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I.

 

Introduction

 
Lorentz [3], for the first time in 1048, defined almost convergence of a bounded 

sequence. It is easy to see that a convergent sequence is almost convergent [4].  . Here, 

almost generalized Nörlund summability of method is considered. In 1913, Hardy [1] 
established (𝑐𝑐,𝛼𝛼),𝛼𝛼 > 0

 

summability of the series.Later on in 1948, harmonic 
summability which is weaker then summability (𝑐𝑐,𝛼𝛼),𝛼𝛼 > 0

 

of the series was discussed 
by Siddiqi[8]. The generalization of Siddiqi has been obtained by several workers, for 

example, Singh [9, 10], Iyengar[2], Pati[5]’

 

Tripathi[11], Rajagopal[7] for Norlund mean. 
In an attempt to make an advance study in this direction, in the present paper, a 

theorem on almost

 

generalized Nörlund summability of conjugate series of Fourier series 
has been obtained.

 
II.

 

Definitions

 

and Notations

 
Let

 

∑𝑎𝑎𝑛𝑛

 

be an infinite series with {𝑆𝑆𝑛𝑛}

 

as the sequence of its nth partial sums. 

 

Lorentz [3] has given the following definition.

 

A bounded sequence{𝑆𝑆𝑛𝑛}   is said to be almost convergent to a limit S, if 

 
                          lim𝑛𝑛→∞

1
𝑛𝑛+1

∑ 𝑆𝑆𝑣𝑣𝑛𝑛+𝑚𝑚
𝑣𝑣=𝑚𝑚 = 𝑆𝑆, uniformly with respect to m.       

 

    (2.1) 

Let

 

{𝑝𝑝𝑛𝑛}

 

and {𝑞𝑞𝑛𝑛}

 

be the two sequences of non-zero real constants such that 

                                   𝑃𝑃𝑛𝑛 = 𝑝𝑝0 + 𝑝𝑝1 + ⋯𝑝𝑝𝑛𝑛 ,        𝑃𝑃−1 = 𝑝𝑝−1 = 0             

 

  

 

     (2.2a) 

                               𝑄𝑄𝑛𝑛 = 𝑞𝑞0 + 𝑞𝑞1 + ⋯𝑞𝑞𝑛𝑛 ,        𝑄𝑄−1 = 𝑞𝑞−1 = 0                         (2.2b) 
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Given two sequences {𝑝𝑝𝑛𝑛} and  {𝑞𝑞𝑛𝑛}, convolution p*q is defined by  

                                   𝑅𝑅𝑛𝑛 = (𝑝𝑝 ∗ 𝑞𝑞)𝑛𝑛 = ∑ 𝑝𝑝𝑘𝑘𝑞𝑞𝑛𝑛−𝑘𝑘𝑛𝑛
𝑘𝑘=0                                (2.3) 

It is familiar and can be easily verified that the operation of convolution is 
commutative and associative, and  

                                             (𝑝𝑝 ∗ 1)𝑛𝑛 = ∑ 𝑝𝑝𝑘𝑘𝑛𝑛
𝑘𝑘=0                                       (2.4) 

The series ∑𝑎𝑎𝑛𝑛  or the sequence {𝑆𝑆𝑛𝑛}  is said to be almost generalized Nörlund  

(N,p,q) (Qureshi[6]) summable to S, if  

                                            𝑡𝑡𝑛𝑛 ,𝑚𝑚 = 1
𝑅𝑅𝑛𝑛
∑ 𝑝𝑝𝑛𝑛−𝑣𝑣𝑛𝑛
𝑣𝑣=0 𝑞𝑞𝑣𝑣𝑆𝑆𝑣𝑣,𝑚𝑚                           (2.5) 

Tends to S, as 𝑛𝑛 → ∞, uniformly with respect to m, where  

                                              𝑆𝑆𝑣𝑣,𝑚𝑚 = 1
𝑣𝑣+1

∑ 𝑆𝑆𝑘𝑘𝑣𝑣+𝑚𝑚
𝑘𝑘=𝑚𝑚                                        (2.6) 

Let f(t) be a periodic function with period 2𝜋𝜋  and integrable in the sense over an  

interval �–𝜋𝜋,𝜋𝜋�. 
Let its Fourier series be given by  

                         𝑓𝑓(𝑡𝑡)~ 1
2
𝑎𝑎0 + ∑ (𝑎𝑎𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑐𝑐𝑠𝑠𝑛𝑛𝑛𝑛𝑡𝑡)∞

𝑛𝑛=1 = 1
2
𝑎𝑎0 + ∑ 𝐴𝐴𝑛𝑛∞

𝑛𝑛=1 (𝑡𝑡)         (2.7) 

And then the conjugate series of (2.7) is given by  

                                      ∑ (𝑎𝑎𝑛𝑛𝑐𝑐𝑠𝑠𝑛𝑛𝑛𝑛𝑡𝑡 − 𝑏𝑏𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡)∞
𝑛𝑛=1 = ∑ 𝐵𝐵𝑛𝑛∞

𝑛𝑛=1 (𝑡𝑡)             (2.8) 

Let  {𝑝𝑝𝑛𝑛}  be a nonnegative non-increasing generating sequence for (𝑁𝑁, 𝑝𝑝𝑛𝑛)  
method such that  

                             𝑃𝑃𝑛𝑛 = 𝑃𝑃(𝑛𝑛) = 𝑝𝑝0 + 𝑝𝑝1 + 𝑝𝑝2 + ⋯𝑝𝑝𝑛𝑛 → ∞,𝑎𝑎𝑐𝑐  𝑛𝑛 → ∞            (2.9) 

Particular Cases:
 

a)
 

Almost (N,p,q) method reduces to almost Nörlund method (𝑁𝑁,𝑝𝑝𝑛𝑛)
 

if 𝑞𝑞𝑛𝑛 = 1
 

for all 
n.

 

b)
 

Almost (N,p,q) method reduces to almost Riesz method (𝑁𝑁�, 𝑞𝑞𝑛𝑛)
 

if 𝑝𝑝𝑛𝑛 = 1
 

for all n.
 

c)
 

In the special case when 𝑝𝑝𝑛𝑛 = �𝑛𝑛+∝ +1
∝ −1 ,𝛼𝛼 > 0�, the method (𝑁𝑁,𝑝𝑝𝑛𝑛)

 
reduces to the 

well known method of summability (𝐶𝐶,∝). 
d)

 
𝑝𝑝𝑛𝑛 = 1

𝑛𝑛+1
 of the Nörlund mean is known as harmonic mean and is written as  

(N,1/(n+1)).
 

Following notations will be used:

 

∅(𝑡𝑡) = 𝑓𝑓(𝑥𝑥 + 𝑡𝑡) + 𝑓𝑓(𝑥𝑥 − 𝑡𝑡) − 2𝑓𝑓(𝑥𝑥)
 

𝜓𝜓(𝑡𝑡) = 𝑓𝑓(𝑥𝑥 + 𝑡𝑡) − 𝑓𝑓(𝑥𝑥 − 𝑡𝑡)

 

Φ(𝑡𝑡) = �|𝜙𝜙(𝑢𝑢)|
𝑡𝑡

0

𝑑𝑑𝑢𝑢
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Ψ(𝑡𝑡) = �|𝜓𝜓(𝑢𝑢)|
𝑡𝑡

0

𝑑𝑑𝑑𝑑  

𝜏𝜏 = �
1
𝑡𝑡
� = 𝑇𝑇ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 

1
𝑡𝑡 

III. Known Theorem 

If f(x) is periodic and belongs to the class L𝑖𝑖𝑖𝑖(𝛼𝛼,𝑝𝑝)𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝛼𝛼 ≤ 1, if the sequence 

{𝑝𝑝𝑛𝑛} is as defined in (2.9) with other requirements there in and if  

                                         ∫ � (𝑝𝑝(𝑦𝑦)𝑞𝑞)
𝑦𝑦𝑞𝑞𝑞𝑞 +2−𝛿𝛿𝛿𝛿 −𝑞𝑞�

𝑛𝑛
1 = 𝑜𝑜 � 𝑝𝑝(𝑛𝑛)

𝑛𝑛
𝛼𝛼−1

𝑞𝑞−𝛿𝛿−1
�                             (3.1) 

Then 

                                             �𝑡̃𝑡𝑛𝑛 − 𝑓𝑓�
𝑝𝑝

= 𝑜𝑜 � 1

𝑛𝑛
𝛼𝛼−1
𝑝𝑝
�                             (3.2) 

where 𝑡𝑡𝑛𝑛�  are  the (𝑁𝑁,𝑝𝑝𝑛𝑛) means of the series (2.8) and 1/p +1/q =1 such that 1 ≤ 𝑝𝑝 

IV. Main Theorem 
Our object of this paper is to prove the following theorem. 

Theorem: The monotonic non- increasing sequence of real constant of the conjugate 
Fourier series is (N,p,q) summable to 

�𝑡̃𝑡𝑛𝑛 ,𝑚𝑚 − 𝑓𝑓� = 𝑜𝑜(1) 

V. Lemmas 

For the proof of theorem 4, the following lemmas are required 

Lemma 5.1:   For 0 < 𝑡𝑡 < 1
(𝑛𝑛+𝑚𝑚) , we have 

�𝑁𝑁𝑛𝑛 ,𝑚𝑚(𝑡𝑡)� = 𝑜𝑜(𝑛𝑛 + 𝑚𝑚) 

Proof:   For 0 < 𝑡𝑡 < 1
(𝑛𝑛+𝑚𝑚) , we have 

�𝑁𝑁𝑛𝑛 ,𝑚𝑚(𝑡𝑡)� =
1

2𝜋𝜋𝑅𝑅𝑛𝑛
��𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1)(𝑡𝑡/2){𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣 + 2𝑚𝑚 + 1)(𝑡𝑡/2) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)}
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)

𝑛𝑛

𝑣𝑣=0

� 

=
1

2𝜋𝜋𝑅𝑅𝑛𝑛
��𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1) �𝑡𝑡2� �2𝑠𝑠𝑠𝑠𝑠𝑠 �
(𝑣𝑣 + 2𝑚𝑚 + 2)

2 � �𝑡𝑡2� 𝑠𝑠𝑠𝑠𝑠𝑠 �
(𝑣𝑣 + 2𝑚𝑚)

2 � �𝑡𝑡2��

(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2 �𝑡𝑡2�

𝑛𝑛

𝑣𝑣=0

�
 

≤
1

2𝜋𝜋𝑅𝑅𝑛𝑛
��𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠 �𝑡𝑡2� �2𝑠𝑠𝑠𝑠𝑠𝑠 �
(𝑣𝑣 + 2𝑚𝑚 + 2)

2 � �𝑡𝑡2� 𝑠𝑠𝑠𝑠𝑠𝑠 �
(𝑣𝑣 + 2𝑚𝑚)

2 � �𝑡𝑡2��

(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2 �𝑡𝑡2�

𝑛𝑛

𝑣𝑣=0

�
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≤
1

2𝜋𝜋𝑅𝑅𝑛𝑛
��𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

2�(𝑣𝑣 + 2𝑚𝑚 + 2)/2� �𝑠𝑠𝑠𝑠𝑠𝑠 �𝑡𝑡2� 𝑠𝑠𝑠𝑠𝑠𝑠 �
(𝑣𝑣 + 2𝑚𝑚)

2 � �𝑡𝑡2��

(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠 �𝑡𝑡2�

𝑛𝑛

𝑣𝑣=0

�  

=
1

2𝜋𝜋𝑅𝑅𝑛𝑛
��𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑛𝑛

𝑣𝑣=0

� (𝑛𝑛 + 2𝑚𝑚 + 2)  

= 𝑂𝑂(𝑛𝑛 + 𝑚𝑚)
1
𝑅𝑅𝑛𝑛

�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑛𝑛

𝑣𝑣=0

 

�𝑁𝑁𝑛𝑛 ,𝑚𝑚(𝑡𝑡)� = 𝑜𝑜(𝑛𝑛 + 𝑚𝑚)  

Lemma 5.2:  For  1
(𝑛𝑛+𝑚𝑚) < 𝑡𝑡 < 𝜋𝜋, we have  

�𝑁𝑁�𝑛𝑛 ,𝑚𝑚(𝑡𝑡)� = 𝑜𝑜 �
1
𝑡𝑡2𝑛𝑛

�  

Proof: For  1
(𝑛𝑛+𝑚𝑚) < 𝑡𝑡 < 𝜋𝜋, we have

 

𝑁𝑁�
𝑛𝑛 ,𝑚𝑚(𝑡𝑡)= 1

2𝜋𝜋𝑅𝑅𝑛𝑛
∑ 𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑐𝑐𝑐𝑐𝑐𝑐 (𝑚𝑚+(𝑣𝑣+1)/2)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �(𝑣𝑣+1)/2�𝑡𝑡
(𝑣𝑣+1)𝑠𝑠𝑠𝑠𝑠𝑠 2(𝑡𝑡/2)

𝑛𝑛
𝑣𝑣=0

 

�𝑁𝑁�𝑛𝑛 ,𝑚𝑚(𝑡𝑡)� ≤
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚 + (𝑣𝑣 + 1)/2)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�(𝑣𝑣 + 1)/2�𝑡𝑡
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)

𝑛𝑛

𝑣𝑣=0
 

≤
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

1
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)

𝑛𝑛

𝑣𝑣=0
 

= 𝑜𝑜 �
1
𝑡𝑡2�

1
𝑅𝑅𝑛𝑛

��
𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣
(𝑣𝑣 + 1)�

𝑛𝑛

𝑣𝑣=0
 

�𝑁𝑁�𝑛𝑛 ,𝑚𝑚(𝑡𝑡)� = 𝑜𝑜 �
1
𝑡𝑡2𝑛𝑛

�  

VI.   Proof  of  the Theorem  (4)  

Let 𝑆𝑆𝑘𝑘(𝑥𝑥)  denote the nth partial sum of the series (2.8).  

Then we have  

                             𝑆𝑆𝑘𝑘(𝑥𝑥) = 1
2𝜋𝜋 ∫

𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘+(1/2)�𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐 (𝑡𝑡/2)
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡/2)

𝜋𝜋
0 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑                      (6.1) 

                      = 1
2𝜋𝜋 ∫

𝑐𝑐𝑐𝑐𝑐𝑐�𝑘𝑘+(1/2)�𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡/2) 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑𝜋𝜋

0 − 1
2𝜋𝜋 ∫ 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑡𝑡

2
�𝜋𝜋

0 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑                      (6.2) 

Now, by using (2.6) we get 
 

              𝑆𝑆𝑣𝑣,𝑚𝑚 = 1
𝑣𝑣+1

∑ � 1
2𝜋𝜋 ∫

𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘+(1/2)�𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡/2)

𝜋𝜋
0 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑 − 1

2𝜋𝜋 ∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)𝜋𝜋
0 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑�𝑣𝑣+𝑚𝑚

𝑘𝑘=𝑚𝑚           (6.3) 

So that by using (2.5), we have 
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𝑡𝑡𝑛𝑛 ,𝑚𝑚 =
1
𝑅𝑅𝑛𝑛

�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣 �
1

2𝜋𝜋
� �

𝑐𝑐𝑐𝑐𝑐𝑐�𝑘𝑘 + (1/2)�𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡/2)

𝑣𝑣+𝑚𝑚

𝑘𝑘=𝑚𝑚

𝜋𝜋

0

𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑 −
1

2𝜋𝜋
� 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)
𝜋𝜋

0

𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑�
𝑛𝑛

𝑣𝑣=0
 

�𝑡̃𝑡𝑛𝑛 ,𝑚𝑚 − 𝑓𝑓� =
1
𝑅𝑅𝑛𝑛

�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣
1

2𝜋𝜋(𝑣𝑣 + 1)

𝜋𝜋

0

� �
𝑐𝑐𝑐𝑐𝑐𝑐�𝑘𝑘 + (1/2)�𝑡𝑡

𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡/2)

𝑣𝑣+𝑚𝑚

𝑘𝑘=𝑚𝑚

𝜋𝜋

0

𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑  

=
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣 �

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 𝑚𝑚 + 1)𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)

𝜋𝜋

0

𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑛𝑛

𝑣𝑣=0
 

= � �
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑛𝑛

𝑣𝑣=0

𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣 + 2𝑚𝑚 + 1)(𝑡𝑡/2)𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1)(𝑡𝑡/2)
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2) �𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑

𝜋𝜋

0
 

= �𝑁𝑁�𝑛𝑛 ,𝑚𝑚

𝜋𝜋

0

(𝑡𝑡)𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑  

         = �∫ +∫ +∫𝜋𝜋1/(𝑛𝑛+𝑚𝑚)𝛿𝛿
1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

1/(𝑛𝑛+𝑚𝑚)
1/(𝑛𝑛+𝑚𝑚)

0 �𝑁𝑁�𝑛𝑛 ,𝑚𝑚(𝑡𝑡)𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3         (6.4) 

First we consider, 

𝐼𝐼1 = � 𝑁𝑁�𝑛𝑛 ,𝑚𝑚

1/(𝑛𝑛+𝑚𝑚)

0

(𝑡𝑡)𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑  

= �
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�
𝑛𝑛

𝑣𝑣=0

𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣
𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣 + 2𝑚𝑚 + 1)(𝑡𝑡/2)𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1)(𝑡𝑡/2)

(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2) 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑

1/(𝑛𝑛+𝑚𝑚)

0

 

 

= �
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1)(𝑡𝑡/2){𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣 + 2𝑚𝑚 + 1)(𝑡𝑡/2) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)}
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)

𝑛𝑛

𝑣𝑣=0

1/(𝑛𝑛+𝑚𝑚)

0

𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑

+ �
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1)(𝑡𝑡/2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡/2)

𝑛𝑛

𝑣𝑣=0

1/(𝑛𝑛+𝑚𝑚)

0

𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑  

 = 1.1 + 1.2       (6.5) 

Now 

|𝐼𝐼1.1| ≤
1

2𝜋𝜋𝑅𝑅𝑛𝑛
��𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1)(𝑡𝑡/2){𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣 + 2𝑚𝑚 + 1)(𝑡𝑡/2) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)}
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)

𝑛𝑛

𝑣𝑣=0

� |𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑

1/(𝑛𝑛+𝑚𝑚)

0

 

= � �𝑁𝑁�𝑛𝑛 ,𝑚𝑚(𝑡𝑡)�|𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑

1/(𝑛𝑛+𝑚𝑚)

0
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= 𝑜𝑜(𝑛𝑛 + 𝑚𝑚)∫ |𝜓𝜓(𝑡𝑡)|1/(𝑛𝑛+𝑚𝑚)
0 𝑑𝑑𝑑𝑑     by Lemma 5.1  

= 𝑜𝑜(𝑛𝑛 + 𝑚𝑚)𝑜𝑜 �
𝛼𝛼(𝑛𝑛 + 𝑚𝑚)

(𝑛𝑛 + 𝑚𝑚)𝑅𝑅𝑛𝑛+𝑚𝑚
�  

= 𝑜𝑜 �
1

𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛 + 𝑚𝑚)�  

= o(1), as n → ∞, uniformly with respect to m             (6.6) 

Next, for 0 ≤ 𝑡𝑡 ≤ 1
(𝑛𝑛+𝑚𝑚)  

|𝐼𝐼1.2| ≤ �
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1)(𝑡𝑡/2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡/2)

𝑛𝑛

𝑣𝑣=0

1/(𝑛𝑛+𝑚𝑚)

0

𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑  

≤
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣 �

(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡/2)𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡/2)

1/(𝑛𝑛+𝑚𝑚)

0

𝑛𝑛

𝑣𝑣=0

𝜓𝜓(𝑡𝑡)𝑑𝑑𝑑𝑑  

 

=
1

2𝜋𝜋
� 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡/2)𝜓𝜓(𝑡𝑡)

1/(𝑛𝑛+𝑚𝑚)

0

𝑑𝑑𝑑𝑑  

Since the conjugate function exists, therefore  

= 𝑜𝑜(1),𝑎𝑎𝑎𝑎  𝑛𝑛 → ∞,  uniformly with respect to m                  (6.7) 

Thus from (6.6) and (6.7), we get  

𝐼𝐼1 = 𝑜𝑜(1),  𝑎𝑎𝑎𝑎  𝑛𝑛 → ∞,  uniformly with respect to m                  (6.8) 

Now, we get  

|𝐼𝐼2| ≤ � �𝑁𝑁�𝑛𝑛 ,𝑚𝑚(𝑡𝑡)�|𝜓𝜓(𝑡𝑡)|

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

1/(𝑛𝑛+𝑚𝑚)

𝑑𝑑𝑑𝑑  

= 𝑜𝑜 ∫
|𝜓𝜓(𝑡𝑡)|
𝑡𝑡2𝑛𝑛

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

1/(𝑛𝑛+𝑚𝑚) 𝑑𝑑𝑑𝑑    by Lemma 5.2  

= 𝑜𝑜 �
1
𝑛𝑛
� �

|𝜓𝜓(𝑡𝑡)|
𝑡𝑡2

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

1/(𝑛𝑛+𝑚𝑚)

𝑑𝑑𝑑𝑑  

= 𝑜𝑜 �
1
𝑛𝑛
� 𝑜𝑜(𝑛𝑛)  

𝐼𝐼2 = 𝑜𝑜(1),𝑎𝑎𝑎𝑎  𝑛𝑛 → ∞,  
uniformly with respect to m

 
(6.9) 

Finally, we have 
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|𝐼𝐼3| ≤ �
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣 �

𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣 + 2𝑚𝑚 + 1)(𝑡𝑡/2)𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 1)(𝑡𝑡/2)
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2) �

𝑛𝑛

𝑣𝑣=0

𝜋𝜋

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

|𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑  

= �
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣 �

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣 + 𝑚𝑚 + 1)(𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2) �

𝑛𝑛

𝑣𝑣=0

𝜋𝜋

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

|𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑  

=
1

2𝜋𝜋𝑅𝑅𝑛𝑛
� 𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣 � � �

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣+𝑚𝑚+ 1)(𝑡𝑡)
(𝑣𝑣+ 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)

� |𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑+ � �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(𝑣𝑣+ 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)
� |𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑

𝜋𝜋

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

𝜋𝜋

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

�
𝑛𝑛

𝑣𝑣=0

 

 

                                               = I3.1 + I3.2                                          (6.10) 

Now, by using second mean value theorem, we have 

|I3.1| ≤
1

2πRn
�

pn−v qv

2(v + 1)2sin2(1/(n + m)δ)

n

v=0

� |sin(v + m + 1)|
∈

1/(n+m)δ

|ψ(t)|dt 

Where  𝟏𝟏
(𝒏𝒏+𝒎𝒎)𝜹𝜹 ≤∈≤ 𝝅𝝅.𝟎𝟎 ≤ 𝜹𝜹 ≤ 𝟏𝟏

𝟐𝟐 

= 𝑜𝑜 �
1
𝑛𝑛
� (𝑛𝑛 + 𝑚𝑚)2𝛿𝛿 �

1/2(𝑛𝑛 + 𝑚𝑚)𝛿𝛿

𝑠𝑠𝑠𝑠𝑠𝑠(1/2(𝑛𝑛 + 𝑚𝑚)𝛿𝛿)�
2

� |𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑
𝜖𝜖

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

 

𝐼𝐼3.1 = 𝑜𝑜(1),𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞, uniformly with respect to m (6.11) 

Now 

|𝐼𝐼3.2| ≤ �
1

2𝜋𝜋𝑅𝑅𝑛𝑛
�𝑝𝑝𝑛𝑛−𝑣𝑣𝑞𝑞𝑣𝑣 �

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝑣𝑣 + 1)𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡/2)�

𝑛𝑛

𝑣𝑣=0

𝜋𝜋

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

|𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑 

≤
1

2𝑠𝑠𝑠𝑠𝑠𝑠2(1/2(𝑛𝑛 + 𝑚𝑚)𝛿𝛿) � |𝜓𝜓(𝑡𝑡)|𝑑𝑑𝑑𝑑
∈

1/(𝑛𝑛+𝑚𝑚)𝛿𝛿

 

Where  𝟏𝟏
(𝒏𝒏+𝒎𝒎)𝜹𝜹 ≤∈≤ 𝝅𝝅.𝟎𝟎 ≤ 𝜹𝜹 ≤ 𝟏𝟏

𝟐𝟐
 

𝐼𝐼3.2 = 𝑜𝑜(1),𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞, 
 
uniformly with respect to m     

 
                              (6.12) 

Now combining (6.8), (6.9) and (6.12), we get
 

�𝑡̃𝑡𝑛𝑛 ,𝑚𝑚 − 𝑓𝑓� = 𝑜𝑜(1)
 

Thus completes the theorem

 

VII.

  
Conclusion

 

If

 

{𝑝𝑝𝑛𝑛}
 
and {𝑞𝑞𝑛𝑛}

 

be the monotonic non- increasing sequence of real constant such 
that the conjugate Fourier series is almost (N,p,q) summable then 
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