X p D X [(k)] ( )

j=1x1,x2,.
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Where x; + 2x; + -+ kx;, =n—kx —j, [a] is the greatest integer function less
than or equal to a

Zl 1%i
g(x) k; p) = le,xz,...,xk (xlxtffxzztw;'kxk) p (P) y X 2 k (18)

Where x; + 2x, + -+ kx;, = x — k.

Z, Xi
nb(xX; K, ) = Xxixg,xk (x1+x2+m+xk'r_1)p (p) x>k (1.9)

X1,X2,0X,T—1

Where x; + 2x, + -+ kx, = x —rk.

Are the binomial, geometric, negative binomial distribution of order k
respectively. The asymptotic properties of some of these distributions give rise to other
important distributions as studied by Aki et al (1984), Feller (1956).

In 1986, Panaretos and Evdokia improved on some of the above distributions, in
particular (1.2) and (1.3) via sampling from an urn containing a white balls and b
black balls. The following Hypergeometric distribution of order k was introduced.
Assuming that n balls are drawn one at a time;

Without replacement gives rise to;

k) (n=3k, x;
hi(x; k,n,p) = z z (x1 + x5 + -+ +xk,x> b(zi=1x1)a(n Zz=1x1) |

X1, X2, eony Xy X (a+b)™

J=1x1,x2,.

x=01,.., [(g)] (1.10a)

With replacement gives rise to

_yk . Z X
x1+x2+---+xk,x a n lelxl b i=1"i
2( ) X1, X2, iy Xy X (a+b) a+b

J=1x1,%2,.

x=01,.., [(E)] (1.10b)

With replacement and addition of one ball of the same colour that was selected,
before the next draw gives rise to

hz(x; k,n,p) = Z Z (xl T Xy E +xer> b(ZiF:lxi)a("—Zf:lxi) ;

Xq, Xy e, Xjr X (a+ b))

J=1x1,%2,.

x=01,.., [(E)] (1.10¢)

With replacement and addition of ¢ balls of the same color that was selected,
before the next draw gives rise to
b a
( )(Zf_lxi) (C)(n—Z{( L )

B X1+ xy + 4 x5, 00\ N (2 —1%i)
haCx ke, m,p) = Z Z ( X1, X, ey Xj, X ) (a + b) ’
(n)

J=1x1,%2,. C
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x=01,.., [(%)] (1.10d)

Where x; + %, + 4+ x, =n—kx—j, a™ =a(a—1) - (a—m+ 1)
amy =ala+1)--(a+m-—1)

In 1986, Panaretos and Evdokia introduced the Cluster Binomial Distribution as
an improvement on the classical binomial distribution via sampling from an urn
containing i labeled balls (i = 1,2,---k) with p; denoting the probability that a ball
bearing the number i will be drawn, such that Zf-‘ﬂ p; =p. Then, q =1—p is the
probability that a ball bearing a zero will be drawn. Let X be a random variable that
count the sum of the numbers on the balls drawn. If the random variable X take the
value r for the n balls drawn, r; bear the number 1, r, bear the number 2 and so on, 1
bear the number k so that ¥¥ ,ir; = r and each of the remaining n — ¥¥_, r; balls bear
the zero. Then the pmf is given by;

k
n | | . k
b ; Ikl PR’ = z .rl n_zi=1ri
C (T n P1 pk) (T'1,T'2,---,T'k,n—25-(:1 ri><_ ) pl q (111)
=

1,72,k

In an attempt to improve on the (one dimensional) multinomial distribution
M(n, p1,--p,) given in (1.6), Okoli et al introduce the following parameter; let a=(ay, ay,
.,@y) be a multi-index (or multi-integer), E={xq,x,, ..., xy} a finite set and M(a, E) =
{x1t, %52, .., xy"} a finite multi-set induced by a = (a4, @, ..., ay). However, he observed
that for arbitrary but fixed d € N, the multinomial distributions in (1.6) do not give

adequate description to many important practical problems defined on the more general
set given by

M(a, ED)) = {x i, € [k, Lk, €N, € [d] } (1.12)

where E@ = {x; : i, € [k,]k, € N,v € [d]}, [k, ] = {1,2,3, ..., k. }.

For such case, more adequate and elaborate discrete distribution models are
needed which they proved in the theorem that follows

Theorem 1.0

Let Mq)(p; a@; X@) denote a pairwise collections of the multiplicity Qi i, iy

for each x; ;, i, €X@D on a finite multiset M, then the
times (i, € [k.], k, €N,

and probability p; i, i
probability that x; ;,
r € [d]) in n-trials is

d

i €X@® s selected exactly Ay i, iy

d ke ir—1
B (70 e Y 78S ai,
md(ail,aiz,...,aid) = . |a. . pid
r=1 ir:1 Lr—llr id
k
Where|a£r—1| - Z/rT:llair—U'r =0 Vreld], my (aipaizl ""aid) = P(Xil»iz:---'id = ail»izv--'id)

And the associated integer |a(d)| is given by
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ky

@ @] = Z Z a,

r=1 i,=1

U

. . G}
the associated monomial x* ~ by

=

r

d
a(d) | | x“ d

r=1 i,

Il
Ju

the associated factorial a@! by

o[ Jou b

r=1 i,=1

Where |ald| |a£-d_11|! |a£d_12|! |a£d_13|! |“g'd—1kd|! and aD = a (for short)

This discrete probability functions has been applied to certain parameter
estimation problems in time series and contingency table analysis of arbitrary d-
dimensional tables. However, if d =1, we obtain multinomial distribution
M(n,pq, ..., pr) given in (1.6).

In 1756 (republished in 1967), Abraham De Moivre studied the probability
distribution for a fair (balanced) m-sided die tossed n number of times. Let X,(lm) be a

random variable that count the total score in n rolls of an m-sided die, the following
probability mass function was obtained

P(Xﬁm) = x) — YLD ()T, 0<x < (m—Dn (L13)

Where f; = min {n, [%]} and [%] is the greatest integer function less than or equal to %

The coefficient of % often denoted by C,,(n,x) have been studied in detail by
Dafnis et al (2007), Freund (1956), who discussed their role in occupancy theory. In
particular, C,(n,x) can be interpreted as ”the number of ways of putting n
indistinguishable objects into x numbered boxes with each box containing at most
m — 1 objects. So that if m =2 we have the standard binomial coefficient given by

C,(n,x) = (Z), 0 < x < n. A recurrence formula for computing C,, (n, x) is given by
Cn(n,x) = z Cn(n—1,x—J) (1.14)
=0

One can easily see that for m = 2, this recursion reduces to the well-known
classical binomial identity.

The number C,,(n,x) has been used extensively in probability studies Ashok, et
al (2011); Balasubramanian, et al (1995); De Moivre (1756); Feller (1968); Makri and
Philippou (2005);  Makri et al (2007a; 2007b) and related areas like reliability and
inferential statistics, Ailing (1993); Bollinger and Burchard (1990); Gabai (1970). For
more properties on C,, (n,x); generalized Pascal triangles or Pascal triangles of order m,
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we refer to Bondarenko (1993); Dafnis, et al (2007); Freund (1956); Gabai (1970);
Ollerton and Shannon (1998, 2004, 2005) and the references therein.

In 1995, Balasubramanian et al introduced the extended binomial distribution of
order m with index n and parameter p as an improved version of the standard binomial
distribution and the distribution studied by Abraham De Moivre in 1756 via
considering n roll of an m sided die which is not necessarily fair (balanced) with face
marked i (i = 0,1,2,---,m — 1) and a turn-up side probability p; (X™! p; = 1) satisfying
the condition g™ —p™ = q —p. It was proved that if X,(lm) is a random variable that
count the total score in n rolls of an m-sided die then the probability mass function
(pmf) is given by

B1

n/m-—1+x—ms

P(xW =x;p) = Z(—l)s (S)( L )qu(m—Dn—x ;0 <x < (m-1Dn (1.15)
s=0

Where B; = min {n, [%]} and [%] is the greatest integer function less than or equal to %
1
Observe that if the die is a fair one, then it implies that p = (%)m_1 = g so that
on substitution into equation (1.15) yield the result of Abraham De Moivrein in
equation (1.13).
Ashok et al (2011) studied and derived a recursion formula for the probability

distribution of the sum of rolling a fair dice (6-sided die) n times (which is equivalently
to rolling n several dice once) which is given by;

fiam) =2 (foatn—1) + fi(m=2) + -+ 1 (m—6))3j = 1,2, m;m € [}, 6] (1.16)

In 2017, Okoli studied a (v —u + 1)-sided die with turn-up side probability
denoted by T(x,y) =p*q”: x,y=123,...m; x+y=k;0<p,q <1. The following
theorem was proved.

Theorem 1.1

Let X,(lm'm) be a random variable that count the total score in n rolls of an m-
sided die with range x =1,2,..,m and turn-up side probabilities T(x,m —x) (x €
{1,2,3,..., m}) satisfying the condition p(q™ —p™) = (q — p) then the probability mass
function (pmf) is given by

B
(m,m) _ . — _1)\s n x—ms—l) X ,mn—x .
P(Xn —X'P)—Z( D (s)< L1 P ;m<x<mn
s=0

Where y = min {n, [xm;n]}

It is important to note that a careful examination of these papers and related
works in the literature that dealt with improvement of probability distribution, shows
that the improvements, extensions, generalisations so achieved by these authors are
mostly, at least in one of the following directions:

(i) Addition of one or more parameters to the original probability function,
(ii) Extension of the domain or space of the parameter(s),
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(iii) Extension of the domain or dimension of the independent variable of the original

probability function.

Motivated by the results of the research in this direction via the work of
Abraham De Moivre (1756), Balasubramanian et al(1995), Ashok et al (2011) and Okoli
(2017), we seek to derived a probability distribution of an arbitrary sides of a geometric
figure indexed in a finite set of Arithmetic Sequence. This will take care of some of the
computational inadequacies due to the works of Abraham De Moivre (1756),

Notes

Sequence, which we shall illustrate in the sequel.

I

METHODOLOGY

Balasubramanian et al (1995), Ashok et al (2011) and Okoli (2017), in modeling the
distribution of sides of geometric figure indexed in an arbitrary finite set of Arithmetic

We shall use the telling example that follows to compare the distribution studied
by Balasubramanian et al (1995) and Okoli (2017) in modeling the distribution of a fair

die.

For illustrative purpose, Let X2(6'6) be the sum of scores obtained in the toss of a

fair die twice, we wish to construct a probability table for the distribution of X2(6’6).
First, we consider the sample spaces given below from which we then give the

probability table for the distribution of X 2(6’6).

Table I: (Sample space of twice tossed die)

Table II: (Sample space of sum of scores)

1111211314115 |1,6 213 (4|5 1|6 |7
2112212312425 1|26 314 |56 |7 |8
3113233343536 4 |5 |6 |7 (8 |9
41142 14344145 4,6 516 |7 (8 |9 |10
511525354 |55 15,6 6 |7 |8 19 |10]11
6,1/6,263|6,4|65|6,6 718 |9 |10|11]12
Table 11I: (Probability distribution table)
X 2 3 4 5 6 7 8 9 10 | 11| 12
PO L[ 2|3 [ 4[5 [6(s (321
36 | 36 | 36 | 36 | 36 | 36 |36 | 36 |36 |36 |36

Now let fz(x) and fy(x) denotes the probability mass functions due to
Balasubramanian et al (1995) and Okoli (2017); that is

B
faGem) = — > - ()
s=0

n—14+x—ms

x—ms—1

y
folx;p) = %z(—l)s (Z) ( n—
s=0

n—1

1

);nSxSmn,)/:min{n,[

) ;0 <x < (m—Dnp =min{n [%]}

el

We begin with Balasubramanian pmf in Aki et al, (1984) denoted by fz(x;p).

Observe that
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(DIn fg(x;p), 0 <x <(m—1)n implies that 0 <x <10 (since n=2 and m = 6).
However this does not agree with the range of x given in Table II for a fair die
tossed twice. Infact, it implies that using fz(x;p), fp(11;p) and fz(12;p) cannot be
evaluated since the range of specification of x ( 0 <x <10) does not includes
{11,12}.

(2) It is important to note also that, even at those values of x (0 < x < 10) specified in

f5(x; p), the pmf fail to give accurate probability value(s) for such value(s) of x. To N tes
see this, in particular, observe from the probability distribution table (Table III). OLeEs

4

(6,6) _ —

P(x§ _9)_36

Using
B
(x; )_iz(_l)s(n)<n—1+x—ms>'0<x<(m_1)n
Jp(xip Comn . s n—1 T

S=

B
~ o=y ()(T%)
s=0

Al Q)T e QT -

= f3(9p) # P(x{*” = 9)

Now with the pmf defined by Okoli (2017), fo(x; p). Observe that

(1). In fo(x;p), n < x < mn implies that 2 < x < 12 (since n = 2 and m = 6). This does
agree with the range of x given in Table II for a fair die tossed twice. Which is not
the case for fp(x;p).

(2). fo(x;p), give accurate probability value(s) for each value(s) of x. To see this,
observe from the probability distribution table (Table III).

4

66 _ o) _ 4

P(x§ _9)_36

Using
1% 1
N _Sn<x—ms—)_<<
fo(x;p) ng}( 1) (s) n1 ;m<x <mn
s=

B
= nom =2y ()35
s=0

G () O =gr-zxa=gg
= fo(9p) = P(X;*7 = 9)
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Hence we conclude that the pmf we defined f,(9;p) is more practicable to work
with than the one defined by Balasubramanian et al (1995) in modeling the distribution
of sums of sides of a standard die. Since the standard die is indexed in the finite
arithmetic sequence {1,2,3,:--,m}. It is important to note that if we choose the finite
arithmetic sequence {0,1,2,3,::-,m — 1} for the indexing, then f,(x;p) will no longer be
adequate, rather fz(x;p) will be suitable in modeling the distribution of sums of sides
data. Thus, we have seen that the distribution studied by Balasubramanian et al (1995)
and Okoli (2017) is rather restrictive and particularized, in the sense that ordinarily it
cannot be use in modeling the distribution of sides of geometric figure indexed in an
arbitrary finite set of Arithmetic Sequence. As a matter of fact, this constitute a major
weakness which we shall address in the sequel.

Let d,u,v € N, we now proceed to define a probability distribution that will be
suitable in modeling the distribution of sides of geometric figure indexed in an arbitrary
finite set of Arithmetic Sequence given by {u,u+d,u+ 2d,...,v} where d, u and v
denote the common difference, first and last term, this implies that our geometric figure

is (% + 1)—sided. Thus, a typical sample space and sample space of sums of scores of
such geometric figure tossed twice is given as

Table IV: (Sample space of twice tossed arbitrary geometric figure indexed in
arithmetic sequence)

u,u u,(u+d u, (u+ 2d) u,v
(u+d),u (u+d),(u+d) (u+d),(u+2d) (u+d),v
(u+2d),u | (u+2d),(u+d) | (u+2d),(u+2d (u+2d),v

v,u v, (u.+ d) v, (u + 2d) v,V

Table V:(Sample space of sums of scores for the geometric figure indexed in arithmetic

sequence)
2u 2u+d 2u + 2d u+ v
2u+d 2u + 2d 2u + 3d d+u+ v
2u + 2d 2u + 3d 2u + 4d 2d+u+ v
v+u d+u+v| 2d+u+ v 2v

Now to introduce a little more perturbation (unfairness) on this geometric figure
we let k € N (where k is not necessarily equal to v) and then defined the turn-up side
probabilities as

T(x,y)=p*q¢’: x,y=uu+d,u+2d,..,v; x+y=k;0<p,q<1. (2.1)
Where u <k <v

Clearly the discrete probability distribution function associated with die models
mentioned above is not adequate for modelling the distribution of sums of the turn-up
side probability for the geometric figure described in equation (2.1) and table V. Hence
there is need to study the model in equation (2.1) going by the very fact that all the
other models mentioned above can be easily be deduced from the model.
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v

Now, observe that the generating function G(t) for the (%u + 1)—sided figure is
given by

_ v—u+d _ v—u+dtv—u+d
G(t) = gt prev U pr ) (2.2)
With the normalization condition
pu(qv—u+d _ pv—u+d) — qv—k (qd _ pd) (2_3)
If for a fix q, we define the auxiliary function g(p) = 0 by
g(p) = p*(g" ™+ —pv~u+) — qv7* (¢ — pD) (24)

It then follows that the first and second derivatives of the function g(.) are given by

g'(p) — uqv—u+dpu—1 _ (U + d)pv+d—1 + dqv—k pd—l (25)

g @)=uu—-1Dg" " p* 2 —(w+d-1Dw+dp"*? % +d(d-1g" *p?? (26)

Equation (2.5) is nonlinear function of p whose root can be determined by
applying any of the iterative approximation formulas for finding the roots (zeros) of

nonlinear equations. Since p € (0,1) by definition, observe that g (p) <0V p € (0,1).
Hence this implies that the function g(.) is strictly increasing for 0 < p < gy, ,4 and
strictly decreasing for qy,,q < p < 1. Where gy, 1,4 is the zero of the function g (),
which in turn correspond to the turning (maximum) point of the function g(.).
Consequently it follows that g(.) is monotone (sectionally) and unimodal with the mode

occurring at the turning point p = qu,q4 [see Balasubramanian, et al (1995);
Dharmadhikari and Joag-dev (1988); Hogg and Craig (1978); Okoli et al (2016); Okoli
(2017); Okoli (2017)].

However, if in particular we take k = v, then there exists q,,4 for a balanced
figure such that q = q, ,4 = p. Then the normalization condition also reduces to

pu(qv—u+d _ pv—u+d) — (qd _ pd) (27)

Equation (2.1) to equation(2.7) implies the results of the authors mentioned in

(a), (b), and (c) above.

We state the following theorems which unify the results of the authors:
Balasubramanian, et al (1995); Okoli (2017); Okoli (2017) in the next section of this
work as follows.

[I[. MaAIN RESULTS

In this section, we now proceed to state some important theorem associated with
turn-up side probability for the geometric figure described in equation (2.1) (table V)
and their consequences.
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Theorem 3.1

v—u+d k—u+d)

Let X,E d 7o
(%+ d)-sided geometric figure with turn-up side probabilities T(x,k — x) satisfying

be a random variable that count the total score in n rolls of a

v—u+d __

the condition p*(q pvT4td) = gk (q% —p?), with range x =u,u+d,u+

2d, ..., v. Then the probability generating function (pgf) is given by

v—u+d k—-u+d

G, (t)=E <tX,€ @ d )> — [qk—v phtt (qvutd—pyvrutdgvutd) ]n (2.8)

qd—pdtd

Proof
(17—1;+d' k—l;+d)

Now, observe that the probability generating function (pgf) of X,
(v—u+d k—u+d v—u+d k—u+d)

constitute a convolution of X] a ' d ) ( =1,2,3,..n). Where each X]( d ' d g

an independent identically distributed (iid) random variables corresponding to the

v—

scores of (Tu + 1)—Sided die and turn-up side probabilities (x,k — x) . Thus

(v—u+d k—u+d)
d d
G,(t) =E (txf )

v—u —u n v—u+d k-u+d _ _ _ n
E tXE e = HE tXi( ) _ [qt pugn (g — prurdgrutd)
1 qd —'pdtd

j:
This completes the proof.
Theorem 3.2

v—u+d k—u+d)

Let X,E a7
(%+ 1)-sided geometric figure with turn-up side probabilities T(x, k —x) satisfying

be a random variable that count the total score in n rolls of a

the condition p*(q" %4 —p? ¥+d) = gqvk (q% —p?), with range x=wuu+d,u+
2d, ..., v. Then the probability mass function (pmf) is given by

() = Y () CTE ) () e
s=0

Where 3 = min {n, [dx_un]},k <.

v—u+d
Proof
We expand (2.2) in n independent rolls of (% + 1)-sides as follows

v—u+d tv—u+d>-|"

[ (]_ - n
pt u T—u+d 1— Tv—u+d pt
Gn(t)zlqk (;) qpt ;] J = gln Tun (—1—Td ; T:;
1-(7)
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— qkn Tun (1 _ Tv—u+d)n(1 _ Td)—n

— qkn Tun (i(_l)s (:) T(v—u+d)s> i(_l)y (_vn) Tdv
s=0

v=0
N 1+

— 4kn Tun —1)\s n (v—u+d)s (Tl— U) dv

=gk T (Z( 1) (S)T LT
s=0

n/m-—1+v

— _1\S Akn (v—u+d)s+dv+un

S S ()

[ee]

v=0

o n
v=0s=

= i i(_l)sqkn( ) n-1+ g)_(v_lcll-l-d)s_(lti_n) T
G- (D)
° & (X (voutdy _ (un

= Z Z(_l)s(:) n 1+(d) n_1d )S (d) p* qkn—x ¢¥

x=un s=0

Where (v —u +d)s +dv + un = x. Thus, it follows from the last equation above
that the probability mass function pmf is given by.

(v—u+d k—u+d)
P<Xn d ' d =x;p>=

B3 X v—u+d un
Z(_l)s(n) "_1+(E)_( d ) _(d) p*qkm % ;un < x < kn
s n—1
s=0
1
If we are dealing with a fair (balanced) die (i.e. k=v, q= (U_erd)V) then the

corollary that follows is a consequence of theorem 2.2 above.

Corollary 3.3

Let X,E a 7 d be a random variable that count the total score in n rolls of a

v—u+d v—u+d

(%+ 1)-sided geometric figure with turn-up side probabilities T(x,v —x) satisfying

the condition p*(q" %+ — p"=*+4) = (q¢ — p%), with range x =u,u+d,u+2d,...,v.
Then the probability mass function (pmf) is given by

(v—u+d v—u+d)
P(Xn d ' d =x;p>=

—u+d
Z(—l)s (n) notr (g) - (n%)s B (lzi_n) p g™ *;un < x <wvn
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Corollary 3.4

v—u+d v-u +d)

Let X,S e ' od
(%+ 1)-sided geometric figure with turn-up side probabilities T(x,v — x) satisfying
the condition p*(q" %4 —pv7**4) = (q% — p?), with range x =u,u+d,u+2d,...,v.
Then the probability mass function (pmf) is given by
(m m)
P (X d ' d =y p) =

n

be a random variable that count the total score in n rolls of a

i\ g (B (vmutdy _(un
(v—u+d) SZO(_DS(:) i (d) (n—ld )S (d) ;un<x <vn

Theorem 3.5

v—u+d k—u+d)

Let X,(l e 7o
(%+ 1)-sided geometric figure with turn-up side probabilities T (x,k —x) satisfying

be a random variable that count the total score in n rolls of a

the condition p*(q" "¢ —p?=¥*d) = q"*(q? —p%), with range x=wuu+d,u+
2d, ...,v. Then the mean and variance are determined by

v—u+d k—-u+d _ _ (k=v)
! ) d + d)p?
® Gn(n:E(x,E T >>:un+npd[ @y dp' ]

d—@-—u+dpq*™
qd _ pd

() Gn” D =un(un—1) + Zunzpd [
2
— (v —u+ d)pv+dq(k—v)
g9 — p1

d
+nn—-1) [dq

—w-—u+d)w-—u+d-1Dp"** +d(d - 1)piq® P
7 —pd

+nqk=»

2d%2q24q—0) —2d(w —u + d)pv+2d]
(q —p)?
Proof.
Since G,(t) = q(k—V)n pln gun (q
Gy (t) of G, (1) is
(i)

v—u+d _,v-—u+d tv—u +d

[4
qd—pdtd

n
) , it follows that the derivative

—bp
g9 — pitd

, qv—u+d v—u+d pv—u+d n
Gn (t) — unq(k—v)n pun tun—l < )

qv—u+d _ pv—u+dtv—u+d>n_1 [_(v —u+ d)pv—u+dtv—u+d—1

+ nq(k—v)n pun tun (
qd _ pdtd qd _ pdtd

dpd td—l (qv—u+d _ pv—u+d tv—u+d)

’ (q% —p?t?)?
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Thus,

q~ —p
v—u+d _ pv—u+d >n—1

, qv—u+d_pv—u+d n
6 - (£

-~ —u+d)p vt
77 —pd

q

+ nq(k—v)n pun <
qd _ pd

dpd (qv—u+d _ pv—u+d)

(q% —p®)?
The result follows by applying the normalization condition.
(i)
. ~ ~ qv—u+d _pv—u+dtv—u+d n
G, (t) =un(un— 1)qk—n pungun-2 ( @ — i )

—u+d
+2un2q(k—v)n pUn pun—1 <qv T -p

v—u+dtv—u+d>n_1 —(U —u+ d)pv—u+d pr—ut+d—1
7 — pitd

qd _ pd td
dpd td—l (qv—u+d _ pv—u+d tv—u+d)
(q? —p?t?)?

+
+n(n

_ 1)q(k—v)n pun tun <q

v—u+d _ pv—u+d tv—u+d n-—2 —(U —u+ d)pv—u+d tv—u+d—1
g% — pitd g% — pitd
dpd td_l (qv—u+d _ pv—u+dtv—u+d) 2

(g% —pt?)?

q -p —(w—u+d)@ —ut+d —1)pvutdvutd=2

v—u+d v—u+d pv—u+d {1
(k—=v)n ,,un yun t
+ nq pt

q? — pitd g% — pitd
d(d — 1)pdtd_2 (qv—u+d _ pv—u-i-dtv—u—i-d) _ Zd(v —u+ d)pv—u+2dtv—u+2d—2
+
(q? —p?t?)?
N Z(dpdtd—l)Z(qv—u+d _ pv—u+d tv—u+d)
(qd — pdtd)3

Thus,
. qv—u+d _ pv—u+d n
G, (1) = un(un — 1)qk-—n pun ( pr— )

qv—u+d _ pv—u+d>n_1 l_(v —u+ d)pv—u+d dpd (qv—u+d _ pv—u+d)

+2un2 (k—v)n un( +
1 P q¢ —p* q¢ —p? (q¢ — p?)?
-2
~ qv—u+d _ pv—u+d n —(U —u+ d)pv—u+d
+7l(7l _ 1) (k=v)n ,un <
q p 77 — p 74 — pd

dpd(qv—u+d _ pv—u+d) 2
(g —p%)?

© 2019 Global Journals

Notes



Notes

+nq(k—v)n pun <

qv—u+d _ pv—u+d n-1 —(U —u+ d)(v —u+d-— 1)pv—u+d
qd _ pd qd _ pd

N d(d _ 1)pd(qv—u+d _ pv—u+d) _ Zd(v —u+ d)pv—u+2d
(q* — p?)?

N z(dpd)Z(qv—u+d _ pv—u+d)
(q* —p? )3

The result follows by applying the normalization condition and the variance can
be computed using the standard definition Var(Xr(lm’k)) = Gn” D+ Gn’(l) — (Gn’(l))2
this completes the proof.

Corollary 3.6

v—u+d v-u+d

Let X,(l d

i)

be a random variable that count the total score in n rolls of an

(%+ 1)-sided geometric figure with turn-up side probabilities T(x,v — x) satisfying

the condition p*(q" %+ —pv=¥*4) = (q¢ — p?), with range x = w,u +d,u + 24, ..., v.
Then the mean and variance are determined by

v—u+d v—u+d _ _ v
® Gn'(1>=5<x,§ e >>=un+npd[d (v —u+dp

@) G, (1)

+n(n—1)

+n

qd_pd

d—w—-—u+d)p’
=un(un—1)+2un2pd[ ( 3 3 )P ]
q~ —p

dq® — (v —u+d)p*+? ?
7% — p°

—w-u+d)(w—-—u+d-Dp"" +d(d - 1)p®

2(dq?)”
, 2(da")

qd_pd

Corollary 3.7

—2d(v—u+ d)p"”d]
(¢ —p)?

Let X,(lv_uﬂ'v_uﬂ) be a random variable that count the total score in n rolls of a

(v —u + 1)-sided geometric figure with turn-up side probabilities T (x,v — x) satisfying

the condition p“(q

voutl _ pvmutly = (g —p), with range x=wu+1l,u+2,u+

3,...,v. Then the mean and variance are determined by

1-(v—u+1)p*
(q—p)
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— _ v+1
() G, (1) = un(un— 1) + 2un? [ (v—u+ Dp"" l

(@—p) q—p

—(w—u+ Dp"H)’
P, =( )p l

+n(n_1)l(q—p) q-p

[ v—u+ 1)(17 - u)p"+1 2p2(1 —(v—u+ 1)p”)l
+
(q — P)Z

Theorem 3.8

v—u+d)

Let S]( d
(—U_I;er)—sided geometric figure with turn-up side probabilities T'(x,v — x) satisfying the

be a random variable that count the total score in j rolled of a

condition p*(qv*t¢ —pv7¥+d) = (g% —p?), with range x= wu+du+2d,.., v
Then the recursion formula for the probability mass function (pmf) is given by

v—u+d
d

(v—u+d)
P<{S} d =r7; d}) = z ﬁ_l(r—u— x—Dd)p*q" ™ jusr<jv,j=12,,n
x=1

Proof.
Now, let x; € {u,u + d,u + 2d,---,v} be the number that turns up when the jth

die is rolled for each (v_ +d)-sided die for j=1,2,---,n. It then follows that the
probability distribution for each x; is given by

fld)=p*q"*;x=uu+d,u+2d,-,v

It follows that P({x; = x}) = fi(x;d) = f(x;d) for each (V—“+d
(v—u+d

d )=x1+x2+-"+xj to be the

)—sided geometric

figure, so that if we define the random variable S]
v—utd (v—u+d)
sum of the j rolled of each ( )—sided die such that P <{S] ¢ = X}> = fi(x;d)

d
and Yy, fo(x;d) = 1.

v—u+d

If r € [ju, jv], then for any event {S]( ) = r} we have that

(5659 1) =U (5679 < g =]

Which implies that
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v

_Vp ({sj(: C x}) =N ({sj(: . x}) P((x = x})

X=u X=U

v—u+d
v v d
=D faG=0f@ = faG-0pa = ) fa0-u-(x-Dd)pig"
x=u x=u x=1

1

If we are dealing with a fair (balanced) die |i.e q = (U_Z+ d); = p> then the

corollary that follows is a consequence of theorem 3.1 above.

Corollary 3.9

v—u +d)

Let S]( ¢ 7 be a random variable that count the total score in j rolled of a

(U_Z+d)—sided fair die and turn-up side probabilities T(x,v — x) satisfying the condition

pt(qv vt — pvutd) = (g4 — p?), with range x=u,u+d,u+2d,..,v. Then the
recursion formula for the probability mass function (pmf) is given by

v—u+d

) ) o ()N .
P({% ©=md —(m)zﬁ—l<“”‘<x‘1>d)'

ju<r<jv, j=12,-,n.

Also, to obtain recurrence formula result that conform to the probability
distribution due to Balasubramanian et al (1994) and Okoli (2017) for the case of a fair
die, we simply put d =1, u=0,v=m—1and d =1, u =1, v =m to obtain several
corollaries which are results of some authors in the literature (see Ashok et al (2011);
Balasubramanian, (1995); Okoli (2017); Okoli (2017)).

Theorem 3.10
k—u +d)

Let S.( d
j

(U_Z+d)—sided die and turn-up side probabilities T(x,k —x) satisfying the condition

p* (g 4t — pvTutd) = vk (¢4 — p?), with range x =u,u+d,u + 2d, ...,v. Then the
moment generating function (mgf) is given by

0—Zﬂ5 v—u+d _ v—utd ot(v—u+d) 1"
s\ _ q p €
M(t) = E<9t J = [qk " pte™ . q¢ — pletd )

be a random variable that count the total score in j rolled of a

Proof

Now, observe that the moment generating function (mgf) of 5}

(k _Z +d)

constitute

v—u+d k—-u+d v—u+d k—u+d)

a convolution of Xj( a ' od )(j=1,2,3,...n). Where each Xj( e’ od

independent identically distributed (iid) random variables corresponding to the scores of
(*=7%)-sided die and turn-up side probabilities (x,k — x) . Thus

is an
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(k—z+d) N (v—z+d, k—z+d)
M(t) =E| e ) = (ezf=1 i )

v—u+d k—u+d v—u+d _ v—u+det(v—u+d)) n

- rE tX-( o) k—v u,tu (q p
= ] =
| | 9 " pe q¢ — pietd

This completes the proof.
Observe that we can easily deduce the result of this moment generating function
(mgf) for the probability distribution function from theorem 3.1. to give

v—u+d k—u+d n (v—u+d k—u+d)
=7 e

j=1

v—u+d __

p
qé — pdetd

—u+td ,t(v—u+d))1"
= qu—v puetu (q o € o ))l

[V. DiscussioN AND CONCLUSION

Observe that several other corollaries can be deduce from the theorems above
which reduces to the results obtained in Ashok et al (2011); Balasubramanian, (1995);
Okoli (2017); Okoli (2017) as special cases. Succinctly, it follows that; if u =0,d =1
and k =v =m —1, we obtain the results of Balasubramanian et al (1995), if u =0,
d=1 and k <v=m—1, we obtain the results of Okoli (2017), if u=1,d =1 and
k < v =m, we obtain the results of Okoli (2017) and f u=1,d =1 and k =v = 6, we
obtain the results of Ashok et al (2011). Hence, the results of this research work unifies
and improves the works of several researchers in this direction, haven shown that the
existing results in the literature can be deduce easily from the results in this paper.
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