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The monotonic non- increasing sequence of real constant that the conjugate Fourier series is almost (N, p, q)
summable to
”in,m - f” = 0(1)

Keywords. nérlund summability, conjugate fourier series, summability means, monotonic non-increasing
sequence.

[.  INTRODUCTION

Lorentz [3], for the first time in 1048, defined almost convergence of a bounded
sequence. It is easy to see that a convergent sequence is almost convergent [4]. . Here,
almost generalized Norlund summability of method is considered. In 1913, Hardy [1]
established (c,a),a >0 summability of the series.Later on in 1948, harmonic
summability which is weaker then summability (c,a),a > 0 of the series was discussed
by Siddiqi[8]. The generalization of Siddigi has been obtained by several workers, for
example, Singh [9, 10], Iyengar[2], Pati[5]" Tripathi[11], Rajagopal|7] for Norlund mean.
In an attempt to make an advance study in this direction, in the present paper, a
theorem on almost generalized Norlund summability of conjugate series of Fourier series
has been obtained.

II.  DEFINITIONS AND NOTATIONS

Let Y a, be an infinite series with {S,} as the sequence of its nth partial sums.
Lorentz [3] has given the following definition.
A bounded sequence{S, } is said to be almost convergent to a limit S, if

lim,, nLHZLlIm S, = S, uniformly with respect to m. (2.1)

Let {p,} and {g,} be the two sequences of non-zero real constants such that
Ph=po+p1+:Dn, Py=p1=0 (2.2a)

Q=q+q+q, Q1=q,1=0 (2.2b)
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Given two sequences {p, } and {q,}, convolution p*q is defined by

Ry =®*q)n = XkzoPrn—k

(2.3)

It is familiar and can be easily verified that the operation of convolution is

commutative and associative, and
(p * 1)n = Zﬁ:o Pk

The series Y, a,, or the sequence {S,,} is said to be almost generalized Noérlund
(N,p,q) (Qureshi[6]) summable to S, if

tn,m - Ry, v=0Pn—v qvSv,m
Tends to S, as n = oo, uniformly with respect to m, where

_ 1 gv+m
Sv,m o+ Zkzm Sk

Let f(t) be a periodic function with period 27 and integrable in the sense over an
interval (— T, n).
Let its Fourier series be given by

ft)~ % ay + Yo—q1(a,cosnt + b, sinnt) = %ao + Yo A, (B)
And then the conjugate series of (2.7) is given by
Yoy (aysinnt — b,cosnt) = Y.~ B, (t)

Let {p,} be a nonnegative non-increasing generating sequence for (N, p,,)
method such that

P,=P(n)=po+p1+p2+:pp > ®asn—> o

Particular Cases:

(2.4)

(2.9)

a) Almost (N,p,q) method reduces to almost Norlund method (N,p,) if g, =1 for all

n

b) Almost (N,p,q) method reduces to almost Riesz method (N, q,) if p, = 1 for all n.

n+« +1
-1
well known method of summability (C, o).

c) In the special case when p, = (

,a > 0), the method (N,p,) reduces to the

1 " . . . .
d) p, =— of the Norlund mean is known as harmonic mean and is written as

(N1 /(nt1).

Following notations will be used:

6) =fx+t)+flx—1t)—2f(x)
YO =fx+t)—flx—-1t)

o(t) = f (W) du
0
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w(t) = f (W] du
0

1 1
T= [?] = The integral part of 7

[1I. KNOWN THEOREM

NOteS If f(x) is periodic and belongs to the class Lip(a,p)for 0 < a < 1, if the sequence
{p,.} is as defined in (2.9) with other requirements there in and if

00! )
N (chﬁz%q_q) = 0( T ) (3.1)

nq—06-1

Then
It~ £l = o (=) 62)
n b

where £, are the (N,p,) means of the series (2.8) and 1/p +1/q =1 such that 1 <p

IV.  MAIN THEOREM

Our object of this paper is to prove the following theorem.

Theorem: The monotonic non- increasing sequence of real constant of the conjugate
Fourier series is (N,p,q) summable to

”fnm _f” = 0(1)
V.  LEMMAS

For the proof of theorem 4, the following lemmas are required

Lemma 5.1: For 0 < t < —— , we have
(n+m)

|Nn,m (t)| =o(n+m)

Proof: For 0 <t < —— , we have
(n+m)

i . sin(v+ 1)(t/2){cos(v +2m + 1)(t/2) — cos(t/2)}
v=0

1
[Nom (D] = 27R,, (v + 1)sin?(t/2)

a1 zn: sin(v+ 1) (%) {ZSin ((17-I—22—m+2)> (%) sin (%) (%)}
= 7R, Z, Pn—vqv (v + 1)sin2 (%)

1 i (v + 1)sin (%) {Zsin (—(v + 2;71 + 2)> (%) sin (—(v +22m)> (%)}
= 27R, Ly Pn—vqv (v + 1)sin2 (%)
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o 2m 22 fin () sn (222) )

n
1
S Z pn—qu
21Ry (& (v + 1Dsin (%)

n
= _ 2 2
v=

n
1

= 0(1’1 + m) R_Z Pn—vqv
n v=0

[Ny (O] = 0(n +m)

Lemma 5.2: For <t <m, we have

1
(n+m)

] =0 (57,

<t <m, we have

Proof: For !
(n+m)

1 n cos(m+(w+1)/2)tsin ((v+1)/2)t
nm (t)—mzhmo Pn—vqv (w+1)sin 2 (t/Z)

_ 1 - cos(m+ (v + 1)/2)tsin((v + 1)/2)t
[N (O] < 2mR,, ;Pn—qu (v + 1)sin2(t/2)

1 i 1
2nR, . Pn—vdy (v + 1)sin2(t/2)
v=

<

n

- @R 2 E35)

v=0
_ 1
B ®] = 0 (z25)

VI. PROOF OF THE THEOREM (4)

Let S (x) denote the nth partial sum of the series (2.8).
Then we have

1 ncos(k+(1/2))t—cos(t/2)
Sk (X) - E’fo sin(t/2) l/)(t)dt

_ 1 (mcos (k+(1/2))t 1 m t
T om fO sin(t/2) lp(t)dt 2 fo cot (2) ¢(t)dt

Now, by using (2.6) we get

1

_ 1 wv+m (1 Trcos(k+(1/2))t 1 e
Som = 717 Zhm {5 Iy e B ()de — o= [ cot(£/2) w(t)de)

So that by using (2.5), we have
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v+m

1x 1 [ cos(k + (1/2))t 1
tn,m - R_n;) Pn—vqv [%bf SiTl(t/Z) l/)(t)dt - %bf COt(t/Z) l/)(t)dt}

k=m
T T v+m
. . 1 1 cos(k + (1/2))t
e = Fll = R_ng Pn—uqumf kz sin(t/2) PY(t)de
0 k=m
Notes 1 v r sin(v+m+ 1)t — sinmt
= 2nR, ZO Pn—vly f 20 + Dein2(ejzy PO .
= 0 :S
(1 < cos(v+ 2m + 1)(t/2)sin(v + 1)(t/2) g
= J zpn—v(h — Y(t)dt -
2nR, (v + 1)sin?(t/2)
= [ Fun @p@ae
0 -
1/(n+m) 1/(n+m)‘S T — j
- {fo + J.1/(n+m) + J.1/(n+m)‘s }Nn'm Op@dt =L +1; +13 (6.4) Z
First we consider, -
e
1/(n+m) o
h= [ B @p@de E
0 ~
B (v + 2m + D@E/Dsinw + D(/2) ;
cos(v+2m+ t/2)sin(v + t <
= f Z Prn—vqv — PY(t)de
2nR, 4 (v + 1)sin?(t/2) 9
0 v= h
1/(n+m) n g
1 sin(v+ 1)(t/2){cos(v +2m + 1)(t/2) — cos(t/2)} 5
= f Z Pn—vQv ) l/)(t)dt -
2nR, 4 (v + 1)sin?(t/2) )
0 v= ;
B EER, (v + D(E/Deot(t/2) .
sin(v + t/2)cot(t .
+ ,[ 2nR, Z) Pn—vdy (v + Dsin(t/2) Y(D)de -
0 v= :
=I;,+1;2 (6.5) j
Now é
R (v + D /2 cos( + 2m + D (/2) — cos(t/2))
sin(v + t cos(v+2m+ t —cos(t
il < [ e D pacets i p(Olat
2nR, 4 (v + 1)sin?(t/2) L]
0 v=

1/(n+m)

= j |Ny o |10t

0
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1/(n+m)

=o(n+m) [, ly(t)|dt by Lemma 5.1
a(n+m)
=o(n+m)o I—(n TR,

1
-0 [log(n + m)]
= 0(1),as n - oo, uniformly with respect to m

Next, for 0 <t <
(n+m)

1/(n+m)

2R,

|l 2] < f ! i Dy sin(v + 1)(t/2)cot(t/2)
v=0

0

1/(n+m)

(v + 1)sin(t/2)

Y(t)dt

<
2T

1/(n+m)

1
L f cot(t/2)(t) dt

21
0
Since the conjugate function exists, therefore
= 0(1),as n - oo, uniformly with respect to m
Thus from (6.6) and (6.7), we get
I; = 0(1), as n — oo, uniformly with respect to m

Now, we get

1/(n+m)?

L] < f IV, o (O] 101 dt

1/(n+m)

1/(n+m)? [y (1)
fl/(n+m) 2. dt by Lemma 5.2

N ol
-0 (ﬁ) t2
1/(n+m)
o

I, = 0(1),as n - oo, uniformly with respect to m

Finally, we have
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1 v (v + Dsin(t/2)cot(t/2)
R, Z(; Pr—vfv j (v + 1)sin(t/2)

dt

Y(t)dt

(6.6)

(6.7)

(6.8)

(6.9)
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A

n
1
|I3| < f 2R zpn—vCIv
n v=0

1/(n+m)8

cos(v+2m+ 1)(t/2)sin(v + 1)(t/2)
(v + 1)sin?(t/2)

‘ lp()|dt

s

n

_ f 1 z

- 27TRn Pn—vqy
v=0

1/(n+m)8

1 n
= i ZO Pyl [

sin(v+m+ 1)(t) — sinmt
(v + 1)sin?(t/2)

lp()|dt

Y

sinv+m+ 1)(t)|
W+ Dsin(t/2) |

sinmt |
W + Dsin®(t/2)]

lp@®ldt +

1/(n+m)d

I',D(t)ldt]

1/(n+m)d

= 13.1 + 13.2 (610)

Now, by using second mean value theorem, we have

€

n
1 Pn—vv f .
Loyl < Z D] [W(0)]dt
sl < oo 2 20 T Dzsin?(1/(n + m)5) Isin(v+m + DI WO
v=0 1/(n+m)8
1
Where( )E_E_nOSSSE

sin(1/2(n + m)%)
1/(n+m)d

5 2
:o<%)(n+m)25< 1/2(n +m) ) f lw(t)|dt

I31 = 0(1),as n = oo, uniformly with respect to m (6.11)

Now
T n
L] < f 1 z sinmt || (©)]dt
32l = 2R, 2P [ Dsinz e )| ¥
1/(n+m)s v=0
€
< . [ wwla
= 2sin?(1/2(n + m)%)
1/(n+m)d
1 1

Where Y <e<m0<6< >
I3, = 0(1),as n — oo, uniformly with respect to m (6.12)

Now combining (6.8), (6.9) and (6.12), we get

”Enm - f” = 0(1)
Thus completes the theorem
VII. CONCLUSION

If {p, } and {q,,} be the monotonic non- increasing sequence of real constant such
that the conjugate Fourier series is almost (N,p,q) summable then
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”fn,m - f” = 0(1)
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