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Abstract-

 

In this paper we studied the probability distribution associated with sums of sides of any geometric figure 
indexed in a finite set of Arithmetic Sequence, motivated by the work of researchers in this direction, we derived a 
probability distribution of an arbitrary sides of geometric figure indexed in a finite set of Arithmetic Sequence with its 
equivalent recursion form

 

and then give some of its Properties. The results obtained in this paper trivialized and 
compliment known results in the literatures.
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I.

 

Introduction

 

We begin with the Bernoulli's distribution. If 𝑋𝑋

 

is a random variable associated 
with a random experiment on a set 𝐸𝐸

 

with two possible outcomes, then 𝑋𝑋

 

has a 

Bernoulli distribution 𝐵𝐵(𝑝𝑝)

 

given by

 

                                        𝑏𝑏(𝑥𝑥;𝑝𝑝) = 𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)1−𝑥𝑥  ; 𝑥𝑥 = 0,1                                           (1.1)

 

where the parameter 𝑝𝑝

 

is the probability of success.

 

If we extend the range (domain) of the independent variable 𝑥𝑥 to {0,1,2, . . . ,𝑛𝑛}

 

we 
have the Binomial distribution 𝐵𝐵(𝑛𝑛, 𝑝𝑝)

 

given by 

 

                               𝑏𝑏(𝑥𝑥;𝑛𝑛,𝑝𝑝) = �𝑛𝑛𝑥𝑥�𝑝𝑝
𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥  ; 𝑥𝑥 = 0,1,2, … ,𝑛𝑛                                (1.2)

 

where the parameter 𝑛𝑛

 

is the number of independent trials.

 

Suppose we impose a further condition on the domain of 𝑋𝑋, that is selection 
(sampling) is made without replacement, then the number of

 

trials (is no longer 
independent) gives rise to Hypergeometric distribution  𝐻𝐻(𝑘𝑘,𝑛𝑛,𝑁𝑁)

 

given by

 

                                  ℎ(𝑥𝑥; 𝑘𝑘,𝑛𝑛,𝑁𝑁) =
�𝑘𝑘𝑥𝑥��

𝑁𝑁−𝑘𝑘
𝑛𝑛−𝑥𝑥�

�𝑁𝑁𝑛𝑛 �
     𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑈𝑈                                             (1.3)

 

where 𝑘𝑘,𝑛𝑛,𝑁𝑁

 

are fixed constants,

 

𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚{0,𝑘𝑘 − 𝑁𝑁 + 𝑛𝑛}

 

and 𝑈𝑈 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑛𝑛,𝑘𝑘}. 
Now, suppose we decide to fix the number of successes we require in (1.2)

 

and 
then observe the random number of trials needed to obtain this number of successes, 
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then the random number 𝑋𝑋  of trials required to obtain the first success has a geometric 
distribution given by  

                                        𝑔𝑔(𝑥𝑥;𝑝𝑝) = 𝑝𝑝𝑝𝑝𝑥𝑥−1 ; 𝑥𝑥 = 1, 2, 3, …                                          (1.4𝑎𝑎)  

and if the random variable 𝑋𝑋  
is the number of failures before the occurrence of the first 

success, then we have
 

                                        𝑔𝑔(𝑥𝑥;𝑝𝑝) = 𝑝𝑝𝑝𝑝𝑥𝑥  ; 𝑥𝑥 = 0, 1, 2, 3, …                                         (1.4𝑏𝑏)
 

Observe that the geometric distributions in (1.4𝑎𝑎)
 

and (1.4𝑏𝑏)
 

are distributions of 
the number of independent Bernoulli trials required to obtain a single success. Hence, a 

further generalisation is to seek for the distribution of the random variable 𝑋𝑋
 

on which 

the 𝑟𝑟𝑟𝑟ℎ
 

success (𝑟𝑟 > 1)
 

occurs, such a distribution is called the negative binomial 

distribution  𝑁𝑁𝑁𝑁(𝑟𝑟,𝑝𝑝)
 

and is given by 
 

                                     𝑛𝑛𝑛𝑛(𝑥𝑥; 𝑟𝑟,𝑝𝑝) =  �𝑥𝑥−1
𝑟𝑟−1�𝑝𝑝

𝑟𝑟𝑞𝑞𝑥𝑥−𝑟𝑟 ;𝑥𝑥 = 𝑟𝑟, 𝑟𝑟 + 1, 𝑟𝑟 + 2, ….            (1.5𝑎𝑎)
 

and if the random variable 𝑋𝑋
 

is the number of failures before the occurrence of the first 

𝑟𝑟th
 

success, then we have
 

                                  𝑛𝑛𝑛𝑛(𝑥𝑥; 𝑟𝑟,𝑝𝑝) =  �𝑥𝑥+𝑟𝑟−1
𝑟𝑟−1 �𝑝𝑝𝑟𝑟𝑞𝑞𝑥𝑥 ;𝑥𝑥 = 0,1,2, ….                                    (1.5𝑏𝑏)

 

One of the most important generalizations of (1.2)
 

above is the discrete 
multivariate distribution function that belong to the (one dimensional) multinomial 

distribution 𝑀𝑀(𝑛𝑛, 𝑝𝑝1, … , 𝑝𝑝𝑘𝑘)
 

is given by

 

                            𝑚𝑚(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘) =  � 𝑛𝑛
𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘

� 𝑝𝑝1
𝑥𝑥1

 
𝑝𝑝2
𝑥𝑥2 … 𝑝𝑝𝑘𝑘

𝑥𝑥𝑘𝑘 ;                                    (1.6)
 

where ∑ 𝑝𝑝𝑖𝑖𝑘𝑘
𝑖𝑖=1 = 1

 

and 𝑛𝑛,𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘

 

are the parameters.

 

To mention but a few, the probability mass functions considered in (1.1) to (1.6)

 

are often referred as the classical or standard discrete probability mass

 

functions. 
However

 

most of these standard 𝑝𝑝𝑝𝑝𝑝𝑝
 

is inadequacy in modeling different types of 
scenario. Consequent, in recent times, researchers have focused more on generalizing-
improving with the aim of making the functions to be more adequate, that is seeking for 
a probability distribution functions that will accommodate and at the same time 
applicable in modeling different types of scenario which the former probability 
distribution functions could not handle. 

 

In order to improve on the discrete models (1.1)
 

to (1.6) we consider some of the 
important contributors and their results in the sequel.

 

Philippou and Muwafi (1982) introduced the 𝒌𝒌

 

which gives 

rise to several studies of distribution of order 𝑘𝑘

 

as contained in the reference (which 

reduce to the respective classical probability distribution for

 

𝑘𝑘 = 1) some of these 
distributions are given by

 

𝑏𝑏(𝑥𝑥; 𝑘𝑘,𝑛𝑛,𝑝𝑝) = � � �
𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑘𝑘 , 𝑥𝑥
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 , 𝑥𝑥

�
𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘

𝑘𝑘−1

𝑗𝑗=1

𝑝𝑝𝑥𝑥 �
𝑞𝑞
𝑝𝑝
�
∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1

; 𝑥𝑥 = 0,1, … , ��
𝑛𝑛
𝑘𝑘
��    (1.7)
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distribution of order 



Where 𝑥𝑥1 + 2𝑥𝑥2 + ⋯+ 𝑘𝑘𝑥𝑥𝑘𝑘 = 𝑛𝑛 − 𝑘𝑘𝑘𝑘 − 𝑗𝑗, [𝑎𝑎] is the greatest integer function less 

than or equal to 𝑎𝑎    

                           𝑔𝑔(𝑥𝑥; 𝑘𝑘,𝑝𝑝) = ∑ �𝑥𝑥1+𝑥𝑥2+⋯+𝑥𝑥𝑘𝑘
𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘

�𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘 𝑝𝑝𝑥𝑥 �𝑞𝑞
𝑝𝑝
�
∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1

; 𝑥𝑥 ≥ 𝑘𝑘                    (1.8) 

Where 𝑥𝑥1 + 2𝑥𝑥2 + ⋯+ 𝑘𝑘𝑥𝑥𝑘𝑘 = 𝑥𝑥 − 𝑘𝑘. 

                     𝑛𝑛𝑛𝑛(𝑥𝑥; 𝑘𝑘,𝑝𝑝) = ∑ �𝑥𝑥1+𝑥𝑥2+⋯+𝑥𝑥𝑘𝑘 ,𝑟𝑟−1
𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘 ,𝑟𝑟−1 �𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘 𝑝𝑝𝑥𝑥 �𝑞𝑞

𝑝𝑝
�
∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1

; 𝑥𝑥 ≥ 𝑟𝑟𝑟𝑟                 (1.9) 

Where 𝑥𝑥1 + 2𝑥𝑥2 + ⋯+ 𝑘𝑘𝑥𝑥𝑘𝑘 = 𝑥𝑥 − 𝑟𝑟𝑟𝑟. 

Are the binomial, geometric, negative binomial distribution of order 𝑘𝑘 
respectively. The asymptotic properties of some of these distributions give rise to other 
important distributions as studied by Aki et al (1984), Feller (1956). 

In 1986, Panaretos and Evdokia improved on some of the above distributions, in 

particular (1.2) and (1.3) via sampling from an urn containing 𝑎𝑎 white balls and 𝑏𝑏 
black balls. The following Hypergeometric distribution of order 𝑘𝑘 was introduced. 

Assuming that 𝑛𝑛 balls are drawn one at a time;  
Without replacement gives rise to; 

ℎ1(𝑥𝑥; 𝑘𝑘,𝑛𝑛,𝑝𝑝) = � � �
𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑘𝑘 , 𝑥𝑥
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 , 𝑥𝑥

�
𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘

𝑘𝑘−1

𝑗𝑗=1

𝑏𝑏�∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1 �𝑎𝑎�𝑛𝑛−∑ 𝑥𝑥𝑖𝑖𝑘𝑘

𝑖𝑖=1 �

(𝑎𝑎 + 𝑏𝑏)(𝑛𝑛)  ; 

𝑥𝑥 = 0,1, … , ��
𝑛𝑛
𝑘𝑘
�� (1.10𝑎𝑎)  

With replacement gives rise to 

ℎ2(𝑥𝑥; 𝑘𝑘,𝑛𝑛,𝑝𝑝) = � � �
𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑘𝑘 , 𝑥𝑥
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 , 𝑥𝑥

�
𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘

𝑘𝑘−1

𝑗𝑗=1

�
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
�
𝑛𝑛−∑ 𝑥𝑥𝑖𝑖𝑘𝑘

𝑖𝑖=1
�

𝑏𝑏
𝑎𝑎 + 𝑏𝑏

�
∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1

 ; 

𝑥𝑥 = 0,1, … , ��
𝑛𝑛
𝑘𝑘
�� (1.10𝑏𝑏)  

With replacement and addition of one ball of the same colour that was selected, 
before the next draw gives rise to 

ℎ3(𝑥𝑥; 𝑘𝑘,𝑛𝑛,𝑝𝑝) = � � �
𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑘𝑘 , 𝑥𝑥
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 , 𝑥𝑥

�
𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘

𝑘𝑘−1

𝑗𝑗=1

𝑏𝑏�∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1 �𝑎𝑎�𝑛𝑛−∑ 𝑥𝑥𝑖𝑖𝑘𝑘

𝑖𝑖=1 �

(𝑎𝑎 + 𝑏𝑏)(𝑛𝑛)
 ; 

𝑥𝑥 = 0,1, … , ��
𝑛𝑛
𝑘𝑘
�� (1.10𝑐𝑐)  

With replacement and addition of 𝑐𝑐 balls of the same color that was selected, 
before the next draw gives rise to 

ℎ4(𝑥𝑥; 𝑘𝑘,𝑛𝑛,𝑝𝑝) = � � �
𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑘𝑘 , 𝑥𝑥
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 , 𝑥𝑥

�
𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑘𝑘

𝑘𝑘−1

𝑗𝑗=1

�𝑏𝑏𝑐𝑐��∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1 �

�𝑎𝑎𝑐𝑐��𝑛𝑛−∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1 �

�𝑎𝑎 + 𝑏𝑏
𝑐𝑐 �

(𝑛𝑛)

 ; 
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𝑥𝑥 = 0,1, … , ��
𝑛𝑛
𝑘𝑘
�� (1.10𝑑𝑑)  

Where 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑘𝑘 = 𝑛𝑛 − 𝑘𝑘𝑘𝑘 − 𝑗𝑗, 𝑎𝑎(𝑚𝑚) = 𝑎𝑎(𝑎𝑎 − 1)⋯ (𝑎𝑎 −𝑚𝑚 + 1)  

 𝑎𝑎(𝑚𝑚) = 𝑎𝑎(𝑎𝑎 + 1)⋯ (𝑎𝑎 + 𝑚𝑚 − 1)    

In 1986, Panaretos and Evdokia introduced the Cluster Binomial Distribution  as 
an improvement on the classical binomial distribution via sampling from an urn 

containing 𝑖𝑖  labeled balls (𝑖𝑖 = 1,2,⋯𝑘𝑘)  with 𝑝𝑝𝑖𝑖  denoting the probability that a ball 

bearing the number 𝑖𝑖  will be drawn, such that ∑ 𝑝𝑝𝑖𝑖𝑘𝑘
𝑖𝑖=1 = 𝑝𝑝. Then, 𝑞𝑞 = 1 − 𝑝𝑝  is the 

probability that a ball bearing a zero will be drawn. Let 𝑋𝑋  be a random variable that 

count the sum of the numbers on the balls drawn. If the random variable 𝑋𝑋  take the 

value 𝑟𝑟  for the 𝑛𝑛  balls drawn, 𝑟𝑟1  bear the number 1, 𝑟𝑟2  bear the number 2  and so on, 𝑟𝑟𝑘𝑘  

bear the number 𝑘𝑘  so that ∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1 = 𝑟𝑟  and each of the remaining 𝑛𝑛 − ∑ 𝑟𝑟𝑖𝑖𝑘𝑘

𝑖𝑖=1  balls bear 

the zero. Then the  is given by;  

                 (1.11)  

In an attempt to improve on the  (one dimensional) multinomial distribution 
 given in (1.6), Okoli et al introduce the following parameter; let  

 

be  a multi-index (or multi-integer), 𝐸𝐸 {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁}  𝑀𝑀(𝛼𝛼,𝐸𝐸) =
�𝑥𝑥1

𝛼𝛼1 , 𝑥𝑥2
𝛼𝛼2 , … , 𝑥𝑥𝑁𝑁

𝛼𝛼𝑁𝑁 �  a finite multi-set induced by 𝛼𝛼 = (𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑁𝑁). However, he observed 

that for arbitrary but fixed 𝑑𝑑 ∈ ℕ, the multinomial distributions in (1.6) do not give 
adequate description to many important practical problems defined on the more general 
set given by  

                               
𝑀𝑀�𝛼𝛼,𝐸𝐸(𝑑𝑑))� = �𝑥𝑥𝑖𝑖𝑑𝑑

𝛼𝛼𝑖𝑖𝑑𝑑 ∶ 𝑖𝑖𝑟𝑟 ∈ [𝑘𝑘𝑟𝑟], 𝑘𝑘𝑟𝑟 ∈ ℕ, 𝑟𝑟 ∈ [𝑑𝑑] �                         (1.12)
 

where 𝐸𝐸(𝑑𝑑) = �𝑥𝑥𝑖𝑖𝑑𝑑 ∶
 

𝑖𝑖𝑟𝑟 ∈ [𝑘𝑘𝑟𝑟],𝑘𝑘𝑟𝑟 ∈ ℕ, 𝑟𝑟 ∈ [𝑑𝑑]�, [𝑘𝑘𝑟𝑟] = {1,2,3, … , 𝑘𝑘𝑟𝑟}. 
 

Theorem 1.0

 

Let

 
𝑀𝑀(𝑑𝑑)(𝑝𝑝;  𝛼𝛼(𝑑𝑑);𝑋𝑋(𝑑𝑑))

 

denote a pairwise collections of the multiplicity 𝛼𝛼𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑

 

and

 

probability 𝑝𝑝𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑

 

for each 𝑥𝑥𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑 ∈ 𝑋𝑋
(𝑑𝑑)

 

on a finite multiset 𝑀𝑀, then the 

probability

 

that 𝑥𝑥𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑 ∈ 𝑋𝑋
(𝑑𝑑) is selected exactly 𝛼𝛼𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑

 times ( 𝑖𝑖𝑟𝑟 ∈ [𝑘𝑘𝑟𝑟], 𝑘𝑘𝑟𝑟 ∈ ℕ ,
𝑟𝑟 ∈ [𝑑𝑑]) in n-trials is 

𝑚𝑚𝑑𝑑�𝛼𝛼𝑖𝑖1 ,𝛼𝛼𝑖𝑖2 , … ,𝛼𝛼𝑖𝑖𝑑𝑑 � = �.
𝑑𝑑

𝑟𝑟=1

���
�𝛼𝛼𝑖𝑖𝑟𝑟−1 � − ∑ �𝛼𝛼𝑖𝑖𝑟𝑟−1𝑗𝑗𝑟𝑟 �

𝑖𝑖𝑟𝑟−1
𝑗𝑗𝑟𝑟=1

�𝛼𝛼𝑖𝑖𝑟𝑟−1𝑖𝑖𝑟𝑟 �
�

𝑘𝑘𝑟𝑟

𝑖𝑖𝑟𝑟=1

��𝑝𝑝𝑖𝑖𝑑𝑑
𝛼𝛼𝑖𝑖𝑑𝑑

𝑖𝑖𝑑𝑑

 

Where�𝛼𝛼𝑖𝑖𝑟𝑟−1 � − ∑ �𝛼𝛼𝑖𝑖𝑟𝑟−1𝑗𝑗𝑟𝑟 �
𝑘𝑘𝑟𝑟
𝑗𝑗𝑟𝑟=1 = 0  ∀  𝑟𝑟 ∈ [𝑑𝑑], 𝑚𝑚𝑑𝑑�𝛼𝛼𝑖𝑖1 ,𝛼𝛼𝑖𝑖2 , … ,𝛼𝛼𝑖𝑖𝑑𝑑 � = 𝑃𝑃�𝑋𝑋𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑 = 𝛼𝛼𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑 �

  

And the associated integer �𝛼𝛼(𝑑𝑑)�  is given by  
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𝑝𝑝𝑚𝑚𝑝𝑝

𝑐𝑐𝑏𝑏(𝑟𝑟;𝑛𝑛, 𝑘𝑘,𝑝𝑝1,⋯ ,𝑝𝑝𝑘𝑘) = � �
𝑛𝑛

𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘 ,𝑛𝑛 − ∑ 𝑟𝑟𝑚𝑚𝑘𝑘
𝑚𝑚=1

�
𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑘𝑘

��𝑝𝑝𝑚𝑚
𝑟𝑟𝑚𝑚

𝑘𝑘

𝑚𝑚=1

�𝑝𝑝𝑛𝑛−∑ 𝑟𝑟𝑚𝑚𝑘𝑘
𝑚𝑚=1

𝑀𝑀(𝑛𝑛 , 𝑝𝑝1,…,𝑝𝑝𝑘𝑘) 𝛼𝛼=(𝛼𝛼1,𝛼𝛼2,
… ,𝛼𝛼𝑁𝑁)  = a finite set and

Notes

For such case, more adequate and elaborate discrete distribution models are 
needed which they proved in the theorem that follows



�𝛼𝛼(𝑑𝑑)� = �.
𝑑𝑑

𝑟𝑟=1

�𝛼𝛼𝑖𝑖𝑑𝑑

𝑘𝑘𝑟𝑟

𝑖𝑖𝑟𝑟=1  

the associated monomial 𝑥𝑥𝛼𝛼 (𝑑𝑑)

 
by

 

𝑥𝑥𝛼𝛼 (𝑑𝑑) = �.
𝑑𝑑

𝑟𝑟=1

�𝑥𝑥𝑖𝑖𝑑𝑑
𝛼𝛼𝑖𝑖𝑑𝑑

𝑘𝑘𝑟𝑟

𝑖𝑖𝑟𝑟=1   

the associated factorial 𝛼𝛼(𝑑𝑑)!
 
by

 

𝛼𝛼(𝑑𝑑)! = �.
𝑑𝑑

𝑟𝑟=1

�𝛼𝛼𝑖𝑖𝑑𝑑

𝑘𝑘𝑟𝑟

𝑖𝑖𝑟𝑟=1

= �𝛼𝛼𝑖𝑖𝑑𝑑 �!
 

Where �𝛼𝛼𝑖𝑖𝑑𝑑 �! = �𝛼𝛼𝑖𝑖𝑑𝑑−11�! �𝛼𝛼𝑖𝑖𝑑𝑑−12�! �𝛼𝛼𝑖𝑖𝑑𝑑−13�!⋯�𝛼𝛼𝑖𝑖𝑑𝑑−1𝑘𝑘𝑑𝑑 �!    𝑎𝑎𝑎𝑎𝑎𝑎
 
𝛼𝛼(𝑑𝑑) = 𝛼𝛼 (𝑓𝑓𝑓𝑓𝑓𝑓

 
𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜) 

 
This discrete probability functions has been applied to certain parameter 

estimation problems in time series and contingency table analysis of arbitrary 𝑑𝑑-

dimensional tables. However, if 𝑑𝑑 = 1, we obtain multinomial distribution 

𝑀𝑀(𝑛𝑛,𝑝𝑝1, … ,𝑝𝑝𝑘𝑘)
 
given in (1.6). 

 
In 1756

 
(republished in 1967), Abraham De Moivre studied the probability 

distribution for a fair (balanced) 𝑚𝑚-sided die tossed 𝑛𝑛
 
number of times. Let 𝑋𝑋𝑛𝑛

(𝑚𝑚)

 
be a 

random variable that count the total score in n rolls of an 𝑚𝑚-sided die, the following 
probability mass function was obtained 

 

        
           𝑃𝑃�𝑋𝑋𝑛𝑛

(𝑚𝑚) = 𝑥𝑥� = 1
𝑚𝑚𝑛𝑛 ∑ (−1)𝑠𝑠𝛽𝛽1

𝑠𝑠=0 �𝑛𝑛𝑠𝑠��
𝑛𝑛−1+𝑥𝑥−𝑚𝑚𝑚𝑚

𝑛𝑛−1 �;  0 ≤ 𝑥𝑥 ≤ (𝑚𝑚− 1)𝑛𝑛          (1.13)  

Where 𝛽𝛽1 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑛𝑛, [𝑥𝑥
𝑚𝑚

]� and [𝑥𝑥
𝑚𝑚

] is the greatest integer function less than or equal to 
𝑥𝑥
𝑚𝑚

. 

The coefficient of 
1
𝑚𝑚𝑛𝑛  often denoted by 𝐶𝐶𝑚𝑚 (𝑛𝑛, 𝑥𝑥) have been studied in detail by 

Dafnis et al (2007), Freund (1956), who discussed their role in occupancy theory. In 

particular, 𝐶𝐶𝑚𝑚(𝑛𝑛, 𝑥𝑥) can be interpreted as "the number of ways of putting 𝑛𝑛 
indistinguishable objects into 𝑥𝑥 numbered boxes with each box containing at most 

𝑚𝑚 − 1 objects. So that if 𝑚𝑚 = 2 we have the standard binomial coefficient given by 

𝐶𝐶2(𝑛𝑛, 𝑥𝑥) = �𝑛𝑛𝑥𝑥�;  0 ≤ 𝑥𝑥 ≤ 𝑛𝑛. A recurrence formula for computing 𝐶𝐶𝑚𝑚(𝑛𝑛, 𝑥𝑥) is given by 

𝐶𝐶𝑚𝑚 (𝑛𝑛, 𝑥𝑥) = � 𝐶𝐶𝑚𝑚(𝑛𝑛 − 1, 𝑥𝑥 − 𝑗𝑗)
𝑚𝑚−1

𝑗𝑗=0
                                                         (1.14) 

One can easily see that for 𝑚𝑚 = 2, this recursion reduces to the well-known 
classical binomial identity. 

The number 𝐶𝐶𝑚𝑚(𝑛𝑛, 𝑥𝑥) has been used extensively in probability studies Ashok, et 
al (2011); Balasubramanian, et al (1995); De Moivre (1756); Feller (1968); Makri and 
Philippou (2005);   Makri et al (2007a; 2007b) and related areas like reliability and 
inferential statistics, Ailing (1993);  Bollinger and Burchard (1990); Gabai (1970). For 
more properties on 𝐶𝐶𝑚𝑚 (𝑛𝑛, 𝑥𝑥); generalized Pascal triangles or Pascal triangles of order 𝑚𝑚, 
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Notes



we refer to Bondarenko (1993); Dafnis, et al (2007); Freund (1956); Gabai (1970);  
Ollerton  and Shannon (1998, 2004, 2005)  and the references therein.  

In 1995, Balasubramanian et al introduced the extended binomial distribution of 
order 𝑚𝑚  with index 𝑛𝑛  and parameter 𝑝𝑝  as an improved version of the standard binomial 
distribution and the distribution studied by Abraham De Moivre in 1756  via 

considering 𝑛𝑛  roll of an 𝑚𝑚  sided die which is not necessarily fair (balanced) with face 

marked 𝑖𝑖  (𝑖𝑖 = 0,1,2,⋯ ,𝑚𝑚 − 1)  and a turn-up side probability 𝑝𝑝𝑖𝑖  (∑ 𝑝𝑝𝑖𝑖𝑚𝑚−1
𝑖𝑖=0 = 1)  satisfying 

the condition 𝑞𝑞𝑚𝑚 − 𝑝𝑝𝑚𝑚 = 𝑞𝑞 − 𝑝𝑝.  It was proved that if  𝑋𝑋𝑛𝑛
(𝑚𝑚)

 is a random variable that 
count the total score in 𝑛𝑛

 
rolls of an

 
𝑚𝑚-sided die then the probability mass function 

(𝑝𝑝𝑝𝑝𝑝𝑝)
 

is given by
 

𝑃𝑃�𝑋𝑋𝑛𝑛
(𝑚𝑚) = 𝑥𝑥;𝑝𝑝� = �(−1)𝑠𝑠

𝛽𝛽1

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
� �
𝑛𝑛 − 1 + 𝑥𝑥 − 𝑚𝑚𝑚𝑚

𝑛𝑛 − 1
� 𝑝𝑝𝑥𝑥𝑞𝑞(𝑚𝑚−1)𝑛𝑛−𝑥𝑥

 ; 0 ≤ 𝑥𝑥 ≤ (𝑚𝑚 − 1)𝑛𝑛  (1.15)
 

Where 𝛽𝛽1 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑛𝑛, [ 𝑥𝑥
𝑚𝑚

]�  and [ 𝑥𝑥
𝑚𝑚

]  is the greatest integer function less than or equal to  
𝑥𝑥
𝑚𝑚

. 

Observe that if the die is a fair one, then it implies that  𝑝𝑝 = � 1
𝑚𝑚
�

1
𝑚𝑚−1 = 𝑞𝑞  so that 

on substitution into equation (1.15)
 

yield the result of Abraham De Moivrein in 

equation (1.13). 
Ashok et al (2011) studied and derived a recursion formula for the probability 

distribution of the sum of rolling a fair dice (6-sided die) 𝑛𝑛  times (which is equivalently 
to rolling 𝑛𝑛  several dice once) which is given by;  

          𝑓𝑓𝑗𝑗 (𝑚𝑚) = 1
6
�𝑓𝑓𝑗𝑗−1(𝑚𝑚− 1) + 𝑓𝑓𝑗𝑗−1(𝑚𝑚− 2) + ⋯+ 𝑓𝑓𝑗𝑗−1(𝑚𝑚− 6)� ; 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛;𝑚𝑚 ∈ [𝑗𝑗, 6𝑗𝑗] (1.16)  

In 2017, Okoli studied a  (𝑣𝑣 − 𝑢𝑢 + 1)-sided die with turn-up side probability 
denoted by 𝑇𝑇(𝑥𝑥, 𝑦𝑦) = 𝑝𝑝𝑥𝑥𝑞𝑞𝑦𝑦 :  𝑥𝑥,𝑦𝑦 = 1,2,3, … ,𝑚𝑚;  𝑥𝑥 + 𝑦𝑦 = 𝑘𝑘; 0 ≤ 𝑝𝑝, 𝑞𝑞 ≤ 1. The following 
theorem was proved.  

Theorem 1.1  

Let  𝑋𝑋𝑛𝑛
(𝑚𝑚 ,𝑚𝑚)

 be a random variable that count the total score in n rolls of an 𝑚𝑚-
sided die with range  𝑥𝑥 = 1,2, … ,𝑚𝑚  and turn-up side probabilities 𝑇𝑇(𝑥𝑥,𝑚𝑚 − 𝑥𝑥) (𝑥𝑥 ∈
{1,2,3, … ,𝑚𝑚}) satisfying the condition 𝑝𝑝(𝑞𝑞𝑚𝑚 − 𝑝𝑝𝑚𝑚 ) = (𝑞𝑞 − 𝑝𝑝)  then the probability mass 

function (𝑝𝑝𝑝𝑝𝑝𝑝)  is given by  

𝑃𝑃�𝑋𝑋𝑛𝑛
(𝑚𝑚 ,𝑚𝑚) = 𝑥𝑥;𝑝𝑝� = �(−1)𝑠𝑠

𝛽𝛽

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
� �
𝑥𝑥 − 𝑚𝑚𝑚𝑚 − 1
𝑛𝑛 − 1

� 𝑝𝑝𝑥𝑥𝑞𝑞𝑚𝑚𝑚𝑚−𝑥𝑥  ;𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑚𝑚𝑚𝑚       

Where 𝛾𝛾 = min �𝑛𝑛, �𝑥𝑥−𝑛𝑛
𝑚𝑚
��. 

It is important to note that a careful examination of these papers and related 
works in the literature that dealt with improvement of probability distribution, shows 
that the improvements, extensions, generalisations so achieved by these authors are 
mostly, at least in one of the following directions:  
(i)  Addition of one or more parameters to the original probability function,  
(ii)  Extension of the domain or space of the parameter(s),      
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Notes



(iii) Extension of the domain or dimension of the independent variable of the original 
probability function. 

Motivated by the results of the research in this direction via the work of 
Abraham De Moivre (1756), Balasubramanian et al(1995), Ashok et al (2011) and Okoli 
(2017), we seek to derived a probability distribution of an arbitrary sides of a geometric 
figure indexed in a finite set of Arithmetic Sequence. This will take care of some of the 
computational inadequacies due to the works of Abraham De Moivre (1756), 
Balasubramanian et al (1995), Ashok et al (2011) and Okoli (2017), in modeling the 
distribution of sides of geometric figure indexed in an arbitrary finite set of Arithmetic 
Sequence, which we shall illustrate in the sequel. 

II. Methodology 

We shall use the telling example that follows to compare the distribution studied 
by Balasubramanian et al (1995) and Okoli (2017) in modeling the distribution of a fair 
die. 

For illustrative purpose, Let 𝑋𝑋2
(6,6)

 be the sum of scores obtained in the toss of a 

fair die twice, we wish to construct a probability table for the distribution of 𝑋𝑋2
(6,6)

. 

First, we consider the sample spaces given below from which we then give the 

probability table for the distribution of 𝑋𝑋2
(6,6)

. 

 Table I:
 
(Sample space of twice tossed die)     Table II: (Sample space of sum of scores)

 

 

Table III: (Probability distribution table)

 

         
   

 
           

 
 Now let 𝑓𝑓𝐵𝐵(𝑥𝑥)

 
and 𝑓𝑓𝑂𝑂(𝑥𝑥)

 
denotes the probability mass functions due to 

Balasubramanian et al (1995)
 
and Okoli (2017); that is

 

𝑓𝑓𝐵𝐵(𝑥𝑥;𝑝𝑝) =
1
𝑚𝑚𝑛𝑛�(−1)𝑠𝑠

𝛽𝛽

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
� �
𝑛𝑛 − 1 + 𝑥𝑥 − 𝑚𝑚𝑚𝑚

𝑛𝑛 − 1
�  ;  0 ≤ 𝑥𝑥 ≤ (𝑚𝑚− 1)𝑛𝑛,𝛽𝛽 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑛𝑛, �

𝑥𝑥
𝑚𝑚
��
 

𝑓𝑓𝑂𝑂(𝑥𝑥;𝑝𝑝) =
1
𝑚𝑚𝑛𝑛 �(−1)𝑠𝑠

𝛾𝛾

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
� �
𝑥𝑥 − 𝑚𝑚𝑚𝑚 − 1
𝑛𝑛 − 1

�  ;  𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑚𝑚𝑚𝑚, 𝛾𝛾 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑛𝑛, �
𝑥𝑥 − 𝑛𝑛
𝑚𝑚

��  

We begin with Balasubramanian 𝑝𝑝𝑝𝑝𝑝𝑝 in Aki et al, (1984) denoted by 𝑓𝑓𝐵𝐵(𝑥𝑥;𝑝𝑝). 
Observe that 
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1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6

2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

𝑥𝑥 2 3 4 5 6 7 8 9 10 11 12
𝑃𝑃(𝑋𝑋2

(6,6) = 𝑥𝑥) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Notes



(1)  In 𝑝𝑝𝐵𝐵(𝑥𝑥;𝑝𝑝), 0 ≤ 𝑥𝑥 ≤ (𝑚𝑚− 1)𝑛𝑛  implies that 0 ≤ 𝑥𝑥 ≤ 10  (since 𝑛𝑛 = 2  and 𝑚𝑚 = 6). 

However this does not agree with the range of 𝑥𝑥  given in Table II for a fair die 

tossed twice. Infact, it implies that using 𝑝𝑝𝐵𝐵(𝑥𝑥; 𝑝𝑝), 𝑝𝑝𝐵𝐵(11;𝑝𝑝)  and 𝑝𝑝𝐵𝐵(12;𝑝𝑝)  cannot be 

evaluated since the range of specification of 𝑥𝑥  ( 0 ≤ 𝑥𝑥 ≤ 10) does not includes 

{11, 12}.  

(2)  It is important to note also that, even at those values of 𝑥𝑥 (0 ≤ 𝑥𝑥 ≤ 10) specified in 

𝑝𝑝𝐵𝐵(𝑥𝑥;𝑝𝑝), the 𝑝𝑝𝑚𝑚𝑝𝑝  fail to give accurate probability value(s) for such value(s) of 𝑥𝑥. To 
see this, in particular, observe from the probability distribution table (Table III).  

𝑃𝑃�𝑋𝑋2
(6,6) = 9� =

4
36

 

Using  

 𝑝𝑝𝐵𝐵(𝑥𝑥;𝑝𝑝) =
1
𝑚𝑚𝑛𝑛�(−1)𝑠𝑠

𝛽𝛽

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
� �
𝑛𝑛 − 1 + 𝑥𝑥 − 𝑚𝑚𝑠𝑠

𝑛𝑛 − 1
�  ;  0 ≤ 𝑥𝑥 ≤ (𝑚𝑚− 1)𝑛𝑛  

⟹ 𝑝𝑝𝐵𝐵(9;𝑝𝑝) =
1

62 �(−1)𝑠𝑠
𝛽𝛽

𝑠𝑠=0

�
2
𝑠𝑠
� �

10 − 6𝑠𝑠
1

�
 

=
1

62 �(−1)0 �
2
0
� �

10 − 6 × 0
1

� + (−1)1 �
2
1
� �

10 − 6
1

�� =
1

62 [10 − 2 × 4] =
2

36
;  

⟹ 𝑝𝑝𝐵𝐵(9;𝑝𝑝) ≠ 𝑃𝑃�𝑋𝑋2
(6,6) = 9�  

Now with the 𝑝𝑝𝑚𝑚𝑝𝑝  defined by Okoli (2017), 𝑝𝑝𝑂𝑂(𝑥𝑥;𝑝𝑝). Observe that 

(1).  In  𝑝𝑝𝑂𝑂(𝑥𝑥;𝑝𝑝), 𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑚𝑚𝑛𝑛  implies that 2 ≤ 𝑥𝑥 ≤ 12  (since 𝑛𝑛 = 2  and 𝑚𝑚 = 6). This does 

agree with the range of 𝑥𝑥  given in Table II for a fair die tossed twice. Which is not 

the case for 𝑝𝑝𝐵𝐵(𝑥𝑥;𝑝𝑝).  

(2).  𝑝𝑝𝑂𝑂(𝑥𝑥;𝑝𝑝), give accurate probability value(s) for each value(s) of 𝑥𝑥. To see this, 
observe from the probability distribution table (Table III).  

𝑃𝑃�𝑋𝑋2
(6,6) = 9� =

4
36

 

Using  

𝑝𝑝𝑂𝑂(𝑥𝑥;𝑝𝑝) =
1
𝑚𝑚𝑛𝑛 �(−1)𝑠𝑠

𝛾𝛾

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
� �
𝑥𝑥 − 𝑚𝑚𝑠𝑠 − 1
𝑛𝑛 − 1

�  ;  𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑚𝑚𝑛𝑛  

⟹ 𝑝𝑝𝐵𝐵(9;𝑝𝑝) =
1

62 �(−1)𝑠𝑠
𝛽𝛽

𝑠𝑠=0

�
2
𝑠𝑠
� �

8 − 6𝑠𝑠
1

�  

=
1

62 �(−1)0 �
2
0
� �

8 − 6 × 0
1

� + (−1)1 �
2
1
� �

8 − 6
1

�� =
1

62 [8 − 2 × 2] =
4

36
;  

⟹ 𝑝𝑝𝑂𝑂(9;𝑝𝑝) = 𝑃𝑃�𝑋𝑋2
(6,6) = 9�  
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Notes



Hence we conclude that the 𝑝𝑝𝑝𝑝𝑝𝑝 we defined 𝑓𝑓𝑂𝑂(9;𝑝𝑝) is more practicable to work 
with than the one defined by Balasubramanian et al (1995) in modeling the distribution 
of sums of sides of a standard die. Since the standard die is indexed in the finite 

arithmetic sequence {1,2,3,⋯ ,𝑚𝑚}. It is important to note that if we choose the finite 
arithmetic sequence {0,1,2,3,⋯ ,𝑚𝑚 − 1} for the indexing, then 𝑓𝑓𝑂𝑂(𝑥𝑥;𝑝𝑝) will no longer be 

adequate, rather 𝑓𝑓𝐵𝐵(𝑥𝑥;𝑝𝑝) will be suitable in modeling the distribution of sums of sides 
data. Thus, we have seen that the distribution studied by Balasubramanian et al (1995) 
and Okoli (2017) is rather restrictive and particularized, in the sense that ordinarily it 
cannot be use in modeling the distribution of sides of geometric figure indexed in an 
arbitrary finite set of Arithmetic Sequence. As a matter of fact, this constitute a major 
weakness which we shall address in the sequel. 

Let  𝑑𝑑,𝑢𝑢, 𝑣𝑣 ∈ ℕ, we now proceed to define a probability distribution that will be 
suitable in modeling the distribution of sides of geometric figure indexed in an arbitrary 

finite set of Arithmetic Sequence given by {𝑢𝑢, 𝑢𝑢 + 𝑑𝑑,𝑢𝑢 + 2𝑑𝑑, … , 𝑣𝑣} where 𝑑𝑑, 𝑢𝑢 and 𝑣𝑣 
denote the common difference, first and last term, this implies that our geometric figure 

is  �𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1�-sided. Thus, a typical sample space and sample space of sums of scores of 

such geometric figure tossed twice is given as 

Table IV: (Sample space of twice tossed arbitrary geometric figure indexed in 
arithmetic sequence) 

 
 
 
 
 
 

  

 

 

(Sample space of sums of scores for the geometric figure indexed in arithmetic 
sequence)

 

 
 
 
 
 
 
 
 

Now to introduce a little more perturbation (unfairness) on this geometric figure 

we let 

 

𝑘𝑘 ∈ ℕ

 

(where 𝑘𝑘

 

is not necessarily equal to 𝑣𝑣)  and then defined the turn-up side 
probabilities as

 

                𝑇𝑇(𝑥𝑥,𝑦𝑦) = 𝑝𝑝𝑥𝑥𝑞𝑞𝑦𝑦 :  𝑥𝑥,𝑦𝑦 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 + 2𝑑𝑑, … , 𝑣𝑣;  𝑥𝑥 + 𝑦𝑦 = 𝑘𝑘; 0 ≤ 𝑝𝑝, 𝑞𝑞 ≤ 1.        (2.1)

 

Where 𝑢𝑢 < 𝑘𝑘 ≤ 𝑣𝑣

 

Clearly the discrete probability distribution function associated with die models 
mentioned above is not adequate for modelling the distribution of sums of the turn-up 
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𝑢𝑢, 𝑢𝑢 𝑢𝑢, (𝑢𝑢 + 𝑑𝑑) 𝑢𝑢, (𝑢𝑢 + 2𝑑𝑑) ⋯ 𝑢𝑢, 𝑣𝑣
(𝑢𝑢 + 𝑑𝑑),𝑢𝑢 (𝑢𝑢 + 𝑑𝑑), (𝑢𝑢 + 𝑑𝑑) (𝑢𝑢 + 𝑑𝑑), (𝑢𝑢 + 2𝑑𝑑) ⋯ (𝑢𝑢 + 𝑑𝑑),𝑣𝑣
(𝑢𝑢 + 2𝑑𝑑),𝑢𝑢 (𝑢𝑢 + 2𝑑𝑑), (𝑢𝑢 + 𝑑𝑑) (𝑢𝑢 + 2𝑑𝑑), (𝑢𝑢 + 2𝑑𝑑) ⋯ (𝑢𝑢 + 2𝑑𝑑), 𝑣𝑣

⋮ ⋮ ⋮ ⋮ ⋮
𝑣𝑣,𝑢𝑢 𝑣𝑣, (𝑢𝑢 + 𝑑𝑑) 𝑣𝑣, (𝑢𝑢 + 2𝑑𝑑) ⋯ 𝑣𝑣, 𝑣𝑣

Table V: 

2𝑢𝑢 2𝑢𝑢 + 𝑑𝑑 2𝑢𝑢 + 2𝑑𝑑 ⋯ 𝑢𝑢 + 𝑣𝑣
2𝑢𝑢 + 𝑑𝑑 2𝑢𝑢 + 2𝑑𝑑 2𝑢𝑢 + 3𝑑𝑑 ⋯ 𝑑𝑑 + 𝑢𝑢 + 𝑣𝑣

2𝑢𝑢 + 2𝑑𝑑 2𝑢𝑢 + 3𝑑𝑑 2𝑢𝑢 + 4𝑑𝑑 ⋯ 2𝑑𝑑 + 𝑢𝑢 + 𝑣𝑣
⋮ ⋮ ⋮ ⋮ ⋮

𝑣𝑣 + 𝑢𝑢 𝑑𝑑 + 𝑢𝑢 + 𝑣𝑣 2𝑑𝑑 + 𝑢𝑢 + 𝑣𝑣 ⋯ 2𝑣𝑣

side probability for the geometric figure described in equation (2.1) and table V. Hence 
there is need to study the model in equation (2.1) going by the very fact that all the 
other models mentioned above can be easily be deduced from the model.

Notes



 

Now, observe that the generating function 𝐺𝐺(𝑡𝑡)

 

for the �𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1�-sided figure is 
given by

 
                                    𝐺𝐺(𝑡𝑡) = 𝑞𝑞𝑘𝑘−𝑣𝑣   𝑝𝑝𝑢𝑢𝑡𝑡𝑢𝑢 �𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑−𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑 𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑�

𝑞𝑞𝑑𝑑−𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑
                                   (2.2)

 With the normalization condition

                                                     𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = 𝑞𝑞𝑣𝑣−𝑘𝑘
 

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)                                (2.3)
 

If for a fix 𝑞𝑞, we define the auxiliary function 𝑔𝑔(𝑝𝑝) = 0
 

by
  

                                 𝑔𝑔(𝑝𝑝) = 𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) − 𝑞𝑞𝑣𝑣−𝑘𝑘  (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)                       (2. 4)
 

 It then follows that the first and second derivatives of the function 𝑔𝑔(. )  are given by  

                          𝑔𝑔′(𝑝𝑝) = 𝑢𝑢𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑𝑝𝑝𝑢𝑢−1 − (𝑣𝑣 + 𝑑𝑑)𝑝𝑝𝑣𝑣+𝑑𝑑−1 + 𝑑𝑑𝑞𝑞𝑣𝑣−𝑘𝑘  𝑝𝑝𝑑𝑑−1                       (2.5)  

  𝑔𝑔′′ (𝑝𝑝
 

) = 𝑢𝑢(𝑢𝑢 − 1)𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑𝑝𝑝𝑢𝑢−2 − (𝑣𝑣 + 𝑑𝑑 − 1)(𝑣𝑣 + 𝑑𝑑)𝑝𝑝𝑣𝑣+𝑑𝑑−2 + 𝑑𝑑(𝑑𝑑 − 1)𝑞𝑞𝑣𝑣−𝑘𝑘
 

𝑝𝑝𝑑𝑑−2   (2.6)
 

Equation (2.5) is nonlinear function of 𝑝𝑝
 

whose root can be determined by 
applying any of the iterative approximation formulas for finding the roots (zeros) of 

nonlinear equations. Since 𝑝𝑝 ∈ (0,1)
 

by definition, observe that 𝑔𝑔′′ (𝑝𝑝) < 0  ∀
 

𝑝𝑝 ∈ (0,1). 
Hence this implies that the function 𝑔𝑔(. )

 
is strictly increasing for 0 ≤ 𝑝𝑝 ≤ 𝑞𝑞𝑘𝑘 ,𝑢𝑢 ,𝑣𝑣,𝑑𝑑

 
and 

strictly decreasing for 𝑞𝑞𝑘𝑘 ,𝑢𝑢 ,𝑣𝑣,𝑑𝑑 ≤ 𝑝𝑝 ≤ 1. Where 𝑞𝑞𝑘𝑘 ,𝑢𝑢 ,𝑣𝑣,𝑑𝑑

 
is the zero of the function 𝑔𝑔′(. ), 

which in turn correspond to the turning (maximum) point of the function 𝑔𝑔(. ). 
Consequently it follows that 𝑔𝑔(. )

 
is monotone (sectionally) and unimodal with the mode 

occurring at the turning point 𝑝𝑝 = 𝑞𝑞𝑘𝑘 ,𝑢𝑢 ,𝑣𝑣,𝑑𝑑

 
[see

 
Balasubramanian, et al (1995); 

Dharmadhikari and
 

Joag-dev (1988); Hogg and Craig (1978);  
 

Okoli et al (2016); Okoli 
(2017); Okoli (2017)].

 

However, if in particular we take 𝑘𝑘 = 𝑣𝑣, then there exists 𝑞𝑞𝑢𝑢 ,𝑣𝑣,𝑑𝑑

 
for a balanced 

figure such that 𝑞𝑞 = 𝑞𝑞𝑢𝑢 ,𝑣𝑣,𝑑𝑑 = 𝑝𝑝. Then the normalization condition also reduces to 
 

                                                𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)                                               (2.7)
 

Equation (2.1) to equation(2.7)

 

implies the results of the authors mentioned in 

(𝑎𝑎), (𝑏𝑏), 𝑎𝑎𝑎𝑎𝑎𝑎

 

(𝑐𝑐)

 

above.     

 

We state the following theorems which unify the results of the authors: 
Balasubramanian, et al (1995);

 

Okoli (2017); Okoli (2017) in the next section of this 
work as follows.

 

III.

 

Main Results

 

In this section, we now proceed to state some important theorem associated with 
turn-up side probability for the geometric figure described in equation (2.1) (table V) 
and their consequences.
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Theorem 3.1 

Let 𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

 be a random variable that count the total score in n rolls of a 

(𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 𝑑𝑑)-sided geometric figure with turn-up side probabilities 𝑇𝑇(𝑥𝑥,𝑘𝑘 − 𝑥𝑥)  satisfying 

the condition 𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = 𝑞𝑞𝑣𝑣−𝑘𝑘  (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑) , with range 𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 +
2𝑑𝑑, … , 𝑣𝑣. Then the probability generating function (𝑝𝑝𝑝𝑝𝑝𝑝) is given by   

                  𝐺𝐺𝑛𝑛(𝑡𝑡) = 𝐸𝐸 �𝑡𝑡𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

� = �𝑞𝑞𝑘𝑘−𝑣𝑣  𝑝𝑝𝑢𝑢𝑡𝑡𝑢𝑢 �𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑−𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑 𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑�
𝑞𝑞𝑑𝑑−𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑

 �
𝑛𝑛

           (2.8) 

Proof 

Now, observe that the probability generating function (pgf) of 𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

  

constitute a convolution of  𝑋𝑋𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

 (𝑗𝑗 = 1,2,3, …𝑛𝑛). Where each 𝑋𝑋𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

 is 

an independent identically distributed (iid) random variables corresponding to the 

scores of �𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1�-sided die and turn-up side probabilities (𝑥𝑥,𝑘𝑘 − 𝑥𝑥) . Thus 

𝐺𝐺𝑛𝑛(𝑡𝑡) = 𝐸𝐸 �𝑡𝑡𝑋𝑋𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

�  

𝐸𝐸 �𝑡𝑡𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

� = �𝐸𝐸�𝑡𝑡𝑋𝑋𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

�
𝑛𝑛

𝑗𝑗=1

= �𝑞𝑞𝑘𝑘−𝑣𝑣  𝑝𝑝𝑢𝑢𝑡𝑡𝑢𝑢
(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑)

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑
�
𝑛𝑛

 

This completes the proof. 

Theorem 3.2 

Let 𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

 be a random variable that count the total score in n rolls of a 

(𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1)-sided geometric figure with turn-up side probabilities 𝑇𝑇(𝑥𝑥, 𝑘𝑘 − 𝑥𝑥)  satisfying 

the condition 𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = 𝑞𝑞𝑣𝑣−𝑘𝑘  (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑) , with range  𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 +
2𝑑𝑑, … , 𝑣𝑣. Then the probability mass function (𝑝𝑝𝑝𝑝𝑝𝑝) is given by 

𝑃𝑃 �𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

= 𝑥𝑥;𝑝𝑝� = �(−1)𝑠𝑠
𝛽𝛽3

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
��

𝑛𝑛 − 1 + 𝑥𝑥 − �𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑
𝑑𝑑 � 𝑠𝑠 − �𝑢𝑢𝑢𝑢𝑑𝑑 �

𝑛𝑛 − 1
�𝑝𝑝𝑥𝑥𝑞𝑞𝑘𝑘𝑘𝑘−𝑥𝑥  ; 

𝑢𝑢𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑘𝑘𝑘𝑘  

Where 𝛽𝛽3 = min �𝑛𝑛, �𝑑𝑑𝑑𝑑−𝑢𝑢𝑢𝑢
𝑣𝑣−𝑢𝑢+𝑑𝑑

�� ,𝑘𝑘 ≤ 𝑣𝑣. 

Proof 

We expand (2.2) in 𝑛𝑛 independent rolls of  (𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1)-sides as follows 

𝐺𝐺𝑛𝑛(𝑡𝑡) =

⎣
⎢
⎢
⎡
𝑞𝑞𝑘𝑘   �

𝑝𝑝𝑝𝑝
𝑞𝑞
�
𝑢𝑢 �1 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 �

1 − �𝑝𝑝𝑝𝑝𝑞𝑞 �
𝑑𝑑

⎦
⎥
⎥
⎤
𝑛𝑛

= 𝑞𝑞𝑘𝑘𝑘𝑘  𝑇𝑇𝑢𝑢𝑢𝑢 �
1 − 𝑇𝑇𝑣𝑣−𝑢𝑢+𝑑𝑑

1 − 𝑇𝑇𝑑𝑑
�
𝑛𝑛

;  𝑇𝑇 =
𝑝𝑝𝑝𝑝
𝑞𝑞
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= 𝑞𝑞𝑘𝑘𝑘𝑘  𝑇𝑇𝑢𝑢𝑢𝑢 (1 − 𝑇𝑇𝑣𝑣−𝑢𝑢+𝑑𝑑)𝑛𝑛(1 − 𝑇𝑇𝑑𝑑)−𝑛𝑛

= 𝑞𝑞𝑘𝑘𝑘𝑘
 

𝑇𝑇𝑢𝑢𝑢𝑢 ��(−1)𝑠𝑠
𝑛𝑛

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
�𝑇𝑇(𝑣𝑣−𝑢𝑢+𝑑𝑑)𝑠𝑠��(−1)𝑣𝑣 �

−𝑛𝑛
𝑣𝑣
� 𝑇𝑇𝑑𝑑𝑑𝑑

∞

𝑣𝑣=0

= 𝑞𝑞𝑘𝑘𝑘𝑘

 

𝑇𝑇𝑢𝑢𝑢𝑢 ��(−1)𝑠𝑠
𝑛𝑛

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
�𝑇𝑇(𝑣𝑣−𝑢𝑢+𝑑𝑑)𝑠𝑠����

𝑛𝑛 − 1 + 𝑣𝑣
𝑣𝑣

�𝑇𝑇𝑑𝑑𝑑𝑑
∞

𝑣𝑣=0

�

 

= ��(−1)𝑠𝑠
𝑛𝑛

𝑠𝑠=0

𝑞𝑞𝑘𝑘𝑘𝑘

 

�
𝑛𝑛
𝑠𝑠
�

∞

𝑣𝑣=0

�
𝑛𝑛 − 1 + 𝑣𝑣

𝑣𝑣
�𝑇𝑇(𝑣𝑣−𝑢𝑢+𝑑𝑑)𝑠𝑠+𝑑𝑑𝑑𝑑+𝑢𝑢𝑢𝑢

 

= � �(−1)𝑠𝑠
𝑛𝑛

𝑠𝑠=0

𝑞𝑞𝑘𝑘𝑘𝑘

 

�
𝑛𝑛
𝑠𝑠
�

∞

𝑥𝑥=𝑢𝑢𝑢𝑢

�
𝑛𝑛 − 1 + �𝑥𝑥𝑑𝑑� − �𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑

𝑑𝑑 � 𝑠𝑠 − �𝑢𝑢𝑢𝑢𝑑𝑑 �

�𝑥𝑥𝑑𝑑� − �𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑
𝑑𝑑 � 𝑠𝑠 − �𝑢𝑢𝑢𝑢𝑑𝑑 �

�𝑇𝑇𝑥𝑥

 

= � �(−1)𝑠𝑠
𝑛𝑛

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
�

∞

𝑥𝑥=𝑢𝑢𝑢𝑢

�
𝑛𝑛 − 1 + �𝑥𝑥𝑑𝑑� − �𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑

𝑑𝑑 � 𝑠𝑠 − �𝑢𝑢𝑢𝑢𝑑𝑑 �
𝑛𝑛 − 1

�𝑝𝑝𝑥𝑥𝑞𝑞𝑘𝑘𝑘𝑘−𝑥𝑥

 

𝑡𝑡𝑥𝑥

  

Where (𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑠𝑠 + 𝑑𝑑𝑑𝑑 + 𝑢𝑢𝑢𝑢 = 𝑥𝑥. Thus, it follows from the last equation above 

that the probability mass function 𝑝𝑝𝑝𝑝𝑝𝑝

 

is given by.

 

𝑃𝑃 �𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

= 𝑥𝑥;𝑝𝑝� =

 

�(−1)𝑠𝑠
𝛽𝛽3

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
��

𝑛𝑛 − 1 + �𝑥𝑥𝑑𝑑� − �𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑
𝑑𝑑 � 𝑠𝑠 − �𝑢𝑢𝑢𝑢𝑑𝑑 �

𝑛𝑛 − 1
�𝑝𝑝𝑥𝑥𝑞𝑞𝑘𝑘𝑘𝑘−𝑥𝑥

 

;𝑢𝑢𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑘𝑘𝑘𝑘

 

If we are dealing with a fair (balanced) die (i.e.  𝑘𝑘 = 𝑣𝑣, 𝑞𝑞 = � 𝑑𝑑
𝑣𝑣−𝑢𝑢+𝑑𝑑

�
1
𝑣𝑣
) then the 

corollary that follows is a consequence of theorem 2.2 above. 

 

Corollary 3.3 

 

Let

 

𝑋𝑋𝑛𝑛
(𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 )

 

be a random variable that count the total score in n rolls of a 

(𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1)-sided geometric figure with turn-up side probabilities 𝑇𝑇(𝑥𝑥, 𝑣𝑣 − 𝑥𝑥)  satisfying 

the condition 𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)

 

, with range  𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 + 2𝑑𝑑, … , 𝑣𝑣. 
Then the probability mass function (𝑝𝑝𝑝𝑝𝑝𝑝)

 

is given by

 

𝑃𝑃 �𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

= 𝑥𝑥;𝑝𝑝� =

 

�(−1)𝑠𝑠
𝛽𝛽3

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
��

𝑛𝑛 − 1 + �𝑥𝑥𝑑𝑑� − �𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑
𝑑𝑑 � 𝑠𝑠 − �𝑢𝑢𝑢𝑢𝑑𝑑 �

𝑛𝑛 − 1
�𝑝𝑝𝑥𝑥𝑞𝑞𝑣𝑣𝑣𝑣−𝑥𝑥

 

;𝑢𝑢𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑣𝑣𝑣𝑣
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Corollary 3.4  

Let 𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

 be a random variable that count the total score in n rolls of a 

(𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1)-sided geometric figure with turn-up side probabilities 𝑇𝑇(𝑥𝑥, 𝑣𝑣 − 𝑥𝑥)  satisfying 

the condition  𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑) , with range  𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 + 2𝑑𝑑, … , 𝑣𝑣. 
Then the probability mass function (𝑝𝑝𝑝𝑝𝑝𝑝) is given by 

𝑃𝑃 �𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

= 𝑥𝑥;𝑝𝑝� = 

�
𝑑𝑑

𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑
�
𝑛𝑛

�(−1)𝑠𝑠
𝛽𝛽3

𝑠𝑠=0

�
𝑛𝑛
𝑠𝑠
��

𝑛𝑛 − 1 + �𝑥𝑥𝑑𝑑� − �𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑
𝑑𝑑 � 𝑠𝑠 − �𝑢𝑢𝑢𝑢𝑑𝑑 �

𝑛𝑛 − 1
� ;  𝑢𝑢𝑛𝑛 ≤ 𝑥𝑥 ≤ 𝑣𝑣𝑣𝑣 

Theorem 3.5 

 
 

 

  
 

(𝑖𝑖)   𝐺𝐺𝑛𝑛
′(1) = 𝐸𝐸 �𝑋𝑋𝑛𝑛

�𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 ,   

𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

� = 𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑝𝑝𝑑𝑑 �
𝑑𝑑 − (𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣𝑞𝑞(𝑘𝑘−𝑣𝑣)

 

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
� 

 

(𝑖𝑖)  𝐺𝐺𝑛𝑛 ′′ (1) = 𝑢𝑢𝑢𝑢(𝑢𝑢𝑢𝑢 − 1) + 2𝑢𝑢𝑢𝑢2𝑝𝑝𝑑𝑑 �
𝑑𝑑 − (𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣𝑞𝑞(𝑘𝑘−𝑣𝑣)

 

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�

+ 𝑛𝑛(𝑛𝑛 − 1) �
𝑑𝑑𝑞𝑞𝑑𝑑 − (𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣+𝑑𝑑𝑞𝑞(𝑘𝑘−𝑣𝑣) 

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�

2

+ 𝑛𝑛𝑞𝑞(𝑘𝑘−𝑣𝑣)
 

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑 − 1)𝑝𝑝𝑣𝑣+𝑑𝑑 + 𝑑𝑑(𝑑𝑑 − 1)𝑝𝑝𝑑𝑑𝑞𝑞(𝑣𝑣−𝑘𝑘)

 

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑

+
2𝑑𝑑2𝑞𝑞2𝑑𝑑𝑞𝑞(𝑣𝑣−𝑘𝑘)

 

− 2𝑑𝑑(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣+2𝑑𝑑

(𝑞𝑞 − 𝑝𝑝)2 �

 

Proof. 

Since 𝐺𝐺𝑛𝑛(𝑡𝑡) = 𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛  𝑝𝑝𝑢𝑢𝑢𝑢 𝑡𝑡𝑢𝑢𝑢𝑢 �𝑞𝑞
𝑣𝑣−𝑢𝑢+𝑑𝑑−𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑 𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑−𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑
�
𝑛𝑛
, it follows that the derivative 

𝐺𝐺𝑛𝑛′(𝑡𝑡) of  𝐺𝐺𝑛𝑛(𝑡𝑡) is 
(i)   

 
𝐺𝐺𝑛𝑛′(𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛

 
𝑝𝑝𝑢𝑢𝑢𝑢 𝑡𝑡𝑢𝑢𝑢𝑢−1 �

𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑 �
𝑛𝑛

+ 𝑛𝑛𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛
 𝑝𝑝𝑢𝑢𝑢𝑢 𝑡𝑡𝑢𝑢𝑢𝑢 �

 
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑 �
𝑛𝑛−1

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑−1

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑

+
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑−1�𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑�

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑)2 �  
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Probability Distribution of Sum of Sides of a Geometric Figure Indexed in Arithmetic Sequence

Notes

Let 𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 , 𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

be a random variable that count the total score in n rolls of a 

(𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1)-sided geometric figure with turn-up side probabilities 𝑇𝑇(𝑥𝑥, 𝑘𝑘 − 𝑥𝑥)  satisfying 

the condition 𝑝𝑝𝑢𝑢(𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = 𝑝𝑝𝑣𝑣−𝑘𝑘 (𝑝𝑝𝑑𝑑 − 𝑝𝑝𝑑𝑑) , with range  𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 +
2𝑑𝑑, … , 𝑣𝑣. Then the mean and variance are determined by



Thus,  

𝐺𝐺𝑛𝑛′(1) = 𝑢𝑢𝑢𝑢𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛
 𝑝𝑝𝑢𝑢𝑢𝑢 �

𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑 �
𝑛𝑛

+ 𝑛𝑛𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛
 𝑝𝑝𝑢𝑢𝑢𝑢 �

𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑 �
𝑛𝑛−1

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑

+
𝑑𝑑𝑝𝑝𝑑𝑑�𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑�

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)2 �  

The result follows by applying the normalization condition. 

(ii)    
 

𝐺𝐺𝑛𝑛 ′′ (𝑡𝑡) = 𝑢𝑢𝑢𝑢(𝑢𝑢𝑢𝑢 − 1)𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛
 

𝑝𝑝𝑢𝑢𝑢𝑢 𝑡𝑡𝑢𝑢𝑢𝑢−2 �
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑
�
𝑛𝑛

 

+2𝑢𝑢𝑢𝑢2𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛
 

𝑝𝑝𝑢𝑢𝑢𝑢 𝑡𝑡𝑢𝑢𝑢𝑢−1  �
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑
�
𝑛𝑛−1

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑−1

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑

+
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑−1(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑)

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑)2 �
 

+𝑛𝑛(𝑛𝑛

− 1)𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛
 

𝑝𝑝𝑢𝑢𝑢𝑢 𝑡𝑡𝑢𝑢𝑢𝑢 �
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑
�
𝑛𝑛−2

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑−1

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑

+
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑−1(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑)

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑)2 �
 2

+ 𝑛𝑛𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛  𝑝𝑝𝑢𝑢𝑢𝑢 𝑡𝑡𝑢𝑢𝑢𝑢 �
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑
�
𝑛𝑛−1

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)(𝑣𝑣 − 𝑢𝑢+𝑑𝑑 −1)𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑−2

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑

+
𝑑𝑑(𝑑𝑑 − 1)𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑−2(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑) − 2𝑑𝑑(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣−𝑢𝑢+2𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+2𝑑𝑑−2

   (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑)2

+
2(𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑−1)2(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑡𝑡𝑣𝑣−𝑢𝑢+𝑑𝑑)

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑)3 �  

Thus,
 

𝐺𝐺𝑛𝑛′′ (1) = 𝑢𝑢𝑢𝑢(𝑢𝑢𝑢𝑢 − 1)𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛  𝑝𝑝𝑢𝑢𝑢𝑢 �
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�
𝑛𝑛

 

+2𝑢𝑢𝑢𝑢2𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛  𝑝𝑝𝑢𝑢𝑢𝑢 �
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�
𝑛𝑛−1

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
+
𝑑𝑑𝑝𝑝𝑑𝑑(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑)

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)2 �  

+𝑛𝑛(𝑛𝑛 − 1)𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛  𝑝𝑝𝑢𝑢𝑢𝑢 �
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�
𝑛𝑛−2

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑

+
𝑑𝑑𝑝𝑝𝑑𝑑(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑)

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)2 �
 2
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Probability Distribution of Sum of Sides of a Geometric Figure Indexed in Arithmetic Sequence

Notes



+𝑛𝑛𝑞𝑞(𝑘𝑘−𝑣𝑣)𝑛𝑛  𝑝𝑝𝑢𝑢𝑢𝑢 �
𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�
𝑛𝑛−1

�
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑 − 1)𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑

+
𝑑𝑑(𝑑𝑑 − 1)𝑝𝑝𝑑𝑑(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) − 2𝑑𝑑(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣−𝑢𝑢+2𝑑𝑑

   
(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)2

+
2(𝑑𝑑𝑝𝑝𝑑𝑑)2(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑)

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑   )3 �

 

The result follows by applying the normalization condition and the variance can 

be computed using the standard definition 𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋𝑛𝑛
(𝑚𝑚 ,𝑘𝑘)� = 𝐺𝐺𝑛𝑛′′ (1) + 𝐺𝐺𝑛𝑛 ′(1) − �𝐺𝐺𝑛𝑛′(1)�

2

 

this completes the proof.

 

Corollary 3.6

 

Let

 

𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

 

be a random variable that count the total score in n rolls of an 

(𝑣𝑣−𝑢𝑢
𝑑𝑑

+ 1)-sided geometric figure with turn-up side probabilities 𝑇𝑇(𝑥𝑥, 𝑣𝑣 − 𝑥𝑥)  satisfying 

the condition  𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)

 

, with range 𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 + 2𝑑𝑑, … , 𝑣𝑣. 
Then the mean and variance are determined by

 

(𝑖𝑖)   𝐺𝐺𝑛𝑛′(1) = 𝐸𝐸 �𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

� = 𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑝𝑝𝑑𝑑 �
𝑑𝑑 − (𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�

 

(𝑖𝑖)  𝐺𝐺𝑛𝑛 ′′ (1) = 𝑢𝑢𝑢𝑢(𝑢𝑢𝑢𝑢 − 1) + 2𝑢𝑢𝑢𝑢2𝑝𝑝𝑑𝑑 �
𝑑𝑑 − (𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�

 

+𝑛𝑛(𝑛𝑛 − 1) �
𝑑𝑑𝑞𝑞𝑑𝑑 − (𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣+𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑
�

2

+ 𝑛𝑛 �
−(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑 − 1)𝑝𝑝𝑣𝑣+𝑑𝑑 + 𝑑𝑑(𝑑𝑑 − 1)𝑝𝑝𝑑𝑑

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑

+
2�𝑑𝑑𝑞𝑞𝑑𝑑�2 − 2𝑑𝑑(𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑)𝑝𝑝𝑣𝑣+2𝑑𝑑

(𝑞𝑞 − 𝑝𝑝)2
�

 

Corollary 3.7

 

Let

 

𝑋𝑋𝑛𝑛
(𝑣𝑣−𝑢𝑢+1,𝑣𝑣−𝑢𝑢+1)

 

be a random variable that count the total score in n rolls of a 

(𝑣𝑣 − 𝑢𝑢 + 1)-sided geometric figure with turn-up side probabilities 𝑇𝑇(𝑥𝑥, 𝑣𝑣 − 𝑥𝑥)  satisfying 

the condition 𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+1 − 𝑝𝑝𝑣𝑣−𝑢𝑢+1) = (𝑞𝑞 − 𝑝𝑝)

 

, with range  𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 1,𝑢𝑢 + 2, 𝑢𝑢 +
3, … , 𝑣𝑣. Then the mean and variance are determined by

 

(𝑖𝑖)   𝐺𝐺𝑛𝑛′(1) = 𝐸𝐸�𝑋𝑋𝑛𝑛
(𝑣𝑣−𝑢𝑢+1,𝑣𝑣−𝑢𝑢+1)� = 𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑝𝑝 �

1 − (𝑣𝑣 − 𝑢𝑢 + 1)𝑝𝑝𝑣𝑣

(𝑞𝑞 − 𝑝𝑝)
�
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Notes



(𝑖𝑖)  𝐺𝐺𝑛𝑛′′ (1) = 𝑢𝑢𝑢𝑢(𝑢𝑢𝑢𝑢 − 1) + 2𝑢𝑢𝑢𝑢2 �
𝑝𝑝

(𝑞𝑞 − 𝑝𝑝) +
−(𝑣𝑣 − 𝑢𝑢 + 1)𝑝𝑝𝑣𝑣+1

𝑞𝑞 − 𝑝𝑝
�

+ 𝑛𝑛(𝑛𝑛 − 1) �
𝑝𝑝

(𝑞𝑞 − 𝑝𝑝) +
−(𝑣𝑣 − 𝑢𝑢 + 1)𝑝𝑝𝑣𝑣+1

𝑞𝑞 − 𝑝𝑝
�

2

+ 𝑛𝑛 �
−(𝑣𝑣 − 𝑢𝑢 + 1)(𝑣𝑣 − 𝑢𝑢)𝑝𝑝𝑣𝑣+1

𝑞𝑞 − 𝑝𝑝

 
+

2𝑝𝑝2(1 − (𝑣𝑣 − 𝑢𝑢 + 1)𝑝𝑝𝑣𝑣)
(𝑞𝑞 − 𝑝𝑝)2 �

 

Theorem 3.8 

 

Let

 

𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �

 

be a random variable that count the total score in 𝑗𝑗

 

rolled of a 

(𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

)-sided geometric figure with turn-up side probabilities 𝑇𝑇(𝑥𝑥, 𝑣𝑣 − 𝑥𝑥)  satisfying the 

condition 𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)
 

, with range  𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 + 2𝑑𝑑, … , 𝑣𝑣. 
Then the recursion formula for the probability mass function (𝑝𝑝𝑝𝑝𝑝𝑝)

 

is given by

 

𝑃𝑃 ��𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑟𝑟;𝑑𝑑�� =  � 𝑓𝑓𝑗𝑗−1(𝑟𝑟 − 𝑢𝑢 − (𝑥𝑥 − 1)𝑑𝑑)

𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

𝑥𝑥=1

𝑝𝑝𝑥𝑥𝑞𝑞𝑣𝑣−𝑥𝑥 ;  𝑗𝑗𝑗𝑗 ≤ 𝑟𝑟 ≤ 𝑗𝑗𝑗𝑗, 𝑗𝑗 = 1,2,⋯ , 𝑛𝑛

 

Proof.  

Now, let 𝑥𝑥𝑗𝑗 ∈ {𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 + 2𝑑𝑑,⋯ , 𝑣𝑣}

 

be the number that turns up when the 𝑗𝑗𝑗𝑗ℎ

 

die is rolled for each �𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

�-sided die for 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛. It then follows that the 

probability distribution for each 𝑥𝑥𝑗𝑗

 

is given by

 

𝑓𝑓(𝑥𝑥;𝑑𝑑) = 𝑝𝑝𝑥𝑥𝑞𝑞𝑣𝑣−𝑥𝑥  ;𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑,𝑢𝑢 + 2𝑑𝑑,⋯ , 𝑣𝑣   

 

It follows that 𝑃𝑃��𝑥𝑥𝑗𝑗 = 𝑥𝑥�� = 𝑓𝑓1(𝑥𝑥;𝑑𝑑) = 𝑓𝑓(𝑥𝑥;𝑑𝑑)

 

for each �𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

�-sided geometric 

figure, so that if we define the random variable

 

𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑗𝑗

 

to be the 

sum of the  𝑗𝑗

 

rolled of each �𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

�-sided die such that  𝑃𝑃 ��𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑥𝑥�� = 𝑓𝑓𝑗𝑗 (𝑥𝑥;𝑑𝑑)

 

and ∑ 𝑓𝑓0(𝑥𝑥;𝑑𝑑)𝑣𝑣
𝑥𝑥=𝑢𝑢 = 1.  

 

If 𝑟𝑟 ∈ [𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗], then for any event �𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑟𝑟�

 

we have that

 

�𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑟𝑟� = ��𝑆𝑆𝑗𝑗−1

�𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

= 𝑟𝑟 − 𝑥𝑥, 𝑥𝑥𝑗𝑗 = 𝑥𝑥�
𝑣𝑣

𝑥𝑥=𝑢𝑢

 

Which implies that

 

𝑃𝑃 ��𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑟𝑟�� = 𝑃𝑃 ���𝑆𝑆𝑗𝑗−1

�𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

= 𝑟𝑟 − 𝑥𝑥, 𝑥𝑥𝑗𝑗 = 𝑥𝑥�
𝑣𝑣

𝑥𝑥=𝑢𝑢

�
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Notes



= �𝑓𝑓𝑗𝑗−1(𝑟𝑟 − 𝑥𝑥)𝑓𝑓(𝑥𝑥)
𝑣𝑣

𝑥𝑥=𝑢𝑢

= �𝑓𝑓𝑗𝑗−1(𝑟𝑟 − 𝑥𝑥)
𝑣𝑣

𝑥𝑥=𝑢𝑢

𝑝𝑝𝑥𝑥𝑞𝑞𝑣𝑣−𝑥𝑥 = � 𝑓𝑓𝑗𝑗−1(𝑟𝑟 − 𝑢𝑢 − (𝑥𝑥 − 1)𝑑𝑑)

𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

𝑥𝑥=1

𝑝𝑝𝑥𝑥𝑞𝑞𝑣𝑣−𝑥𝑥

 

If we are dealing with a fair (balanced) die �𝑖𝑖. 𝑒𝑒  𝑞𝑞 = � 𝑑𝑑
𝑣𝑣−𝑢𝑢+𝑑𝑑

�
1
𝑣𝑣 = 𝑝𝑝�

 

then the 

corollary that follows is a consequence of theorem 3.1 above. 

 

Corollary 3.9

 

Let

 

𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �

 

be a random variable that count the total score in 𝑗𝑗

 

rolled of a 

(𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

)-sided fair die and turn-up side probabilities 𝑇𝑇(𝑥𝑥, 𝑣𝑣 − 𝑥𝑥)  satisfying the condition  

𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = (𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑)

 

, with range  𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑, 𝑢𝑢 + 2𝑑𝑑, … , 𝑣𝑣. Then the 

recursion formula for the probability mass function (𝑝𝑝𝑝𝑝𝑝𝑝)

 

is given by

 

𝑃𝑃 ��𝑆𝑆𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑟𝑟;𝑑𝑑�� = �

𝑑𝑑
𝑣𝑣 − 𝑢𝑢 + 𝑑𝑑

� � 𝑓𝑓𝑗𝑗−1(𝑟𝑟 − 𝑢𝑢 − (𝑥𝑥 − 1)𝑑𝑑)

𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

𝑥𝑥=1

;

 

 

𝑗𝑗𝑗𝑗 ≤ 𝑟𝑟 ≤ 𝑗𝑗𝑗𝑗, 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛.

 

Also, to obtain recurrence formula result that conform to the probability 
distribution due to

 

Balasubramanian et al (1994)  and Okoli (2017) for the case of a fair 
die, we simply put 𝑑𝑑 = 1, 𝑢𝑢 = 0

 

, 𝑣𝑣 = 𝑚𝑚 − 1

 

and 𝑑𝑑 = 1, 𝑢𝑢 = 1, 𝑣𝑣 = 𝑚𝑚

 

to obtain several 
corollaries which are results of some authors in the literature (see Ashok et al (2011);

 

Balasubramanian, (1995); Okoli (2017); Okoli (2017)).

 

Theorem 3.10

 

Let

 

𝑆𝑆𝑗𝑗
�𝑘𝑘−𝑢𝑢+𝑑𝑑

𝑑𝑑 �

 

be a random variable that count the total score in 𝑗𝑗

 

rolled of a 

(𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑

)-sided die and turn-up side probabilities 𝑇𝑇(𝑥𝑥,𝑘𝑘 − 𝑥𝑥)  satisfying the condition  

𝑝𝑝𝑢𝑢(𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑) = 𝑞𝑞𝑣𝑣−𝑘𝑘

 

(𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑), with range  𝑥𝑥 = 𝑢𝑢,𝑢𝑢 + 𝑑𝑑, 𝑢𝑢 + 2𝑑𝑑, … , 𝑣𝑣. Then the 

moment generating function (𝑚𝑚𝑚𝑚𝑚𝑚)

 

is given by  

 

𝑀𝑀(𝑡𝑡) = 𝐸𝐸 �𝑒𝑒𝑡𝑡𝑆𝑆𝑗𝑗
�𝑘𝑘−𝑢𝑢+𝑑𝑑

𝑑𝑑 �

� = �𝑞𝑞𝑘𝑘−𝑣𝑣  𝑝𝑝𝑢𝑢𝑒𝑒𝑡𝑡𝑡𝑡
�𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑒𝑒𝑡𝑡(𝑣𝑣−𝑢𝑢+𝑑𝑑)�

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑒𝑒𝑡𝑡𝑡𝑡
�
𝑛𝑛

  

 

Proof  

Now, observe that the moment generating function (mgf) of 𝑆𝑆𝑗𝑗
�𝑘𝑘−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
  constitute 

a convolution of  𝑋𝑋𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

 (𝑗𝑗 = 1,2,3, …𝑛𝑛). Where each 𝑋𝑋𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

 

is an 

independent identically distributed (iid) random variables corresponding to the scores of 

�𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑

�-sided die and turn-up side probabilities (𝑥𝑥,𝑘𝑘 − 𝑥𝑥)

 

. Thus
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= �𝑃𝑃��𝑆𝑆𝑗𝑗−1
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑟𝑟 − 𝑥𝑥, 𝑥𝑥𝑗𝑗 = 𝑥𝑥��

𝑣𝑣

𝑥𝑥=𝑢𝑢

= �𝑃𝑃��𝑆𝑆𝑗𝑗−1
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
= 𝑟𝑟 − 𝑥𝑥��𝑃𝑃��𝑥𝑥𝑗𝑗 = 𝑥𝑥��

𝑣𝑣

𝑥𝑥=𝑢𝑢

Notes



𝑀𝑀(𝑡𝑡) = 𝐸𝐸 �𝑒𝑒𝑡𝑡𝑆𝑆𝑗𝑗
�𝑘𝑘−𝑢𝑢+𝑑𝑑

𝑑𝑑 �

� = 𝐸𝐸 �𝑒𝑒∑ 𝑡𝑡𝑡𝑡𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �𝑛𝑛

𝑗𝑗=1 �
 

= �𝐸𝐸�𝑒𝑒𝑡𝑡𝑡𝑡𝑗𝑗
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,    
𝑘𝑘−𝑢𝑢+𝑑𝑑

𝑑𝑑 �

�
𝑛𝑛

𝑗𝑗=1

= �𝑞𝑞𝑘𝑘−𝑣𝑣   𝑝𝑝𝑢𝑢𝑒𝑒𝑡𝑡𝑡𝑡
�𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑒𝑒𝑡𝑡(𝑣𝑣−𝑢𝑢+𝑑𝑑)�

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑒𝑒𝑡𝑡𝑡𝑡
�
𝑛𝑛

 

This completes the proof.  

Observe that we can easily deduce the result of this  moment generating function 
(𝑚𝑚𝑚𝑚𝑚𝑚)  for the probability distribution function from theorem 3.1. to give  

𝑀𝑀(𝑡𝑡) = 𝐸𝐸 �𝑒𝑒𝑡𝑡𝑋𝑋𝑛𝑛
�𝑣𝑣−𝑢𝑢+𝑑𝑑

𝑑𝑑 ,   
𝑘𝑘−𝑢𝑢+𝑑𝑑

𝑑𝑑 �
� = �𝐸𝐸�𝑒𝑒𝑡𝑡𝑋𝑋𝑗𝑗

�𝑣𝑣−𝑢𝑢+𝑑𝑑
𝑑𝑑 ,   

𝑘𝑘−𝑢𝑢+𝑑𝑑
𝑑𝑑 �

�
𝑛𝑛

𝑗𝑗=1

= �𝑞𝑞𝑘𝑘−𝑣𝑣  𝑝𝑝𝑢𝑢𝑒𝑒𝑡𝑡𝑡𝑡
�𝑞𝑞𝑣𝑣−𝑢𝑢+𝑑𝑑 − 𝑝𝑝𝑣𝑣−𝑢𝑢+𝑑𝑑𝑒𝑒𝑡𝑡(𝑣𝑣−𝑢𝑢+𝑑𝑑)�

𝑞𝑞𝑑𝑑 − 𝑝𝑝𝑑𝑑𝑒𝑒𝑡𝑡𝑡𝑡
�
𝑛𝑛 

IV  .
 

Discussion
 

and Conclusion
 

Observe that several other corollaries can be deduce from the theorems above 
which reduces to the results obtained in Ashok et al (2011);

 
Balasubramanian, (1995);

 

Okoli (2017); Okoli (2017) as special cases. Succinctly, it follows that; if 𝑢𝑢 = 0,𝑑𝑑 = 1
 

and 𝑘𝑘 = 𝑣𝑣 = 𝑚𝑚 − 1, we obtain the results of Balasubramanian et al
 

(1995), if 𝑢𝑢 = 0, 
𝑑𝑑 = 1

 
and 𝑘𝑘 ≤ 𝑣𝑣 = 𝑚𝑚− 1, we obtain the results of Okoli (2017), if 𝑢𝑢 = 1,𝑑𝑑 = 1

 
and 

𝑘𝑘 ≤ 𝑣𝑣 = 𝑚𝑚, we obtain the results of Okoli (2017) and if 𝑢𝑢 = 1,𝑑𝑑 = 1  
and 𝑘𝑘 = 𝑣𝑣 = 6, we 

obtain the results of Ashok et al (2011). Hence, the results of this research work unifies 
and improves the works of several researchers in this direction, haven shown that the 
existing results in the literature can be deduce easily from the results in this paper.
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