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I.

 

Introduction

 
Nonlinear partial differential equations (NPDEs) describe many complex physical 

phenomena in different fields of science and engineering especially in fluid mechanics, 
plasma physics, chemical kinematics, chemical physics and geochemistry. It is important 
to note that many equations contain empirical parameters or empirical functions. Exact 
solutions allow us to determine these parameters or functions by using various 
techniques. So many techniques of obtaining exact and then solitary wave solutions 
have been explored and developed, such as exp (Φ(𝜉𝜉))-expansion[1], Exp-function 

method[2]-[4], F-expansion method[5], modified Kudryashov method[6], modified Simple 
equation method[7]-[9], the extended tan-method[10], simplest equation method[11] and 
so on. The objective of this paper is to apply  improved

 

Kudryashov method [12] and to 
explore new exact solutions of nonlinear partial differential equations. This paper is 
organized as follows: in section 2, we give the description of the improved Kudryashov 
method. In section 3, we use this method to find the solitary wave solutions of nonlinear 
partial differential equations

 

pointed out above. In section 4,

 

we try to write the results 
and future directions. Last of all in section 5 conclusion is given.

 
II.

 

Description

 

of

 

the Improved Kudryashov Method

 
The algorithm of the improved Kudryashov method for finding exact solutions of 

nonlinear partial differential equations is given below
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Step-1: 
 

Suppose the nonlinear PDE in the following form:
 

                              𝑝𝑝�𝑢𝑢,𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑦𝑦 , 𝑢𝑢𝑡𝑡𝑡𝑡 , 𝑢𝑢𝑥𝑥𝑥𝑥 ,𝑢𝑢𝑥𝑥𝑥𝑥 ,𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 … … … … � = 0                                (2.1) 

Now we use the traveling wave variable
 

             𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝜉𝜉), 𝜉𝜉 = 𝑘𝑘𝑥𝑥 − 𝑐𝑐𝑐𝑐
 

[for (1+1)-dimensional equations]                 (2.2) 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑢𝑢(𝜉𝜉), 𝜉𝜉 = 𝑘𝑘𝑥𝑥 + 𝑤𝑤𝑦𝑦 − 𝑐𝑐𝑐𝑐
 

[for (2+1)-dimensional equations]
 

Then eq. (2.1) can be converted to nonlinear ordinary differential equation 
(ODE) by using eq.(2.2)            

 

                                𝑝𝑝(𝑢𝑢,−𝑐𝑐𝑢𝑢′,𝑢𝑢′,𝑢𝑢′, 𝑐𝑐2𝑢𝑢′′,−𝑐𝑐𝑢𝑢′′,𝑢𝑢′′′, … … … … ) = 0                                (2.3) 

Step-2: We seek for the exact solution of eq. (2.3) in the following form:  

                                             𝑢𝑢(𝜉𝜉) = ∑ 𝑎𝑎𝑖𝑖𝑄𝑄𝑖𝑖𝑀𝑀
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑄𝑄𝑗𝑗𝑁𝑁
𝑗𝑗=0

 ,𝑄𝑄 = 𝑄𝑄(𝜉𝜉)                                                (2.4) 

where  𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑗𝑗 , 𝑖𝑖 = 1,2,3, … …𝑀𝑀  and  𝑗𝑗 = 1,2,3, … …𝑁𝑁  are unknown constants and 𝑄𝑄(𝜉𝜉)  are 

the following  functions:     𝑄𝑄(𝜉𝜉) = 1/�𝜆𝜆 + 𝑐𝑐1𝑒𝑒2𝜉𝜉   or,   𝑄𝑄(𝜉𝜉) = −1/�𝜆𝜆 + 𝑐𝑐1𝑒𝑒2𝜉𝜉(2.5) 
Above functions satisfy to the first order differential equation  

                                                    
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝜆𝜆3 − 𝑄𝑄                                       (2.6) 

To calculate the necessary number of derivatives of function 𝑢𝑢(𝜉𝜉), equation (2.6) 
is necessary. We can obtain the positive integers M  and N  by considering the 
homogeneous balance between the highest order derivatives and nonlinear terms 
appearing in eq. (2.3).  

Step-3: Substitute 𝑢𝑢(𝜉𝜉)  and its various derivatives in eq. (2.3) and then we collect all 

terms with the same powers of function  𝑄𝑄(𝜉𝜉)  and equate the resulting expression to 
zero. Then we obtain a system of algebraic equations. Solving this system, we get values 
for the unknown parameters.      

Step-4:  We put these values of unknown parameters and use the solutions of eq. (2.6) to 
construct the exact solutions of the eq. (2.1). And finally particular choices of arbitrary 
constants in exact solutions give many solitary wave solutions.  

III.  Applications  

Now we will apply the improved Kudryashov method described in section 2 to 
find thesolitary wave solutions of nonlinear partial differential equations.  

Example-1:  Chafee-Infante equation   

Here  the improved Kudryashov method is used for finding the solitary wave 
solutions of the Chafee-Infante  equation[13]  

                                         𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑥𝑥𝑥𝑥 = 𝛼𝛼𝛼𝛼(1 − 𝑢𝑢2) = 0                                  (3.1) 

Where α  is an arbitrary constant. The parameter α  adjust the relative balance of 
the diffusion term and the nonlinear term.  

Applying the travelling wave variable  𝜉𝜉 = 𝑘𝑘𝑘𝑘 − 𝑐𝑐𝑐𝑐   we obtain the following ODE  

                                 −𝑐𝑐𝑢𝑢′ − 𝑘𝑘2𝑢𝑢′′ + 𝛼𝛼(𝑢𝑢3 − 𝑢𝑢) = 0                                     (3.2) 
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where the prime denotes the differentiation with respect to 𝜉𝜉. 
We suppose that eq. (3.2) has the travelling wave solution of the form 

 

                                        𝑢𝑢(𝜉𝜉) = ∑ 𝑎𝑎𝑖𝑖𝑄𝑄𝑖𝑖𝑀𝑀
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑄𝑄𝑗𝑗𝑁𝑁
𝑗𝑗=0  

, 𝑄𝑄 = 𝑄𝑄(𝜉𝜉)                                   (3.3) 

Considering the homogeneous balance between
 
𝑢𝑢′′  and

 
𝑢𝑢3

 
in eq. (3.2),we obtain 

𝑀𝑀 = 𝑁𝑁 + 2. Suppose 𝑁𝑁 = 1and then 𝑀𝑀 = 3. 

Thus the exact travelling wave solution takes the following form:
 

                                             𝑢𝑢(𝜉𝜉) = 𝑎𝑎0+𝑎𝑎1𝑄𝑄+𝑎𝑎2𝑄𝑄2+𝑎𝑎3𝑄𝑄3

𝑏𝑏0+𝑏𝑏1𝑄𝑄
                                (3.4) 

where
 
𝑎𝑎0,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3and 𝑏𝑏0, 𝑏𝑏1 

are unknown constants. Substituting eq. (3.4) into eq. (3.2) 

and taking into account relations eq. (2.6), we get a polynomial of
 
𝑄𝑄(𝜉𝜉). Collecting all 

the terms with the same power of 𝑄𝑄(𝜉𝜉)
 
together and equating each coefficient to

 
zero, 

we can obtain a system of algebraic equations. Solving the resulting system by using 
Maple, we get the following sets of values of unknown constants. 

Case-1: 𝑐𝑐 = 3
4
𝛼𝛼, 𝑘𝑘 = ± 1

2�
𝛼𝛼
2

,𝑎𝑎0 = 0,𝑎𝑎1 = 0,𝑎𝑎2 = 𝑎𝑎2,𝑎𝑎3 = ±𝑏𝑏1𝜆𝜆, 𝑏𝑏0 = ± 𝑎𝑎2
𝜆𝜆

, 𝑏𝑏1 = 𝑏𝑏1 

The exact solution of eq. (3.1) is:            𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜆𝜆

𝜆𝜆+𝑐𝑐1𝑒𝑒
�𝛼𝛼2𝑥𝑥  −3

2𝛼𝛼𝑡𝑡
or

−𝜆𝜆

𝜆𝜆+𝑐𝑐1𝑒𝑒
�𝛼𝛼2𝑥𝑥  −3

2𝛼𝛼𝑡𝑡
              (3.5) 

And for example, two of the solitary wave solutions and their corresponding 
graphs respectively are: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 1
1+𝑒𝑒𝑥𝑥  − 3𝑡𝑡 when 𝜆𝜆 = 1, 𝑐𝑐1 = 1and 𝛼𝛼 = 2.  

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = − 5
5+3𝑒𝑒𝑥𝑥  − 3𝑡𝑡  when 𝜆𝜆 = −10, 𝑐𝑐1 = −6 and 𝛼𝛼 = 2. 

 

Case-2:
 𝑐𝑐 = − 3

4
𝛼𝛼, 𝑘𝑘 = ± 1

2�
𝛼𝛼
2

,𝑎𝑎0 = − 𝑎𝑎2
𝜆𝜆

,𝑎𝑎1 = ±𝑏𝑏1,𝑎𝑎2 = 𝑎𝑎2,𝑎𝑎3 = ±𝑏𝑏1𝜆𝜆, 𝑏𝑏0 = ± 𝑎𝑎2
𝜆𝜆

, 𝑏𝑏1 = 𝑏𝑏1
 

The exact solution of eq. (3.1) is:       𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 1 − 𝜆𝜆

𝜆𝜆+𝑐𝑐1𝑒𝑒
�𝛼𝛼2𝑥𝑥+ 32𝛼𝛼𝑡𝑡

or  −1 + 𝜆𝜆

𝜆𝜆+𝑐𝑐1𝑒𝑒
�𝛼𝛼2𝑥𝑥+ 32𝛼𝛼𝑡𝑡

    (3.6) 
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And for example, two of the solitary wave solutions and their corresponding 
graphs respectively are:

 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 1 − 1

1+𝑒𝑒𝑥𝑥+
 

3𝑡𝑡   when  𝜆𝜆 = 1, 𝑐𝑐1 = 1  and
 

𝛼𝛼 = 2. 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = −1 + 5
5+3𝑒𝑒𝑥𝑥+

 
3𝑡𝑡   

when  𝜆𝜆 = −10, 𝑐𝑐1 = −6 and
 

𝛼𝛼 = 2.
 

 
Justification of the solutions of Chafee-Infante  equation by Maple-13  

 

Example 2:
 

The (2+1)-dimensional Breaking Soliton (BS) equation
 

Now, we will investigate explicit solitary wave solutions of the following (2+1)-
dimensional breaking soliton equations 

 

                                        
 

𝑢𝑢𝑡𝑡 + 𝛼𝛼𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 + 4𝛼𝛼(𝑢𝑢𝑢𝑢)𝑥𝑥 = 0                                  (3.7) 

                                                    𝑢𝑢𝑦𝑦 = 𝑣𝑣𝑥𝑥                                                 (3.8) 
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Where
 
𝛼𝛼
 
is a nonzero constant. Equation (3.7) and eq. (3.8) describe the (2 + 1)-

dimensional interaction of a Riemann wave propagation along the y-axis with a long 
wave propagated along the x-axis.

 If we follow the similar solution procedure of example-1, we get the following sets 
of constants and corresponding exact solutions.

 
Values of constants 

𝑐𝑐 = 4𝛼𝛼,𝑎𝑎0 = 0,𝑎𝑎1 = 0,𝑎𝑎2 = 6𝑏𝑏0,𝑎𝑎3 = 6𝑏𝑏1,𝑎𝑎4 = −6𝑏𝑏0,𝑎𝑎5 = −6𝑏𝑏1, 𝑏𝑏0 = 𝑏𝑏0, 𝑏𝑏1 = 𝑏𝑏1 

The exact solution of eq. (3.7) and (3.8) are: 

                        𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 6
𝜆𝜆+𝑐𝑐1e2(𝑥𝑥+𝑦𝑦−4𝛼𝛼𝑡𝑡) −

6
[𝜆𝜆+𝑐𝑐1e2(𝑥𝑥+𝑦𝑦−4𝛼𝛼𝑡𝑡)]2               (3.9) 

And for example, a solitary wave solution and its graphs is:  

𝑢𝑢 = 𝑣𝑣 =
6

1 + e2(𝑥𝑥+4𝑡𝑡) −
6

[1 + e2(𝑥𝑥+4𝑡𝑡)]2 

 

Case-2: Values of constants 

  𝑐𝑐 = −4𝛼𝛼,𝑎𝑎0 = −𝑏𝑏0,𝑎𝑎1 = −𝑏𝑏1,𝑎𝑎2 = 6𝑏𝑏0,𝑎𝑎3 = 6𝑏𝑏1,𝑎𝑎4 = −6𝑏𝑏0,𝑎𝑎5 = −6𝑏𝑏1, 𝑏𝑏0 = 𝑏𝑏0, 𝑏𝑏1 = 𝑏𝑏1
 

The exact solution of eq. (3.7) and (3.8) are: 

                       𝑢𝑢 = 𝑣𝑣 = −1 + 6
𝜆𝜆+𝑐𝑐1e2(𝑥𝑥+𝑦𝑦+4𝛼𝛼𝑡𝑡) −

6
[𝜆𝜆+𝑐𝑐1e2(𝑥𝑥+𝑦𝑦+4𝛼𝛼𝑡𝑡)]2                          (3.10) 

And for example, a solitary wave solution and its graphs is:
 

𝑢𝑢 = 𝑣𝑣 = −1 +
6

1 + 2e2(𝑥𝑥−8𝑡𝑡) −
6

[1 + 2e2(𝑥𝑥−8𝑡𝑡)]2
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Case-1:

Notes



 
 

 

IV.
 

Results
 

and Future Directions
 

In example-1 of section 3, we find the exact sloutions of Chafee-Infante equation 
by

 
improved Kudryashov method. From fig. 1-fig.4 we get kink type wave profile for

 different particular values of parameters choosing in eq.(3.5) and eq.(3.6).
 

These graphs 
increase or fall down from one asymptotic state to another. The kink solution 
approaches a constant at infinity. In example-2, using this method wesolve the (2+1)-
dimensional breaking soliton equations

 
and get also kink type wave profile. From fig. 

5(3d plot) and fig.6(3d plot) give its graphyical representations.
 

In future, various 
partial differential equations of higher order can be solved by using the

 
improved 

Kudryashov method. Besides, obtained results can be used for practical applications in 
later research.

 
V.

 
Conclusion

 
and  Future  Research

 
We have properly applied the improved Kudryashov method to establish exact 

solutions and then solitary wave solutions of the Chafee-Infante equation and the 
(2+1)-dimensional breaking soliton equation. The result discover that nonlinear partial 
differential equations can be easily handled by the improved Kudryashov method and 
that the performance of this method is authentic and efficient. The method is short and 
straightforward, and we can also apply this to other nonlinear problems. Also, 
thephysical interpretation of these solutions and actual applications in reality will be 
investigated in future papers. 
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