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Cosmological Lambda–term is now widely used to explain dark energy [1]–[3]. Einstein
himself considered the introduction of the Lambda–term the biggest mistake of his life. In this
paper we show that in the classical action the contribution of other components is difficult
to be distinguished from the Lambda’s contribution, so Einsteins’ suspicions can be justified.
To compare these contributions, we need to rewrite some of them through the distribution
functions, as is done in the derivation of the Vlasov equations. We derive the Vlasov–Maxwell–
Einstein equation [4]–[5] via classical actions and Maxwell Lagrangian and Poincare–Einstein–
Schwarzschild–Hilbert–Pauli Lagrangian.

Vlasov–like equations live an amazing life now. Not only the area of their applications
expands all the time, but also new names emerge constantly. There already are the Vlasov–
Poisson equations for gravity, plasma and electrons, the Vlasov–Maxwell equations for electro-
dynamics and the Vlasov–Einstein equations for strongly relativistic gravity. In this paper, we
present the Vlasov–Maxwell-Einstein equations. The name choice is natural because it originates
from the classical Lagrangians of the General Theory of Relativity (GTR) and electrodynamics

Abstract- The Vlasov-Maxwell-Einstein equations are derived from classical action of Lorentz–Schwarzschild–Hilbert–Einstein. 
We need and get synchronization of times of different particles. On the basis of obtained results we analyze Einstein’s 
Lambda–term and its connection with dark energy.
Keywords: einstein lambda–term, vlasov–type equation, vlasov–einstein equation, synchronization of times, dark 
energy.

[6]–[10]. When deriving Vlasov–like equations from the classical Lagrangians [6]–[9] according
to [11]–[18], the Liouville equations are first derived. In the case of the Vlasov–Maxwell–
Einstein equations, new difficulties arise. We need to synchronize times of different particles
and compare different forms of Lagrangians for their geodesics. The interval integral appears,
which is usually assumed to be unity [6]–[10]. It is impossible to synchronize the times without
this integral, and therefore write down the Vlasov–Einstein equation for many particles. To
obtain the self–consistent field equations, it’s required to transform the classical actions from
Lagrangian coordinates to Eulerian coordinates using distribution functions.

The work plan is as follows. Firstly, we consider the theory of geodesics with an electromag-
netic field for classical Lagrangians. In the second section we consider the connection of two
forms of general relativistic actions. In the third section a multiparticle problem leads to time
synchronization. We write out the Hamiltonian formulation and write down a Liouville equation.
The fourth part is about the application of the Hamiltonian formalism for time-independent
fields. The next section is about the integration of the geodesic equations in fields that depend
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Authorα: Keldysh Institute of Applied Mathematics of RAS, Moscow, Russian Federation, RUDN-University, Moscow, Russian Federation. 
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only on time using the Hamiltonian formalism. In the last section we finally derive the Vlasov–
Maxwell–Einstein equations.

The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

Let’s consider the GTR action in the presence of an electromagnetic field [6]–[10], describing
the movement of particles of m mass and e electric charge:

S1 = −mc
∫ √

gab
dxa

dq

dxb

dq
− e

c

∫
Aa
dxa

dq
dq (1)

Here gab(x) is a metric in 4-dimensional space-time x ∈ R4, and Aa(x) is the potential of an
electromagnetic field (a, b = 0, 1, 2, 3). Repeating superscripts and subscripts are summed up
here and thereafter. Such an action is inconvenient for the Hamiltonian formalism, since its
Hamiltonian is zero by the Euler’s homogeneous function theorem. Indeed, the Lagrangian is a
linear expression in velocities. The transition to a more convenient action is more or less known
in the literature [6]–[9], but wasn’t strictly justified, so we will give the proof for it. Take a look
at this action

S = − mc

2
√
I

∫
gab(x)

dxa

dq

dxb

dq
dq − e

c

∫
Aa
dxa

dq
dq (2)

The value of I = gab
dxa

dq
dxb

dq
in constant, as we will see later. The connection of (1) and (2) is

justified by the following general lemma.

Consider an action with kernel

k

∫
L(x,

dx

dq
)dq +

∫
L1(x,

dx

dq
)dq (3)

and another action with kernel∫
h(L)(x,

dx

dq
)dq +

∫
L1(x,

dx

dq
)dq, (4)

where h(L) is a some function of L Lagrangian. Let’s compare their Euler-Lagrange equations.

The Lemma is as follows: If these conditions are true

1. L Lagrangian is an integral of motion for (3) action.

2. k from (3) must be equal to the derivative of h(L) from (4), that is k = dh(L)
dL

.

Then (3) and (4) are equivalent, which means that their Euler-Lagrange equations are the same.

The proof is to compare the Euler-Lagrange equation for (4) action

d2h

dL2

dL

dq

∂L

∂v
+
dh

dL

d

dq

∂L

∂v
+

d

dq

∂L1

∂v
=
dh

dL

∂L

∂x
+
∂L1

∂x
,

with the same for (3) action

II. The Equivalence of Two Actions in the General Relativity Theory (GTR)

© 2019   Global Journals
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The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

k
d

dq

∂L

∂v
+

d

dq

∂L1

∂v
= k

∂L

∂x
+
∂L1

∂x
.

The corollary: the (1) action and the (2) action are equivalent. To see this, we need to set

h(L) = −mc
√
L, L = gab

dxa

dq

dxb

dq
, L1 = −e

c
Aa
dxa

dq
(5)

The first condition is satisfied by the same Euler’s homogeneous function theorem, because the
Hamiltonian for (2) action is proportional to the Lagrangian from (5), since L is quadratic in
velocities, and L1 is linear in velocities. The second condition: k from (3) is exactly equal to
the derivative of h(L): k = dh

dL
= − mc

2
√
L
. This coefficient stands before the first term in the (2)

action. I denotes a persistent value of L from (5), that is the interval squared. Usually [6]–[9]
a natural parameter s is taken instead of arbitrary q. They are connected by a simple formula
ds =

√
Idq, which follows from the comparison of ds and I.

Let’s write down the Euler–Lagrange equations for (1) and (2) actions. In contrast to the
usual derivations [6]–[9], [19], we assume the value of the interval is not a unity, but

√
I.

mc√
I

d

dq
(gab

dxb

dq
) +

e

c

d

dq
Aa =

mc

2
√
I

∂gbc
∂xa

dxb

dq

dxc

dq
+
e

c

∂Ab
∂xa

dxb

dq
(6)

From the (6) system, it can be seen that without electromagnetic fields, mc√
I
factors are

reduced, and the equations do not depend on which parameter is taken, the interval s or the
initial q parameter. But if electromagnetic field is present, there will be different equations.
A transition to the natural parameter s is possible, which follows from (6). However, this
possibility is absent in multiparticle problems, as we will see below.

Let’s consider a multiparticle problem of motion in a gravitational and electromagnetic field.
Consider an action similar to (1) for an ensemble of particles.

S1 = −
∑
r

mrc

∫ √
gab

dxar
dq

dxbr
dq

dq −
∑
r

er
c

∫
Aa
dxar
dq

dq (7)

We can again come to (2)-type Lagrangian and get an equivalent action

S = −
∑
r

mrc

2
√
Ir

∫
gab(x)

dxar
dq

dxbr
dq

dq −
∑
r

er
c

∫
Aa
dxar
dq

dq (8)

It should be noted that here an r index appears which numbers the particles. Values of Ir integral
denoting the particles’ interval sizes are not necessarily the same. Here we have synchronized
the proper time of the particles dsr =

√
Irdq in the following sense: 1) we have showed that the

impossibility of synchronizing the dsr intervals themselves is come from the different values of
Ir; 2) we have showed how different proper times are related: the q parameter for all particles is
the same. It’s important that the Ir integrals depend on parametrization, but their ratio does
not, so it’s convenient to rewrite the action (8) via the ds interval of some particle (observer).

III. Multiparticle Problem, Time Synchronization, Hamiltonian Formulation and
Liouville Equation
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The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

S = −
∑
r

mrc
√
I

2
√
Ir

∫
gab(x)

dxar
ds

dxbr
ds

ds−
∑
r

er
c

∫
Aa
dxar
ds

ds.

Using the usual momentum formulae, from (2) or (7) or (8) we get

Qra =
∂L

∂var
= −mrc√

Ir
gab(xr)

dxbr
dq
− er

c
Aa(xr) (9)

These Qra are the canonical “long” momenta [6]–[9]. Then the velocities expressed through the
long momenta are

dxbr
dq

= −
√
Ir

mrc
gab(xr)(Qra +

er
c
Aa) (10)

dQra

dq
=

∑
r

√
Ir

mrc
(Qrd +

er
c
Ad(xr))

∂gdb

∂xa
(xr)(Qrb +

er
c
Ab(xr))+

er
√
Ir

mrc2
(Qrd +

er
c
Ad(xr))g

db∂Ad
∂xar

(11)

There is a Hamiltonian for which the equations (10) and (11) are canonical:

H =
∑
r

√
Ir

mrc
(Qra +

er
c
Aa(xr))g

ab(xr)(Qrb +
er
c
Ab(xr))

The integrals
√
Ir do the time synchronization here, leading to differentiation by the same

parameter q. Now we write the corresponding Liouville equation for the distribution function
fr(x, p, q).

∂fr
∂q
−
√
Ir

mrc
gab(x)(Qa +

er
c
Aa)

∂fr
∂xb

+

(

√
Ir

mrc
(Qd +

er
c
Ad(x))

∂gdb

∂xa
(Qb +

er
c
Ab(x))+

er
√
Ir

mrc2
(Qd +

er
c
Ad(x))gdb

∂Ad
∂xa

)
∂fr
∂Qa

= 0

(12)

Here indices r have moved from the momenta and the coordinates to the distribution function
fr(x, p, q) as usual [10]–[18], and the equations depend on the indices only through mass, charges
and intervals squared, i.e. Ir.

Let’s write out the stationary form of this equation, where fr(x, p, q) does not depend on q,
this is how the Vlasov–Einstein equation is usually written [10], [15], [16].

−gab(x)(Qrb +
er
c
Ab)

∂fr
∂xa

+

(
∂gbd

∂xa
(Qrd +

er
c
Ad)(Qrb +

er
c
Ab)+

er
c
Fab(x)gdb(Qrd +

er
c
Ad))

∂fr
∂pa

= 0

(13)

© 2019   Global Journals
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The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

The integrals Ir and the masses mr have disappeared, but the electric charges er have not.
Compare now the resulting equations with those when using “short” momenta in (7) without
the electromagnetic field.

pra = −mrc√
Ir
gab(xr)v

b
r, vbr =

dxbr
dq

(14)

We have obtained the first-order equations for the (7) (or (8)). They are non-Hamiltonian, but
divergence-free. For the sake of clarity, we will use the proper time of some particle (observer)
s, ds =

√
Idq when synchronizing, instead of the affine parameter q.

dxbr
ds

= −
√
Ir

mrc
√
I
gab(xr)pra,

d

ds
(pra) = −

√
Ir

mrc
√
I

∂gbd

∂xa
prbprd +

er
c

√
Ir

mrc
√
I
Fab(xr)g

db(xr)prd

(15)

Let’s write the Liouville equation for the distribution function fr(x, p, s) of particles with
masses mr and electric charges er over the 4-space x, 4-momentum p with s as a parameter.

∂fr
∂s
−
√
Ir

mrc
√
I
gab(x)pa

∂fr
∂xb

+

(−
√
Ir

mrc
√
I

∂gbd

∂xa
pbpd +

er
c

√
Ir

mrc
√
I
Fab(x)gdbpd)

∂fr
∂pa

= 0

(16)

The stationary form of this equation, i.e. fr(x, p, s) does not depend on s:

−gab(x)pa
∂fr
∂xb

+ (−∂g
bd

∂xa
pbpd +

er
c
Fab(x)gdbpd)

∂fr
∂pa

= 0 (17)

So, we have obtained the stationary ((13) or (17)) Liouville equations, also non-stationary
((12) or (16)) ones. We can see that when transforming (12) to (13) or (16) to (17) the integrals
√
Ir and the masses mr are being reduced, but the charges er are not.

It can be seen from (6) that in the stationary case, when the metric gab and vector potentials
Aa do not depend on the time coordinate x0 = ct, the right-hand side in (6) disappears when
a = 0, and we can integrate the left side

mc√
I

(g0b
dxb

dq
) +

e

c
A0 = −Q0 (18)

To understand what the integral (18) is, let’s take the weakly relativistic metric [8, Eq.
(87.13)]:

gab = (1 +
2U

c2
,−1,−1,−1)

IV. Analysis of Special Cases of Euler–Lagrange Equations

a) Landau Metric 
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The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

Then the integral (18) becomes

mc√
I

(1 +
2U

c2
)(
dx0

dq
) +

e

c
A0 = −Q0 (19)

The remaining equations (6) take the following form

mc√
I

d

dq
(
dxj

dq
) +

e

c

d

dq
Aj =

mc

c2
√
I

∂U

∂xj
(
dx0

dq
)2 +

e

c

∂Ab
∂xj

dxb

dq
, j = 1, 2, 3. (20)

We can exclude q differentiation, replacing it with x0 or t differentiation, and the equations
will acquire a familiar form of dynamics in the electromagnetic field with Lorentz force and
electrostatics and gravitational potential U , but the effective mass expression is quite interesting.

d

dt
(M

dxj

dt
) = −M ∂U

∂xj
+
e

c
Fbj

dxb

dt
(21)

Here Fab are common field expressions by potentials [6]–[18], and the expression for effective
mass M is

M = −
Q0

c
+ e

c2
A0

1 + 2U
c2

(22)

We can see how the effective mass (22) depends on gravitational and electric fields, therefore Q0

can be considered as zero component of the momentum or energy outside the fields. It should
be noted that all calculations are accurate when using the Lagrangian (2). Let’s write out the
expression for Q0, replacing q differentiation with t one in (18), also get the final expression for
the effective mass.

Q0 = −
mc(1 + 2U

c2
)√

1− v2

c2
+ 2U

c2

− e

c
A0, M =

m√
1− v2

c2
+ 2U

c2

Let’s consider now the Fock metric [7] (weakly relativistic also):

gab = (1 +
2U

c2
,−(1− 2U

c2
),−(1− 2U

c2
),−(1− 2U

c2
))

The equation of motion takes a more complex form than (21)

d

dt
(M

dxj

dt
) = −M

1 + v2

c2

1− 2U
c2

∂U

∂xj
+
e

c
Fbj

dxb

dt

The Q0 and M expressions are as follows

Q0 = −
mc(1 + 2U

c2
)√

1− v2

c2
+ 2U

c2
+ 2Uv2

c4

− e

c
A0, M = −

(Q0

c
+ e

c2
A0)(1− 2U

c2
)

1 + 2U
c2

Finally, for the effective mass we get

b) Fock Metric
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The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

M =
m(1− 2U

c2
)√

1− v2

c2
+ 2U

c2
+ 2Uv2

c4

.

Let the metric and the gravitational and electromagnetic fields depend only on time, which
means that the universe in completely uniform. In this case, the (6) equations can be integrated
via Hamiltonian mechanics, but it is interesting to look at specific aspects. We have three motion
integrals

mc√
I

(gdb
dxb

dq
) +

e

c
Ad = Qd, d = 1, 2, 3 (23)

We use the integral of “energy” instead of the equation for the zero component, that is the
interval squared:

I = gab
dxa

dq

dxb

dq

Now we get that all small momenta are determined as time functions from (14) and (23):

pd =
e

c
Ad −Qd, d = 1, 2, 3 (24)

The last zero component is determined as a time function from the analogue of the “energy
integral”, that is the square of the interval for the momenta:

gabpapb = m2c2 (25)

Here we come to a well-known relation that leads to the Hamilton-Jacobi method [6]–[17].
The equations for determining all coordinates are

dxa

dq
= −
√
I

mc
gda(x0)pd (26)

We can exclude q via dividing the three equations (23) for d = 1, 2, 3 by the equation for d = 0.

dxa

dx0
=
gda(x0)pd(x

0)

g0d(x0)pd(x0)
=
gda(x0)( e

c
Ad(x

0)−Qd)

g0d(x0)( e
c
Ad(x0)−Qd)

, a = 1, 2, 3 (27)

We have obtained equations where terms depend only on time, and these equations can
be easy integrated. The solutions are significant generalizations of de Sitter space [17]. Such
equations would be appropriate to be applied to the question of dark energy and dark matter
[1], [18].

When deriving the Vlasov-Maxwell-Einstein equations according to [11]–[14], [18], we use
the classical action [6]–[10]:

c) Uniform Universe: Solutions that Depend Only on Time

V. Vlasov-Maxwell-Einstein Equations
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The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

S =−
∑
r,λ

mrc

∫ √
gab

dxar,λ
dq

dxbr,λ
dq

dq −
∑
r,λ

er
c

∫
Aa
dxar,λ
dq

dq

− 1

16πc

∫
FabF

ab
√
−gd4x+ k

∫
(R + Λ)

√
−gd4x

(28)

Here k = −c3
16πγ

, and Λ is the cosmological term. The particles are divided into classes indexed
by r with different masses and electric charges, also individual particles are indexed by λ inside
each class.

In order to obtain field equations and relate the fields with the distribution function fr(x, p, q),
we need to rewrite the first two terms of (25) via this distribution function, then do the variation
by fields. Let’s rewrite (28), replacing q with t.

S =−
∑
r,λ

mrc

∫ √
gab

dxar,λ
dt

dxbr,λ
dt

dt−
∑
r,λ

er
c

∫
Aa
dxar,λ
dt

dt

− 1

16πc

∫
FabF

ab
√
−gd4x+ k

∫
(R + Λ)

√
−gd4x

(29)

We can express the velocities through the momenta, excluding q by dividing all the equations
from (15) by the equation for zero component.

dxa

dt
= c

gda(x)pd
g0d(x)pd

, a = 1, 2, 3, 4 (30)

Indices r, λ are omitted here, and we took into account that t = x0

c
. Substituting (30) instead

of velocities in (29), we get the action expressed through momenta.

S =−
∑
r,λ

mrc
2

∫ √
prλa g

da(xrλ)prλd
gd0(xrλ)prλd

dt−
∑
r,λ

er

∫
Aag

da(xrλ)p
rλ
d

gd0(xrλ)prλd
dt

− 1

16πc

∫
FabF

ab
√
−gd4x+ k

∫
(R + Λ)

√
−gd4x

(31)

Next, we replace summation over λ by integration over momenta and space with distribution
function fr(x, p), x ∈ R4, p ∈ R4:

S =−
∑
r

mrc
2

∫ √
pag

da(x)pd
gd0(x)pd

fr(x, p)d
4xd4p

−
∑
r

er

∫
Aag

da(x)pd
gd0(x)pd

fr(x, p)d
4xd4p

− 1

16πc

∫
FabF

ab
√
−gd4x+ k

∫
(R + Λ)

√
−gd4x

(32)
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It is impossible to find out experimentally which terms in (32) we deal with. At present,
experiments show that the Lambda depends on time. This fact can be instantly obtained from
(32), as well as dependence on space.

Reverse transition from the action (32) to the action (31) can be done by substitution
fr(x, p) =

∑
λ δ(x − xrλ(t))δ(p − prλ(t)), which can be considered as a verification. So, we got

The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

the derivation scheme of the Vlasov–Maxwell–Einstein equations. Let’s consider the expression
(32), taking into account that the cosmological constant is now used for dark energy modeling
[1], [20]. The first three terms of (28) action can play the role of Λ-term in (32), therefore the
dark energy can be composed of these three terms with some coefficients.

ΛDE(x) =− λf
16πck

FabF
ab − λp

∑
r

mrc
2

√
−gk

∫ √
pag

da(x)pd
gd0(x)pd

fr(x, p)d
4p

− λpf
∑
r

er√
−gk

∫
Aag

da(x)pd
gd0(x)pd

fr(x, p)d
4p,

ΛM(x) =− (1− λf )
16πck

FabF
ab − (1− λp)

∑
r

mrc
2

√
−gk

∫ √
pag

da(x)pd
gd0(x)pd

fr(x, p)d
4p

− (1− λpf )
∑
r

er√
−gk

∫
Aag

da(x)pd
gd0(x)pd

fr(x, p)d
4p.

Here DE (Dark Energy) and M (Matter) stand for dark energy and matter, respectively. One
can take into account the contributions of any other fields in the same way. In fact we got
the opportunity not to introduce Einstein’s Λ–term a priori, but to get its counterpart from
the way how classical Lagrangians influence on matter. The signs of electrostatic energy and
Λ match here, so, apparently, the repulsion of dark energy is an electrostatic repulsion, and
most of the matter which is seen as dark energy, coincides with the cosmic plasma. There is
no need to consider any other candidates for dark energy, since we know that there are only
two types of long-range actions (gravity and electromagnetism), and any others would have
revealed themselves already. This can be well seen from the non-relativistic counterparts of the
action, that will be described in the other place. The trace of dark energy was found too: its
mathematical contribution to the action is the same as that of Einstein’s Λ.

The Vlasov–Einstein–Maxwell equations for the metric and the electric fields are obtained
by varying the action (32) by them. First we will vary by metric and get

k(Rab −
1

2
R− Λ

2
)
√
−g =

∑
r

mrc
2

∫
(

1

2p0
√
pdpd

−
√
pdpd

(p0)2p0
δb0)fr(x, p)papbd

4p+

∑
r

er

∫
(
(Aapb + Abpa)

2p0
− Adp

d

(p0)2p0
papbδ

b
0)fr(x, p)d

4p

+
1

16πc
FdcF

dc(−1

2

√
−g)gab

(33)

Now we will vary the electromagnetic potentials. We obtain the Maxwell equation in the
gravitational field.

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
20

19

19

  
 

( A
)

© 2019   Global Journals



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

2

16πc

∂(
√
−gF ab)

∂xb
=

∑
r

er

∫
gda(x)pd
gd0(x)pd

fr(x, p)d
4p (34)

Finally, we got the Vlasov–Maxwell–Einstein equation system (17), (33), (34).

So, we have derived the Vlasov–Maxwell–Einstein equation. There was necessary to synchro-
nize the proper times of different particles. We did this in two ways, first via the proper time
of a single particle, second via an “arbitrary parameter” q. It should be noted that similar
parameters in various sources are called differently: sometimes affine [17], [21], sometimes
canonical [22]; however, parameter qr (defined by relation dqr = dsr/

√
Ir) has principally new

physical meaning.
We have derived equations and obtained expressions for effective mass in stationary gravita-

tional and electromagnetic fields for the two metrics. Conversely, we have got solutions that
depend only on time. It’s interesting to compare the obtained form of the Vlasov–Maxwell–
Einstein equations with other versions and to classify them. Usually they are written out only
for the Vlasov–Einstein equations and with Christoffel symbols, and therefore not for momenta
but for velocities [15], [16], [23], [24]. They can also be derived according to our scheme. When
these equations are not derived, but written immediately as given ones, inaccuracies may occur.
When it comes to Vlasov-Einstein equations, the deriving seems necessary for the both Liouville
equation and field equation. When deriving the Liouville equation, the time synchronization
arise. The energy-momentum tensor in the field equations has to be taken arbitrarily, if there
is no deriving.

In the transition from (31) to (32) we have obtained the expressions which formally have the
same effect as the Einstein’s lambda. It seems promising to research all classical substitutions
for this equation that are well-known for the Vlasov equation: energetic and hydrodynamic
substitutions [11]–[14]. It’s also interesting to investigate the stationary solutions [25]–[32]. The
problem of classifying all time–dependent (spatially homogeneous) solutions is relevant and
interesting too, because it leads to cosmological solutions, which are now being actively studied.
The Hamilton–Jacobi equation methods [33]–[38] would be useful here. A very important task
is to obtain for the Vlasov–like equations a statement like “time averages” coincide with the
Boltzmann extremals [39]–[41].

VI. Conclusion

References  Références Referencias

1. A. D. Chernin, Dark energy and universal antigravitation, Physics – Uspekhi V. 51 (3), 253–282 (2008).
2. A. V. Serghienko and V. A. Rubakov, Phantom dark energy with tachyonic instability: metric perturbations, 

Theoretical and Mathematical Physics 173 (3), 1709–1719 (2012).
3. V. N. Lukash and V. A. Rubakov, Dark energy: myths and reality, Physics – Uspekhi 51 (3), 283–295 (2008).
4. V. V. Vedenyapin Vlasov–Maxwell–Einstein Equation. Preprints of the Keldysh Institute of Applied 

Mathematics, 188 (2018).
5. V. V. Vedenyapin, N. N. Fimin, and V. M. Chechetkin, On the Vlasov–Maxwell–Einstein equation and its non–

relativistic and weakly relativistic analogues. Preprints of the Keldysh Institute of Applied Mathematics, 265 
(2018).

6. W. Pauli, Theory of relativity (Pergamon Press, London, 1971)
7. V. A. Fock, The theory of space, time and gravitation (Pergamon, 2015).
8. L. D. Landau and E. M. Lifshitz, The classical theory of fields, Vol. 2 (Elsevier, 2013).

© 2019   Global Journals

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
20

19

20

  
 

( A
)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

9. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern geometry. Methods and applications. Part II: The 
geometry and topology of manifolds. Vol. 104. (Springer Science & Business Media, 2012).

10. A. A. Vlasov, Statistical distribution functions (Nauka, Moscow, 1966).
11. V. V. Vedenyapin and M.-B. A. Negmatov, Derivation and classification of Vlasov–type and magneto

hydrodynamics equations: Lagrange identity and Godunov’s form, Theoretical and Mathematical Physics. 
170 (3), 394–405 (2012)

12. V. V. Vedenyapin, M.-B. A. Negmatov, and N. N. Fimin, Vlasov–type and Liouville–type equations, their 
microscopic, energetic and hydrodynamical consequences, Izvestiya: Mathematics 81 (3), 505–541 (2017).

13. V. V. Vedenyapin and M.-B. A. Negmatov On derivation and classification of Vlasov type equations and 
equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass, 
Contemporary Mathematics. Fundamental Directions, 47, 5–17 (2013).

14. A. Sinitsyn, V. Vedenyapin, and E. Dulov, Kinetic Boltzmann, Vlasov and related equations (Elsevier, 2011).
15. Y. Choquet-Bruhat, General relativity and the Einstein equations (Oxford University Press, 2009).
16. G. M. Kremer and C. Cercignani, The Relativistic Boltzmann equation: theory and applications (Birkhauser 

Verlag, 2002).
17. J. V. Narlikar, An introduction to cosmology (Cambridge University Press, 1993).
18. V. V. Vedenyapin, Boltzmann and Vlasov kinetic equations (Fizmatlit, Moscow, 2001).
19. T. De Donder, The mathematical theory of relativity (Massachusetts Institute of Technology, 1927).
20. Kh. F. Valiyev and A. N. Kraiko, The dispersion of an ideal gas from a point into a void. A new model of the 

Big Bang and the expansion of the Universe, Journal of Applied Mathematics and Mechanics 79 (6), 556–
565 (2015).

21. A. P. Lightman et al. Problem book in relativity and gravitation (Princeton University Press, 2017).
22. J. Synge and J. Romain, Relativity: The general theory, Physics Today 14, 50 (1961)
23. G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system 

with small initial data, Communications in mathematical physics, 150 (3), 561-583 (1992).
24. Y. G. Ignatiev. The Nonequilibrium Universe: The Kinetics models of the cosmological evolution (Kazan State 

University, 2014).
25. V. V. Vedeniapin, A boundary value problem for stationary Vlasov equations, Akademiia Nauk SSSR Doklady 

290 (4), 777-–780 (1986).
26. Y. Y. Arkhipov and V. V. Vedenyapin, On the classification and stability of steady state solutions of Vlasov’s

equation on a torus and in a boundary value problem, Trudy Matematicheskogo Instituta imeni V.A. Steklova, 
203, 13–20 (1994).

27. V. V. Kozlov, The generalized Vlasov kinetic equation, Russian Mathematical Surveys 63 (4), 691–709 (2008).
28. V. V. Kozlov, The Vlasov kinetic equation, dynamics of continuum and turbulence, Russian Journal of 

Nonlinear Dynamics 6 (3), 489–512 (2010).
29. A. L. Skubachevskii and Y. Tsuzuki, Vlasov–Poisson equations for a two–component plasma in a half–space, 

Doklady Mathematics 94 (3), 681–683 (2016).
30. A. L. Skubachevskii, Vlasov-Poisson equations for a two–component plasma in a homogeneous magnetic 

field, Russian Mathematical Surveys 69 (2), 291–321 (2014).
31. Y. O. Belyaeva, Stationary solutions of Vlasov equations for high-temperature twocomponent plasma, 

Contemporary Mathematics. Fundamental Directions 62, 19–31 (2016).
32. J. Batt et al., Some families of solutions of the Vlasov–Poisson system, Archive for Rational Mechanics and 

Analysis 104 (1), 79–103 (1988).
33. V. V. Kozlov, General vortex theory, in: Dynamical Systems X. Encyclopaedia of Mathematical Sciences, vol 

67. PP. 76–107. (Springer, Berlin, Heidelberg 2003),
34. V. V. Vedenyapin and M.-B. A. Negmatov, On the topology of steady–state solutions of hydrodynamic and 

vortex consequences of the Vlasov equation and the Hamilton-Jacobi method, Doklady Mathematics 87 (2), 
240–244 (Springer, 2013).

35. V. V. Vedenyapin and N. N. Fimin, The Liouville equation, the hydrodynamic substitution, and the Hamilton-
Jacobi equation, Doklady Mathematics 86 (2), 697-–699 (2012).

36. V. V. Vedenyapin, N. N. Fimin, and M.-B. A. Negmatov, Vlasov and Liouville–type equations and its 
microscopic and hydrodynamic consequences (KIAM RAS, Moscow, 2016).

37. V. V. Vedenyapin and N. N. Fimin,The Hamilton–Jacobi method for non-Hamiltonian systems, Nonlinear 
Dynamics 11 (2), 279_286 (2015).

38. V. V. Vedenyapin and N. N. Fimin, The Hamilton-Jacobi method in the non–Hamiltonian situation and the 
hydrodynamic substitution, Doklady Mathematics 91 (2), 154—157 (2015).

39. V. V. Vedenyapin and S. Z. Adzhiev, Entropy in the sense of Boltzmann and Poincare, Russian Mathematical 
Surveys 69 (6), 995–999 (2014).

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
20

19

21

  
 

( A
)

© 2019   Global Journals



 
 

 
 

 
 
 
 
 
 
 
 
 
 

  
 

  
  
   
  

 
 

   
  
  

  
  

 
  

 
    

 
 

   
  

 
  

 
  

 
  

  
  

 
  

 
  

 
 

  
 

  
  

  
 

  
  

  
 

  
  

 
   

The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications

© 2019   Global Journals

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
20

19

22

  
 

( A
)

40. S. Z. Adzhiev and V. V. Vedenyapin, Time averages and Boltzmann extremals for Markov chains, discrete 
Liouville equations, and the Kac circular model, Computational Mathematics and Mathematical Physics 51 
(11), 1942_1952 (2011).

41. V. V. Vedenyapin, Time averages and Boltzmann extremals, Doklady Mathematics 78 (2), 686–688 (2008).


	The Vlasov–Maxwell–Einstein Equations and its Cosmological Applications
	Author
	Keywords
	I.Introduction
	II. The Equivalence of Two Actions in the General Relativity Theory (GTR)
	III. Multiparticle Problem, Time Synchronization, Hamiltonian Formulation andLiouville Equation
	IV. Analysis of Special Cases of Euler–Lagrange Equations
	a) Landau Metric
	b) Fock Metric
	c) Uniform Universe: Solutions that Depend Only on Time

	V. Vlasov-Maxwell-Einstein Equations
	VI. Conclusion
	References Références Referencias



