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f ∈ T (x

(

T :X→ 2X
∗

T : Y→2X
∗

Y⊂X

Assume that X and Y are separable and reflexive Banach spaces equipped with
uniformly convex norms, and i : Y → X is the continuous embedding. Furthermore,
assume that T : Y → 2X

∗
is a maximal monotone map with the effective domain

D(T ) = Y in the following sense. A pair (ỹ, x̃∗) is in the graph of T if the condition
〈x∗− x̃∗, i(y− ỹ)〉 ≥ 0 holds for all (y, x∗) ∈ graph(T ). We construct a degree for T .
The construction generalizes the F. Browder’s classical degree of maximal monotone
maps [1]. The construction of the Browder’s degree is as follows. Assume that X
is a separable reflexive Banach space equipped with a uniformly convex norm, and
T : X → 2X

∗
a maximal monotone map. The map Tε = T + εJ , where ε > 0 and

J : X → X∗ is the duality mapping possesses the following properties:

(1) Tε is a map of class (S)+, that is, if xn ⇀ x in X, there is x∗n ∈ T (xn) such
that

lim sup
n→∞

〈x∗n + εJ(xn), xn − x〉 ≤ 0,

then xn → x.
(2) The map Tε is onto X∗,
(3) if x1 6= x2, the sets T (x1), T (x2) are disjoint, that is,

T (x1) ∩ T (x2) = ∅.

(4) The map T−1ε : X∗ × (0,∞)→ X is well defined and continuous.

Note that J is single valued, bijective and bi-continuous if X is uniformly convex.
It is shown that the map (T−1ε + εJ−1)−1 : X → X∗ is demi-continuous and (S)+
for which a degree theory has been developed by F. Browder. The degree of T in
the open bounded set D ⊂ X at 0 is defined by the following relation

deg(T,D, 0) = lim
ε→0

deg((T−1ε + εJ−1)−1, D, 0). (1.1)

Notes
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The degree suggested in this article generalizes the Browder’s degree. In particular
if Y = X, two degrees are the same. Another advantage of the suggested degree
is the direct use of finite rank approximation we employed in our previous work
[2]. This method make the calculations much easier than the formula (1.1). It
should be noted that the suggested degree is different from the degree of the map
i∗ ◦ T : Y → 2Y

∗
. The difference between two formulations is discussed in [2] for

single valued maps.

Assume X1 and X2 are Banach spaces. A map A : X1 → 2X2 is
called upper semi-continuous at x ∈ X1 if for every neighborhood V of A(x), there
exists an open neighborhood U of x such that T (U) ⊂ V .

We have the following theorem for the upper semi-continuous multi-valued map-
pings; see for example [3, 4].

(ε-continuous subgraph) Assume that X1 and X2 are Banach
spaces, and the map A : X1 → 2X2 is upper semi-continuous. If A(x) is closed
and convex for all x ∈ X1, then for any ε > 0, there exists a continuous single
valued function Aε : X1 → X2 such that for any x ∈ X1, there exists z1 ∈ X1 and
z̃2 ∈ A(z) such that ‖x− z1‖ < ε and ‖Aε(x)− z̃2‖ < ε.

Let X,Y be Banach spaces, i : Y → X a continuous embedding
and T : Y → 2X

∗
a maximal monotone map with the effective domain Y . Then

T (y) is closed and convex for all y ∈ Y , and T is norm to weak-star upper semi-
continuous in the following sense. For arbitrary y ∈ Y , and arbitrary sequence
(yn) converges to y in norm, there is a weakly limit point x∗ of ∪nT (yn) such that
x∗ ∈ T (y).

The proof is completely similar to one for the map T : X → 2X
∗
. For a proof of

the standard version see for example [5].

If Y is a separable and reflexive Banach space equipped with a uniformly convex
norm, a theorem by Browder and Ton [6] guarantees the existence of a separa-
ble Hilbert space H such that the embedding j : H ↪→ Y is dense and com-
pact. Choosing an orthogonal basis {hk}∞k=1 for H, we obtaine the basis Y =
{y1, y2, · · · , yn, · · · } for Y where yk = j(hk), and accordingly, the filtration Y =
{Yn}, where Yn = span{y1, . . . , yn}. The following proposition is simply verified.

For any y ∈ Y , there is a sequence (yn), yn ∈ Yn such that
yn → y.

The pairing in Yn is denoted by (, ) and is defined by the relation (yi, yj) = δij
for all yi, yj ∈ Y. We define the maximal monotone operato T : Y → 2X

∗
in the

following sense.

Suppose X and Y are separable and reflexive Banach spaces
equipped with uniformly convex norm, and assume that T : Y → 2X

∗
is a maximal

monotone map. The finite rank approximation of arbitrary x∗ ∈ T (y) in Yn ∈ Y, is
defined by x̂n =

∑n
k=1〈x∗, i(yk)〉yk. Accordingly, the finite rank map Tn : Y → 2Yn

is defined by the relation

(1.2)Tn(y) =
⋃

x∗∈T (y)

x̂n.

For any x∗ ∈ X∗ and y ∈ Yn, we have the property

(x̂n, y) = 〈x∗, i(y)〉,

where 〈, 〉 is the pairing between X∗, X. In fact, if x∗ ∈ X∗, then for x̂n =∑n
k=1〈x∗, yk〉yk, we have

A New Construction of the Degree of Maximal Monotone Maps

Definition 1.1. 

Theorem 1.2. 

Definition 1.5. 

Proposition 1.4.

Proposition 1.4.
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n∑
k=1

〈x∗, i(yk)〉(yk, y) =
n∑
k=1

〈x∗, i((yk, y)yk)〉 =

〈
x∗, i

n∑
k=1

(yk, y)yk

)〉
,

and thus 〈x∗, i(y)〉 = (x̂n, y).

The finite rank approximation Tn is upper semi-continuous and for
every x ∈ Y , the set Tn(x) is closed and convex.

Proof. Fix n and ε > 0. If Tn is not upper semi-continuous at x ∈ Y , there is
a sequence (δm), δm → 0 and xm ∈ Bδm(x) such that for some x̂n,m ∈ Tn(xm),
we have x̂n,m 6∈ Vε(Tn(x)). T is maximal monotone, and thus locally bounded.
Therefore, there is a subsequence (shown for the sake of simplicity again by x̂n,m)
such that x̂n,m → x̂. We show x̂ ∈ Tn(x). Since x̂n,m ∈ Tn(xm), there is x∗m ∈
T (xm) such that x̂n,m are the finite rank approximation in Yn of x∗m, that is,

x̂n,m =
n∑
k=1

〈x∗m, i(yk)〉yk.

Since T is norm to weak-star upper semi-continuous, and xm → x, we have x∗m ⇀ x∗

for some x∗ ∈ T (x). Thus 〈x∗m, i(yk)〉 → 〈x∗, i(yk)〉 for all 1 ≤ k ≤ n. Therefore

x̂n,m =

n∑
k=1

〈x∗m, i(yk)〉yk →
n∑
k=1

〈x∗, i(yk)〉yk ∈ Tn(x),

and therefore x̂ ∈ Tn(x). Now we show that Tn(x) is closed for all x ∈ Y . Con-
sider an arbitrary sequence x̂m ∈ Tn(x), and x̂m → x̂. Let x∗m ∈ T (y) be the
sequence such that x̂m =

∑n
k=1〈x∗m, i(yk)〉yk. Since T (y) is bounded and convex,

the sequence x∗m converges weakly (in a subsequence) to some x∗ ∈ T (x) and thus

x̂m =

n∑
k=1

〈x∗m, i(yk)〉yk →
n∑
k=1

〈x∗, i(yk)〉yk,

and thus

x̂ =

n∑
k=1

〈x∗, i(yk)〉yk ∈ Tn(x).

That Tn(x) is convex follows simply from the convexity of T (x).

By the Lemma (1.6) and Theorem (1.2), the ε-continuous selection Tn,ε of Tn is
well defined. The single valued map Tn,ε is continuous and for any x ∈ Yn, there is
z ∈ Yn and ẑ ∈ Tn(z) such that ‖z − x‖ ∈ ε and ‖ẑ − Tn,ε(x)‖ < ε.

Let (εn) be a positive sequence such that εn → 0. Fix ε > 0. Consider the

function T̃n,εn : Yn → Yn defined by the relation

(2.1) T̃n,εn = Tn,εn + εJn,

where Tn,εn is the εn-continuous selection of Tn and Jn is the finite rank approx-
imation of J ◦ i : Y → X∗ in Yn where J : X → X∗ is the bi-continuous duality
map.

Let D ⊂ Y be an open bounded set and assume that for some ε > 0,
we have 0 6∈ clT ε(∂D), where T ε = T + εJ ◦ i. Then there is N > 0 such that

0 6∈ T̃n,εn(∂Dn) for all n ≥ N where Dn = D ∩ Yn.

Proof. Otherwise, there is a sequence zn ∈ ∂Dn such that T̃n,εn(zn) = 0 for all
n ≥ 1. Since ∂D is bounded, there is a subsequence (we show again by zn) that
weakly converges to z. We first show that zn converges strongly to z. Choose a
sequence ζn ∈ Yn that converges to z in norm. Since T̃n,εn(zn) = 0 on Yn, we have

(Tn,εn(zn), zn − ζn) + ε(Jn(zn), zn − ζn) = 0,

A New Construction of the Degree of Maximal Monotone Maps

Lemma 1.6. 

Lemma 2.1. 

II. Degree Definition

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
er

sio
n 

I
V

I
Y
ea

r
20

19

102

  
 

( F
)

© 2019   Global Journals

because zn − ζn ∈ Yn. By the relation

(Jn(zn), zn − ζn) = 〈J ◦ i(zn), i(zn − ζn)〉,
we can write

(Tn,εn(zn), zn − ζn) + ε〈J ◦ i(zn), i(zn − ζn)〉 = 0.

On the other hand, for each zn, there is xn ∈ Yn and x̂n ∈ Tn(xn) such that

‖xn − zn‖ < εn, ‖x̂n − Tn,εn(zn)‖ < εn.

Therefore, we have

(Tn,εn(zn), zn − ζn) = (Tn,εn(zn)− x̂n, zn − ζn) + (x̂n, zn − ζn),

and by the relation ‖Tn,εn(zn)− x̂n‖ < εn, we obtain

(Tn,εn(zn), zn − ζn) ≥ −εn‖zn − ζn‖+ (x̂n, zn − ζn)

By the relation ‖xn − zn‖ < εn, we have

(x̂n, zn − ζn) ≥ −εn‖x̂n‖+ (x̂n, xn − ζn).

Since x̂n ∈ Tn(x), there are x∗n ∈ T (xn) such that x̂n are the finite rank approxi-
mations of x∗n in Yn. Thus, we can write

(x̂n, xn − ζn) = 〈x∗n, i(xn − ζn)〉.

Also, for some C > 0, we can write

〈x∗n, i(xn − ζn)〉 ≥ −C‖x∗n‖‖z − ζn‖+ 〈x∗n, i(xn − z)〉.

Choose an arbitrary z∗ ∈ T (z). We have

〈x∗n, i(xn − z)〉 ≥ 〈x∗n − z∗, i(xn − z)〉+ 〈z∗, i(xn − z)〉 ≥ 〈z∗, i(xn − z)〉.

Since zn ⇀ z and ‖xn − zn‖ → 0, we conclude

lim
n→∞

(Tn,εn(zn), zn − ζn) ≥ 0.

Thus, the relation (2.2) implies

lim sup
n→∞

〈J ◦ i(zn), i(zn − ζn)〉 ≤ 0.

By the relation ζn → z, we conclude

lim sup
n→∞

〈J ◦ i(zn), i(zn − ζn)〉 ≤ 0,

and since J is a map of class (S)+, we obtain zn → z ∈ ∂D. Now we show
0 ∈ clT ε(z). Choose arbitrary y ∈ Y and sequence yn ∈ Yn, yn → y. We have

(Tn,εn(zn), yn) + ε〈J ◦ i(zn), i(yn)〉 = 0.

Since J is continuous, we have 〈J ◦ i(zn), i(yn)〉 → 〈J ◦ i(z), y〉. Choose xn ∈ Yn
and x̂n ∈ Tn(xn) such that

‖xn − zn‖ < εn, ‖x̂n − Tn,εn(zn)‖ < εn.

We have

lim |(Tn,εn(zn), yn)− (x̂n, yn)| = 0.

For x∗n ∈ T (xn), and by the relation yn → y, we obtain

lim |(Tn,εn(zn), yn)− 〈x∗n, i(y)〉| = 0.

Since T is norm to weak-star upper semi-continuous, we conclude 〈x∗n, i(y)〉 →
〈x∗, y〉 for some x∗ ∈ T (z). This implies that x∗+ εJ ◦ i(z)=0 and thus 0 ∈ clT ε(z)
that contradicts the condition 0 6∈ clT ε(∂D).

A New Construction of the Degree of Maximal Monotone Maps

(2.2)

Notes
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Assume that 0 6∈ clT (∂D). Then there is ε > 0 such that
0 6∈ clT ε(∂D).

Proof. By the assumption, there is r > 0 such that dist(0, clT (∂D)) = r. Let
z ∈ ∂D is arbitrary. Take arbitrary z∗ ∈ T (z). We have

‖z∗ + εJ(z)‖ ≥ ‖z∗‖ − ε‖z‖ ≥ r − ε‖z‖.

Therefore 0 6∈ clT ε(∂D) if

0 < ε <
r

maxz∈∂D ‖z‖
.

The boundedness of ∂D guarantees the existence of ε > 0.

Assume that X and Y are separable and reflexive Banach spaces
equipped with uniformly convex norms, D ⊂ Y is an open bounded set and T :
Y → 2X

∗
is a maximal monotone map such that 0 6∈ clT (∂D). Choose ε > 0

satisfying (2.3) and consider the map T̃n,εn defined in (2.1). The degree of T in D
with respect to 0 is defined by the following formula

deg(T,D, 0) = lim
n→∞

degB(T̃n,εn , Dn, 0),

where degB is the usual Brouwer’s degree of the map T̃n,εn .

The degree defined in the relation (2.4) is stable with respect to n.

Proof. Consider the sequence of mappings (T̃k,εk) such that for sufficiently large n

the condition 0 6∈ clT̃k,εk(∂Dk) is satisfied for k ≥ n− 1 . First note that there is
ε0 > 0 such that for 0 < ε1, ε2 < ε0, the following relation holds

degB(T̃n,ε1 , Dn, 0) = degB(T̃n,ε2 , Dn, 0),

In fact, for any x ∈ Yn, there is z1, z2 ∈ Yn and ẑ1 ∈ Tn(z1), ẑ2 ∈ Tn(z2) such that

‖z1 − x‖ < ε1, ‖ẑ1 − Tn,ε1(x)‖ < ε1, ‖z2 − x‖ < ε2, ‖ẑ2 − Tn,ε2(x)‖ < ε2.

The continuity of Tn,ε1 , Tn,ε2 implies that ‖T̃n,ε1− T̃n,ε2‖ can be controlled and thus

(2.5) holds. Let us write T̃n,εn as

T̃n,εn = T̃ 1
n,εn + T̃ 2

n,εn ,

where T̃ 1
n,εn is the projection of T̃n,εn into Yn−1 and T̃ 2

n,εn is the projection into

{yn}. Define the map Sn,εn : Yn → 2Yn as

Sn,εn(x) = T̃ 1
n,εn(x) + (x, yn)yn

Obviously, we have

degB(Sn,εn , Dn, 0) = degB(T̃ 1
n,εn , Dn−1, 0).

First we show

degB(T̃ 1
n,εn , Dn−1, 0) = degB(T̃n−1,εn , Dn−1, 0) = degB(T̃n−1,εn−1 , Dn−1, 0).

The last equality follows from (2.5). In order to prove the first equality, we note
that if Tn,εn is an εn-continuous selection of Tn, then T 1

n,ε1 is also an εn-continuous
selection of Tn−1,εn . In fact, let x ∈ Yn−1 be arbitrary, then there is z ∈ Yn and
ẑ ∈ Tn(y) such that

‖ẑ1 − T 1
n,εn(x) + ẑ2 − T 2n, εn‖2 < ε2n,

A New Construction of the Degree of Maximal Monotone Maps

(2.3)

(2.4)

(2.6)

(2.7)

(2.5)

Definition 2.3.

Proposition 2.2.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
er

sio
n 

I
V

I
Y
ea

r
20

19

104

  
 

( F
)

© 2019   Global Journals

where ẑ1 ∈ Yn−1 and ẑ2 ∈ {yn}. This implies

‖ẑ1 − T 1
n,εn(x)‖ < εn, ‖z1 − y‖ < εn.

Again it follows that ‖Tn−1,εn −T 1
n,εn‖ can be controlled and thus the first equality

in (2.7) is proved. Now, we show

degB(T̃n,εn , Dn, 0) = degB(Sn,εn , Dn, 0).

Consider the convex homotopy

hn(t) = (1− t)T̃n,εn + tSn,εn .

It is enough to show 0 6∈ hn(t)(∂Dn) for t ∈ [0, 1]. Clearly, 0 6∈ hn(t)(∂Dn) for
t = 0, 1. For t ∈ (0, 1) assume that there exists a sequence tn ∈ (0, 1) and (zn),
zn ∈ ∂Dn such that hn(tn)(zn) = 0. According to the construction of hn(t) we
have

0 = hn(tn)(zn) = T̃ 1
n,εn(zn) + (1− tn)T̃ 2

n,εn(zn) + tn(zn, y
n)yn.

The above relation implies T̃ 1
n,εn(zn) = 0 and

T̃ 2
n,εn(zn) = − tn

1− tn
(zn, y

n)yn.

Since ∂D is bounded then zn ⇀ z in a subsequence. Choose the sequence (ζn), ζn ∈
Yn and ζn → z and obtain

(T̃n,εn(zn), zn − ζn) = − tn
1− tn

|(zn, yn)|2 +
tn

1− tn
(zn, y

n)(ζn, y
n).

On the other hand since ζn → z, we have (ζn, y
n)→ 0. Since there exists sequence

ẑn ∈ Tn(zn) such that ‖ẑn − Tn,εn(zn)‖ < εn we can write for some z∗n ∈ T (zn)

lim sup
n→∞

〈z∗n + εJ ◦ i(zn), i(zn − z)〉 = lim sup
n→∞

(T̃n,εn(zn), zn − ζn).

Therefore we obtain

lim sup
n→∞

〈z∗n + εJ ◦ i(zn), i(zn − z)〉 ≤ 0.

Since

lim
n→∞

〈z∗n, i(zn − z)〉 ≥ 0,

we obtain

lim sup
n→∞

〈J ◦ i(zn), i(zn − z)〉 ≤ 0,

and thus zn → z. This is impossible because 0 6∈ clT ε(∂D).

Now, we show that the definition (2.4) satisfies the classical properties of a
topological degree including the solvability and the homotopy invariance.

Let D ⊂ Y be an open bounded set and assume that T : Y → 2X
∗

is maximal monotone and 0 6∈ clT (∂D). If

deg(T,D, 0) 6= 0,

then there is y ∈ D such that 0 ∈ T (y).

Proof. Assume deg(T,D, 0) 6= 0, then there exists a sequence zn ∈ D such that

T̃n,εn(zn) = 0 for sufficiently small εn > 0. This implies that there is the sequence
ẑn ∈ Tn(zn) such that ‖ẑn + εJn(zn)‖ < εn. Since D is bounded then zn converges
weakly (in a subsequence) to some z. Since T is monotone, we conclude

lim sup
n→∞

〈J ◦ i(zn), i(zn − z)〉 ≤ 0,

and thus zn converges strongly to z ∈ cl(D). Let ẑn be the n-approximation of
z∗n ∈ T (zn). Since T is norm to weak-star upper semi-continuous, the sequence z∗n
converges weakly in a subsequence to some z∗ ∈ T (z). Let v ∈ Y be arbitrary.
Consider the sequence (vn), vn ∈ Yn and vn → y. Then we have

A New Construction of the Degree of Maximal Monotone Maps

(2.8)

Theorem 2.5.
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〈z∗n, i(vn)〉 = −ε〈J ◦ i(zn), i(vn)〉 − ε(Tn,εn(zn)− ẑn, vn〉 → 0,

On the other hand, 〈z∗n, i(vn)〉 → 〈z∗, i(y)〉, and thus z∗ = 0 or equivalently 0 ∈
T (z). Since 0 6∈ clT (∂D), we conclude z ∈ D.

LetD ⊂ X be an open bounded set, and assume h : [0, 1]× Y →
2X

∗
be a continuous homotopy with respect to t such that for any t ∈ [0, 1], the map

h(t) : Y → 2X
∗

is maximal monotone. Furthermore assume that 0 6∈ clh([0, 1] ×
∂D). The map h is called an admissible homotopy for maximal monotone maps.

The degree defined in (2.4) is stable under the admissible homo-
topy of maximal monotone maps.

Proof. According to the definition of the admissible homotopy, the degree

degB(h̃n,εn(t), Dn, 0)

is independent of t due to the fact 0 6∈ h̃n,εn(t)(∂Dn) for t ∈ [0, 1] and the homotopy
invariance of the Brouwer’s degree. Now, the stability of the defined degree (2.4)
with respect to n implies that the degree deg(h(t), D, 0) is independent of t.

We give degree theoretic proofs of some theorems in convex analysis. The first
theorem is due to D. DeFigueirdo [7].

Assume that X is a separable uniformly convex Banach space,
T : X → 2X

∗
is a maximal monotone map such that 0 6∈ (T + λJ)(Sr), where Sr

is the sphere of radius r and λ > 0 is arbitrary. Then there exists u ∈ cl(Br) such
that 0 ∈ T (u), where Br is the ball of radius r in X.

Proof. Assume that 0 6∈ T (cl(Br)). We show first that 0 6∈ clT (Sr). Otherwise there
exist a sequence un ∈ Sr and u∗n ∈ T (un) such that u∗n → 0. The sequence (un)
converges weakly in a subsequence (that we show again by un) to some u ∈ cl(Br).
Claim: [u, 0] ∈ graph(T ). For any [x, x∗] ∈ graph(T ) we have the inequality

〈x∗, x− u〉 = lim〈x∗ − u∗n, x− un〉 ≥ 0.

Since T is maximal monotone, the above inequality implies [x, 0] ∈ graph(T ) or
equivalently 0 ∈ T (u). This contradicts the assumption 0 6∈ T (cl(Br)). It is also
apparent that 0 6∈ cl(J(Sr)). Next, we show 0 6∈ cl((1− t)T + tJ)(Sr)) for t ∈ (0, 1).
Otherwise there exist tn ∈ (0, 1), un ∈ Sr and u∗n ∈ T (un) such that

(1− tn)u∗n + tnJ(un)→ 0.

Again for un ⇀ u and tn → t we obtain by the monotonicity property of T the
following inequality

lim sup
n→∞

〈J(un), un − u〉 ≤ 0,

that implies un → u ∈ Sr. Claim: [u, −t1−tJ(u)] ∈ graph(T ). For any [x, x∗] ∈
graph(T ) we obtain by the fact −t

1−tJ(un) ∈ T (un) the following relation

〈x∗ +
t

1− t
J(u), x− u〉 = lim〈x∗ +

t

1− t
J(un), x− un〉 ≥ 0,

that proves the claim. Now by degree theoretic argument we have

deg(T,Br, 0) = deg((1− t)T + tJ,Br, 0) = deg(J,Br, 0) = 1.

The above calculation guarantees the existence of u ∈ Br such that 0 ∈ T (u)
and this contradicts the assumption 0 6∈ T (cl(Br)). Therefore the assumption
0 6∈ T (cl(Br)) is wrong and thus 0 ∈ T (cl(Br)).

The next theorem is again from DeFigueirdo [7].

Let X be a separable uniformly convex Banach space and assume
that f : X → X∗ is a pseudo-monotone map. Then Rang(∂Nr + f) = X∗ where
Nr is the map

Definition 2.6.

Proposition 2.7.

Theorem 3.1. 

Proposition 3.2.
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Nr(x) =

{
0 if x ∈ Br
1 if x ∈ Sr

,

and ∂Nr is the set of the sub-gradients of Nr.

Proof. Apparently, we have

(3.1)∂Nr(x) =

{
0 if x ∈ Br
{λJ(x), λ ≥ 0} if x ∈ SR

.

Claim: for every f0 ∈ X
∗
, we have

deg(∂Nr + f − f0, Br, 0) 6= 0.

First we show if 0 6∈ (∂Nr + f − f0)(cl(Br)) then

0 6∈ cl(∂Nr + f − f0)(Sr).

Otherwise, there is a sequence un ∈ Sr and u∗n ∈ ∂Nr(un) such that u∗n + f(un)−
f0 → 0. But un ⇀ u ∈ cl(Br) in a sub-sequence. We prove that [u, f0 − f(u)] ∈
graph(∂Nr). Let f0 = u∗n + f(un) + ε(n) where ε(n) ∈ X∗ and ε(n) → 0. For any
arbitrary [x, x∗] ∈ graph(∂Nr), we have

〈x∗ − f0 + f(u), x− u〉 = lim〈x∗ + f(u)− u∗n − f(un), x− un〉 ≥
lim〈f(u)− f(un), x− u〉.

But

0 = lim〈u∗n + f(un)− f0, un − u〉 ≥ lim sup〈f(un), un − u〉

Since f is pseudo-monotone we obtain f(un) ⇀ f(u) and therefore

〈x∗ − f0 + f(u), x− u〉 ≥ 0.

This implies that [u, f0 − f(u)] ∈ graph(∂Nr) and thus 0 ∈ (∂Nr + f − f0)(cl(Br))
which is impossible by the assumption. Now consider the affine homotopy

(3.5)h(t) = (1− t)(∂Nr + f − f0) + tJ.

for t ∈ (0, 1]. We show

0 6∈ cl((1− t)(∂Nr + f − f0) + tJ)(Sr).

Otherwise, there is a sequence un ∈ Sr, u∗n ∈ ∂Nr(un) and tn → t such that

(1− tn)(u∗n + f(un)− w) + tnJun → 0.

But un ⇀ u ∈ cl(Br) in a subsequence. W show

[u, f0 − f(u)− t

1− t
J(u)] ∈ graph(∂Nr).

For any [x, x∗] ∈ graph(∂Nr) we have

〈x∗ − f0 + f(u) +
t

1− t
J(u), x− u〉 =

lim〈x∗ + f(u) +
t

1− t
J(u)− u∗n − f(un)− tn

1− tn
J(un), x− u〉 ≥

≥ lim sup〈f(u)− f(un), x− u〉+ lim inf〈 t

1− t
J(u)− tn

1− tn
J(un), x− u〉

A New Construction of the Degree of Maximal Monotone Maps

(3.2)

(3.3)

(3.4)

We conclude un → u ∈ Sr and f(un) ⇀ f(u) because f is pseudo-monotone.
Therefore we obtain again

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Therefore there exist u ∈ cl(Br) such that f0 ∈ ∂Nr(u) + f(u).

The following theorem is due to F. Browder [8] for the surjectivity of the mono-
tone maps with locally bounded inverse.

Assume A : X → X∗ is a demi-continuous monotone map such
that A−1 is locally bounded, that is, for every f ∈ X∗ there is a bounded Vf 3 f
such that A−1(Vf ) is bounded. Then A is onto.

Proof. For any f ∈ X∗, we show that there is sufficiently large r = r(f) such that:

deg(A,Br, f) 6= 0.

Choose r > 0 such that for a neighborhood Vf 3 f the following condition is
satisfied

Sr ∩A−1(Vf ) = ∅,

or equivalently f 6∈ clA(Sr). Since there is ε > 0 such that

deg(A,Br, f) = deg(A+ εJ,Br , f),

it is enough to show

deg(A+ εJ,Br, f) 6= 0,

for sufficiently large r and sufficiently small ε > 0. First, we show

deg(A+ εJ,Br, 0) 6= 0.

In fact, if (A+ εJ)(z) = 0 for z ∈ ∂Br, then

〈A(z)−A(0), z〉+ ε‖z‖2 + 〈A(0), z〉 = 0.

Since A is monotone, the inequality ε‖z‖2 + 〈A(0), z〉 ≤ 0 implies ε‖z‖ ≤ ‖A(0)‖,
that is impossible for sufficiently large r. Since A+εJ is a map of class (S)+, define
the homotopy h(t) = tA+ εJ . It is simply seen that 0 6∈ h(t)(∂Br) and then

deg(A+ εJ,Br, 0) = deg(h(t), Br, 0) = deg(J,Br, 0) 6= 0.

The proof of (3.6) is completely similar to one presented above.

A New Construction of the Degree of Maximal Monotone Maps

But (∂Nr + f + t
1−tJ − f0)(cl(Br)) = (∂Nr + f − f0)(cl(Br)) and then 0 ∈ (∂NR +

f−f0)(cl(Br)) that is impossible. Finally we use the homotopy invariance property
of degree and write

deg(∂NR + f − f0, Br, 0) = deg(h(t), BR, 0) = deg(J,Br, 0) = 1.

0 ∈ (∂Nr + f +
t

1− t
J − f0)(cl(Br)).

(3.6)

Theorem 3.3. 
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