

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES Volume 19 Issue 1 Version 1.0 Year 2019 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896

## A New Construction of the Degree of Maximal Monotone Maps

### By Mohammad Niksirat

University of Alberta

Abstract- The inclusion equations of the type  $f \in T(x)$  where  $T: X \to 2^{X^*}$  is a maximal monotone map, are extensively studied in nonlinear analysis. In this paper, we present a new construction of the degree of maximal monotone maps of the form  $T: Y \to 2^{X^*}$ , where  $Y \subset X$  is a locally uniformly convex and separable Banach space continuously embedded in *X*. The advantage of the new construction lies in the remarkable simplicity it offers for calculation of degree in comparison with the classical one suggested by F. Browder. We prove a few classical theorems in convex analysis through the suggested degree.

*Keywords:* degree theory, finite rank approximation, maximal monotone maps, multivalued maps. GJSFR-F Classification: MSC 2010: 34C12

# A NEW CONSTRUCTION OF THE DEGREE OF MAXIMA LMONOTONEMAPS

Strictly as per the compliance and regulations of:



© 2019. Mohammad Niksirat. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.









Notes

# A New Construction of the Degree of Maximal Monotone Maps

Mohammad Niksirat

Abstract- The inclusion equations of the type  $f \in T(x)$  where  $T: X \to 2^{X^*}$  is a maximal monotone map, are extensively studied in nonlinear analysis. In this paper, we present a new construction of the degree of maximal monotone maps of the form  $T: Y \to 2^{X^*}$ , where  $Y \subset X$  is a locally uniformly convex and separable Banach space continuously embedded in X The advantage of the new construction lies in the remarkable simplicity it offers for calculation of degree in comparison with the classical one suggested by F. Browder. We prove a few classical theorems in convex analysis through the suggested degree.

Keywords: degree theory, finite rank approximation, maximal monotone maps, multivalued maps.

#### I. INTRODUCTION

Assume that X and Y are separable and reflexive Banach spaces equipped with uniformly convex norms, and  $i: Y \to X$  is the continuous embedding. Furthermore, assume that  $T: Y \to 2^{X^*}$  is a maximal monotone map with the effective domain D(T) = Y in the following sense. A pair  $(\tilde{y}, \tilde{x}^*)$  is in the graph of T if the condition  $\langle x^* - \tilde{x}^*, i(y - \tilde{y}) \rangle \geq 0$  holds for all  $(y, x^*) \in \operatorname{graph}(T)$ . We construct a degree for T. The construction generalizes the F. Browder's classical degree of maximal monotone maps [1]. The construction of the Browder's degree is as follows. Assume that X is a separable reflexive Banach space equipped with a uniformly convex norm, and  $T: X \to 2^{X^*}$  a maximal monotone map. The map  $T_{\epsilon} = T + \epsilon J$ , where  $\epsilon > 0$  and  $J: X \to X^*$  is the duality mapping possesses the following properties:

(1)  $T_{\epsilon}$  is a map of class  $(S)_+$ , that is, if  $x_n \rightharpoonup x$  in X, there is  $x_n^* \in T(x_n)$  such that

$$\limsup_{n \to \infty} \langle x_n^* + \epsilon J(x_n), x_n - x \rangle \le 0,$$

then  $x_n \to x$ .

- (2) The map  $T_{\epsilon}$  is onto  $X^*$ ,
- (3) if  $x_1 \neq x_2$ , the sets  $T(x_1), T(x_2)$  are disjoint, that is,

$$T(x_1) \cap T(x_2) = \emptyset.$$

(4) The map  $T_{\epsilon}^{-1}: X^* \times (0, \infty) \to X$  is well defined and continuous.

Note that J is single valued, bijective and bi-continuous if X is uniformly convex. It is shown that the map  $(T_{\epsilon}^{-1} + \epsilon J^{-1})^{-1} : X \to X^*$  is demi-continuous and  $(S)_+$  for which a degree theory has been developed by F. Browder. The degree of T in the open bounded set  $D \subset X$  at 0 is defined by the following relation

$$\deg(T, D, 0) = \lim_{\epsilon \to 0} \deg((T_{\epsilon}^{-1} + \epsilon J^{-1})^{-1}, D, 0).$$
(1.1)

Author: Department of Mathematics, University of Alberta, Edmonton, Canada, T6G 2J5. e-mail: niksirat@ualberta.ca

The degree suggested in this article generalizes the Browder's degree. In particular if Y = X, two degrees are the same. Another advantage of the suggested degree is the direct use of finite rank approximation we employed in our previous work [2]. This method make the calculations much easier than the formula (1.1). It should be noted that the suggested degree is different from the degree of the map  $i^* \circ T : Y \to 2^{Y^*}$ . The difference between two formulations is discussed in [2] for single valued maps.

**Definition 1.1.** Assume  $X_1$  and  $X_2$  are Banach spaces. A map  $A: X_1 \to 2^{X_2}$  is called upper semi-continuous at  $x \in X_1$  if for every neighborhood V of A(x), there exists an open neighborhood U of x such that  $T(U) \subset V$ .

We have the following theorem for the upper semi-continuous multi-valued mappings; see for example [3, 4].

**Theorem 1.2.** ( $\epsilon$ -continuous subgraph) Assume that  $X_1$  and  $X_2$  are Banach spaces, and the map  $A : X_1 \to 2^{X_2}$  is upper semi-continuous. If A(x) is closed and convex for all  $x \in X_1$ , then for any  $\epsilon > 0$ , there exists a continuous single valued function  $A_{\epsilon} : X_1 \to X_2$  such that for any  $x \in X_1$ , there exists  $z_1 \in X_1$  and  $\tilde{z}_2 \in A(z)$  such that  $||x - z_1|| < \epsilon$  and  $||A_{\epsilon}(x) - \tilde{z}_2|| < \epsilon$ .

**Proposition 1.4.** Let X, Y be Banach spaces,  $i: Y \to X$  a continuous embedding and  $T: Y \to 2^{X^*}$  a maximal monotone map with the effective domain Y. Then T(y) is closed and convex for all  $y \in Y$ , and T is norm to weak-star upper semicontinuous in the following sense. For arbitrary  $y \in Y$ , and arbitrary sequence  $(y_n)$  converges to y in norm, there is a weakly limit point  $x^*$  of  $\bigcup_n T(y_n)$  such that  $x^* \in T(y)$ .

The proof is completely similar to one for the map  $T: X \to 2^{X^*}$ . For a proof of the standard version see for example [5].

If Y is a separable and reflexive Banach space equipped with a uniformly convex norm, a theorem by Browder and Ton [6] guarantees the existence of a separable Hilbert space H such that the embedding  $j : H \hookrightarrow Y$  is dense and compact. Choosing an orthogonal basis  $\{h_k\}_{k=1}^{\infty}$  for H, we obtain the basis  $\mathcal{Y} = \{y^1, y^2, \dots, y^n, \dots\}$  for Y where  $y^k = j(h_k)$ , and accordingly, the filtration  $\mathbb{Y} = \{Y_n\}$ , where  $Y_n = \operatorname{span}\{y^1, \dots, y^n\}$ . The following proposition is simply verified.

**Proposition 1.4.** For any  $y \in Y$ , there is a sequence  $(y_n), y_n \in Y_n$  such that  $y_n \to y$ .

The pairing in  $Y_n$  is denoted by (,) and is defined by the relation  $(y^i, y^j) = \delta_{ij}$  for all  $y^i, y^j \in \mathcal{Y}$ . We define the maximal monotone operato  $T: Y \to 2^{X^*}$  in the following sense.

**Definition 1.5.** Suppose X and Y are separable and reflexive Banach spaces equipped with uniformly convex norm, and assume that  $T: Y \to 2^{X^*}$  is a maximal monotone map. The finite rank approximation of arbitrary  $x^* \in T(y)$  in  $Y_n \in \mathbb{Y}$ , is defined by  $\hat{x}_n = \sum_{k=1}^n \langle x^*, i(y^k) \rangle y^k$ . Accordingly, the finite rank map  $T_n: Y \to 2^{Y_n}$  is defined by the relation

$$T_n(y) = \bigcup_{x^* \in T(y)} \hat{x}_n. \tag{1.2}$$

For any  $x^* \in X^*$  and  $y \in Y_n$ , we have the property

$$(\hat{x}_n, y) = \langle x^*, i(y) \rangle$$

where  $\langle , \rangle$  is the pairing between  $X^*, X$ . In fact, if  $x^* \in X^*$ , then for  $\hat{x}_n = \sum_{k=1}^n \langle x^*, y^k \rangle y^k$ , we have

2019

Year

100

Global Journal of Science Frontier Research (F) Volume XIX Issue I Version I

soon.

$$\sum_{k=1}^{n} \langle x^*, i(y^k) \rangle (y^k, y) = \sum_{k=1}^{n} \langle x^*, i((y^k, y)y^k) \rangle = \left\langle x^*, i \quad \sum_{k=1}^{n} (y^k, y)y^k \right\rangle \right\rangle,$$

and thus  $\langle x^*, i(y) \rangle = (\hat{x}_n, y).$ 

Lemma 1.6. The finite rank approximation  $T_n$  is upper semi-continuous and for every  $x \in Y$ , the set  $T_n(x)$  is closed and convex.

Proof. Fix n and  $\epsilon > 0$ . If  $T_n$  is not upper semi-continuous at  $x \in Y$ , there is a sequence  $(\delta_m), \delta_m \to 0$  and  $x_m \in B_{\delta_m}(x)$  such that for some  $\hat{x}_{n,m} \in T_n(x_m)$ , we have  $\hat{x}_{n,m} \notin V_{\epsilon}(T_n(x))$ . T is maximal monotone, and thus locally bounded. Therefore, there is a subsequence (shown for the sake of simplicity again by  $\hat{x}_{n,m}$ ) such that  $\hat{x}_{n,m} \to \hat{x}$ . We show  $\hat{x} \in T_n(x)$ . Since  $\hat{x}_{n,m} \in T_n(x_m)$ , there is  $x_m^* \in T(x_m)$  such that  $\hat{x}_{n,m}$  are the finite rank approximation in  $Y_n$  of  $x_m^*$ , that is,

$$\hat{x}_{n,m} = \sum_{k=1}^{n} \langle x_m^*, i(y^k) \rangle y^k.$$

Since T is norm to weak-star upper semi-continuous, and  $x_m \to x$ , we have  $x_m^* \to x^*$  for some  $x^* \in T(x)$ . Thus  $\langle x_m^*, i(y^k) \rangle \to \langle x^*, i(y^k) \rangle$  for all  $1 \le k \le n$ . Therefore

$$\hat{x}_{n,m} = \sum_{k=1}^{n} \langle x_m^*, i(y^k) \rangle y^k \to \sum_{k=1}^{n} \langle x^*, i(y^k) \rangle y^k \in T_n(x),$$

and therefore  $\hat{x} \in T_n(x)$ . Now we show that  $T_n(x)$  is closed for all  $x \in Y$ . Consider an arbitrary sequence  $\hat{x}_m \in T_n(x)$ , and  $\hat{x}_m \to \hat{x}$ . Let  $x_m^* \in T(y)$  be the sequence such that  $\hat{x}_m = \sum_{k=1}^n \langle x_m^*, i(y^k) \rangle y^k$ . Since T(y) is bounded and convex, the sequence  $x_m^*$  converges weakly (in a subsequence) to some  $x^* \in T(x)$  and thus

$$\hat{x}_m = \sum_{k=1}^n \langle x_m^*, i(y^k) \rangle y^k \to \sum_{k=1}^n \langle x^*, i(y^k) \rangle y^k,$$

and thus

$$\hat{x} = \sum_{k=1}^{n} \langle x^*, i(y^k) \rangle y^k \in T_n(x).$$

That  $T_n(x)$  is convex follows simply from the convexity of T(x).

By the Lemma (1.6) and Theorem (1.2), the  $\epsilon$ -continuous selection  $T_{n,\epsilon}$  of  $T_n$  is well defined. The single valued map  $T_{n,\epsilon}$  is continuous and for any  $x \in Y_n$ , there is  $z \in Y_n$  and  $\hat{z} \in T_n(z)$  such that  $||z - x|| \in \epsilon$  and  $||\hat{z} - T_{n,\epsilon}(x)|| < \epsilon$ .

#### II. Degree Definition

Let  $(\epsilon_n)$  be a positive sequence such that  $\epsilon_n \to 0$ . Fix  $\epsilon > 0$ . Consider the function  $\tilde{T}_{n,\epsilon_n}: Y_n \to Y_n$  defined by the relation

(2.1) 
$$\tilde{T}_{n,\epsilon_n} = T_{n,\epsilon_n} + \epsilon J_n,$$

where  $T_{n,\epsilon_n}$  is the  $\epsilon_n$ -continuous selection of  $T_n$  and  $J_n$  is the finite rank approximation of  $J \circ i : Y \to X^*$  in  $Y_n$  where  $J : X \to X^*$  is the bi-continuous duality map.

Lemma 2.1. Let  $D \subset Y$  be an open bounded set and assume that for some  $\epsilon > 0$ , we have  $0 \notin \operatorname{clT}^{\epsilon}(\partial D)$ , where  $T^{\epsilon} = T + \epsilon J \circ i$ . Then there is N > 0 such that  $0 \notin \tilde{T}_{n,\epsilon_n}(\partial D_n)$  for all  $n \ge N$  where  $D_n = D \cap Y_n$ .

*Proof.* Otherwise, there is a sequence  $z_n \in \partial D_n$  such that  $T_{n,\epsilon_n}(z_n) = 0$  for all  $n \geq 1$ . Since  $\partial D$  is bounded, there is a subsequence (we show again by  $z_n$ ) that weakly converges to z. We first show that  $z_n$  converges strongly to z. Choose a sequence  $\zeta_n \in Y_n$  that converges to z in norm. Since  $T_{n,\epsilon_n}(z_n) = 0$  on  $Y_n$ , we have

$$(T_{n,\epsilon_n}(z_n), z_n - \zeta_n) + \epsilon(J_n(z_n), z_n - \zeta_n) = 0,$$

### $N_{otes}$

because  $z_n - \zeta_n \in Y_n$ . By the relation

$$\langle J_n(z_n), z_n - \zeta_n \rangle = \langle J \circ i(z_n), i(z_n - \zeta_n) \rangle,$$

we can write

$$(T_{n,\epsilon_n}(z_n), z_n - \zeta_n) + \epsilon \langle J \circ i(z_n), i(z_n - \zeta_n) \rangle = 0.$$
(2.2)

On the other hand, for each  $z_n$ , there is  $x_n \in Y_n$  and  $\hat{x}_n \in T_n(x_n)$  such that

$$||x_n - z_n|| < \epsilon_n, ||\hat{x}_n - T_{n,\epsilon_n}(z_n)|| < \epsilon_n$$

Therefore, we have

$$(T_{n,\epsilon_n}(z_n), z_n - \zeta_n) = (T_{n,\epsilon_n}(z_n) - \hat{x}_n, z_n - \zeta_n) + (\hat{x}_n, z_n - \zeta_n),$$

and by the relation  $||T_{n,\epsilon_n}(z_n) - \hat{x}_n|| < \epsilon_n$ , we obtain

$$(T_{n,\epsilon_n}(z_n), z_n - \zeta_n) \ge -\epsilon_n \|z_n - \zeta_n\| + (\hat{x}_n, z_n - \zeta_n)$$

By the relation  $||x_n - z_n|| < \epsilon_n$ , we have

$$(\hat{x}_n, z_n - \zeta_n) \ge -\epsilon_n \|\hat{x}_n\| + (\hat{x}_n, x_n - \zeta_n).$$

Since  $\hat{x}_n \in T_n(x)$ , there are  $x_n^* \in T(x_n)$  such that  $\hat{x}_n$  are the finite rank approximations of  $x_n^*$  in  $Y_n$ . Thus, we can write

$$(\hat{x}_n, x_n - \zeta_n) = \langle x_n^*, i(x_n - \zeta_n) \rangle$$

Also, for some C > 0, we can write

$$\langle x_n^*, i(x_n - \zeta_n) \rangle \ge -C \|x_n^*\| \|z - \zeta_n\| + \langle x_n^*, i(x_n - z) \rangle.$$

Choose an arbitrary  $z^* \in T(z)$ . We have

$$\langle x_n^*, i(x_n-z) \rangle \ge \langle x_n^* - z^*, i(x_n-z) \rangle + \langle z^*, i(x_n-z) \rangle \ge \langle z^*, i(x_n-z) \rangle.$$

Since  $z_n \rightharpoonup z$  and  $||x_n - z_n|| \rightarrow 0$ , we conclude

$$\lim_{n \to \infty} (T_{n,\epsilon_n}(z_n), z_n - \zeta_n) \ge 0.$$

Thus, the relation (2.2) implies

$$\limsup_{n \to \infty} \langle J \circ i(z_n), i(z_n - \zeta_n) \rangle \le 0.$$

By the relation  $\zeta_n \to z$ , we conclude

$$\limsup_{n \to \infty} \langle J \circ i(z_n), i(z_n - \zeta_n) \rangle \le 0,$$

and since J is a map of class  $(S)_+$ , we obtain  $z_n \to z \in \partial D$ . Now we show  $0 \in \operatorname{cl} T^{\epsilon}(z)$ . Choose arbitrary  $y \in Y$  and sequence  $y_n \in Y_n, y_n \to y$ . We have

$$(T_{n,\epsilon_n}(z_n), y_n) + \epsilon \langle J \circ i(z_n), i(y_n) \rangle = 0.$$

Since J is continuous, we have  $\langle J \circ i(z_n), i(y_n) \rangle \to \langle J \circ i(z), y \rangle$ . Choose  $x_n \in Y_n$ and  $\hat{x}_n \in T_n(x_n)$  such that

$$||x_n - z_n|| < \epsilon_n, ||\hat{x}_n - T_{n,\epsilon_n}(z_n)|| < \epsilon_n.$$

We have

$$\lim |(T_{n,\epsilon_n}(z_n), y_n) - (\hat{x}_n, y_n)| = 0.$$

For  $x_n^* \in T(x_n)$ , and by the relation  $y_n \to y$ , we obtain

$$\lim |(T_{n,\epsilon_n}(z_n), y_n) - \langle x_n^*, i(y) \rangle| = 0.$$

Since T is norm to weak-star upper semi-continuous, we conclude  $\langle x_n^*, i(y) \rangle \rightarrow \langle x^*, y \rangle$  for some  $x^* \in T(z)$ . This implies that  $x^* + \epsilon J \circ i(z) = 0$  and thus  $0 \in clT^{\epsilon}(z)$  that contradicts the condition  $0 \notin clT^{\epsilon}(\partial D)$ .



2019

Year

102

Global Journal of Science Frontier Research (F) Volume XIX Issue I Version I

**Proposition 2.2.** Assume that  $0 \notin \operatorname{cl} T(\partial D)$ . Then there is  $\epsilon > 0$  such that  $0 \notin \operatorname{cl} T^{\epsilon}(\partial D)$ .

*Proof.* By the assumption, there is r > 0 such that  $dist(0, clT(\partial D)) = r$ . Let  $z \in \partial D$  is arbitrary. Take arbitrary  $z^* \in T(z)$ . We have

$$||z^* + \epsilon J(z)|| \ge ||z^*|| - \epsilon ||z|| \ge r - \epsilon ||z||$$

Therefore  $0 \notin \operatorname{cl} T^{\epsilon}(\partial D)$  if

$$0 < \epsilon < \frac{r}{\max_{z \in \partial D} \|z\|}.$$
(2.3)

The boundedness of  $\partial D$  guarantees the existence of  $\epsilon > 0$ .

**Definition 2.3.** Assume that X and Y are separable and reflexive Banach spaces equipped with uniformly convex norms,  $D \subset Y$  is an open bounded set and T : $Y \to 2^{X^*}$  is a maximal monotone map such that  $0 \notin \operatorname{cl} T(\partial D)$ . Choose  $\epsilon > 0$ satisfying (2.3) and consider the map  $\tilde{T}_{n,\epsilon_n}$  defined in (2.1). The degree of T in D with respect to 0 is defined by the following formula

$$\deg(T, D, 0) = \lim_{n \to \infty} \deg_B(\tilde{T}_{n, \epsilon_n}, D_n, 0),$$
(2.4)

where  $\deg_B$  is the usual Brouwer's degree of the map  $\tilde{T}_{n,\epsilon_n}$ .

The degree defined in the relation (2.4) is stable with respect to n.

*Proof.* Consider the sequence of mappings  $(\tilde{T}_{k,\epsilon_k})$  such that for sufficiently large n the condition  $0 \notin \operatorname{cl} \tilde{T}_{k,\epsilon_k}(\partial D_k)$  is satisfied for  $k \geq n-1$ . First note that there is  $\epsilon_0 > 0$  such that for  $0 < \epsilon_1, \epsilon_2 < \epsilon_0$ , the following relation holds

$$\deg_B(\hat{T}_{n,\epsilon_1}, D_n, 0) = \deg_B(\hat{T}_{n,\epsilon_2}, D_n, 0), \qquad (2.5)$$

In fact, for any  $x \in Y_n$ , there is  $z_1, z_2 \in Y_n$  and  $\hat{z}_1 \in T_n(z_1), \hat{z}_2 \in T_n(z_2)$  such that

$$||z_1 - x|| < \epsilon_1, ||\hat{z}_1 - T_{n,\epsilon_1}(x)|| < \epsilon_1, ||z_2 - x|| < \epsilon_2, ||\hat{z}_2 - T_{n,\epsilon_2}(x)|| < \epsilon_2.$$

The continuity of  $T_{n,\epsilon_1}$ ,  $T_{n,\epsilon_2}$  implies that  $\|\tilde{T}_{n,\epsilon_1} - \tilde{T}_{n,\epsilon_2}\|$  can be controlled and thus (2.5) holds. Let us write  $\tilde{T}_{n,\epsilon_n}$  as

$$\tilde{T}_{n,\epsilon_n} = \tilde{T}_{n,\epsilon_n}^1 + \tilde{T}_{n,\epsilon_n}^2$$

where  $\tilde{T}_{n,\epsilon_n}^1$  is the projection of  $\tilde{T}_{n,\epsilon_n}$  into  $Y_{n-1}$  and  $\tilde{T}_{n,\epsilon_n}^2$  is the projection into  $\{y^n\}$ . Define the map  $S_{n,\epsilon_n}: Y_n \to 2^{Y_n}$  as

$$S_{n,\epsilon_n}(x) = \tilde{T}^1_{n,\epsilon_n}(x) + (x, y^n)y^n$$

Obviously, we have

$$\deg_B(S_{n,\epsilon_n}, D_n, 0) = \deg_B(\tilde{T}_{n,\epsilon_n}^1, D_{n-1}, 0).$$

$$(2.6)$$

First we show

$$\deg_B(\tilde{T}_{n,\epsilon_n}^1, D_{n-1}, 0) = \deg_B(\tilde{T}_{n-1,\epsilon_n}, D_{n-1}, 0) = \deg_B(\tilde{T}_{n-1,\epsilon_{n-1}}, D_{n-1}, 0).$$
(2.7)

The last equality follows from (2.5). In order to prove the first equality, we note that if  $T_{n,\epsilon_n}$  is an  $\epsilon_n$ -continuous selection of  $T_n$ , then  $T_{n,\epsilon_1}^1$  is also an  $\epsilon_n$ -continuous selection of  $T_{n-1,\epsilon_n}$ . In fact, let  $x \in Y_{n-1}$  be arbitrary, then there is  $z \in Y_n$  and  $\hat{z} \in T_n(y)$  such that

$$\|\hat{z}^1 - T^1_{n,\epsilon_n}(x) + \hat{z}^2 - T^2 n, \epsilon_n\|^2 < \epsilon_n^2,$$

where  $\hat{z}^1 \in Y_{n-1}$  and  $\hat{z}^2 \in \{y^n\}$ . This implies

$$\|\hat{z}^1 - T^1_{n,\epsilon_n}(x)\| < \epsilon_n, \|z^1 - y\| < \epsilon_n.$$

Again it follows that  $||T_{n-1,\epsilon_n} - T_{n,\epsilon_n}^1||$  can be controlled and thus the first equality in (2.7) is proved. Now, we show

$$\deg_B(\tilde{T}_{n,\epsilon_n}, D_n, 0) = \deg_B(S_{n,\epsilon_n}, D_n, 0).$$
(2.8)

Consider the convex homotopy

$$h_n(t) = (1-t)T_{n,\epsilon_n} + tS_{n,\epsilon_n}$$

It is enough to show  $0 \notin h_n(t)(\partial D_n)$  for  $t \in [0,1]$ . Clearly,  $0 \notin h_n(t)(\partial D_n)$  for t = 0, 1. For  $t \in (0,1)$  assume that there exists a sequence  $t_n \in (0,1)$  and  $(z_n)$ ,  $z_n \in \partial D_n$  such that  $h_n(t_n)(z_n) = 0$ . According to the construction of  $h_n(t)$  we have

$$0 = h_n(t_n)(z_n) = \tilde{T}^1_{n,\epsilon_n}(z_n) + (1 - t_n)\tilde{T}^2_{n,\epsilon_n}(z_n) + t_n(z_n, y^n)y^n$$

The above relation implies  $\tilde{T}_{n,\epsilon_n}^1(z_n) = 0$  and

$$\tilde{T}_{n,\epsilon_n}^2(z_n) = -\frac{t_n}{1-t_n}(z_n, y^n)y^n.$$

Since  $\partial D$  is bounded then  $z_n \rightharpoonup z$  in a subsequence. Choose the sequence  $(\zeta_n), \zeta_n \in Y_n$  and  $\zeta_n \rightarrow z$  and obtain

$$(\tilde{T}_{n,\epsilon_n}(z_n), z_n - \zeta_n) = -\frac{t_n}{1 - t_n} |(z_n, y^n)|^2 + \frac{t_n}{1 - t_n} (z_n, y^n) (\zeta_n, y^n).$$

On the other hand since  $\zeta_n \to z$ , we have  $(\zeta_n, y^n) \to 0$ . Since there exists sequence  $\hat{z}_n \in T_n(z_n)$  such that  $\|\hat{z}_n - T_{n,\epsilon_n}(z_n)\| < \epsilon_n$  we can write for some  $z_n^* \in T(z_n)$ 

$$\limsup_{n \to \infty} \langle z_n^* + \epsilon J \circ i(z_n), i(z_n - z) \rangle = \limsup_{n \to \infty} (\tilde{T}_{n,\epsilon_n}(z_n), z_n - \zeta_n).$$

Therefore we obtain

$$\limsup_{n \to \infty} \langle z_n^* + \epsilon J \circ i(z_n), i(z_n - z) \rangle \le 0.$$

Since

$$\lim_{n \to \infty} \langle z_n^*, i(z_n - z) \rangle \ge 0,$$

we obtain

$$\limsup \langle J \circ i(z_n), i(z_n - z) \rangle \le 0,$$

and thus  $z_n \to z$ . This is impossible because  $0 \notin clT^{\epsilon}(\partial D)$ .

Now, we show that the definition (2.4) satisfies the classical properties of a topological degree including the solvability and the homotopy invariance.

**Theorem 2.5.** Let  $D \subset Y$  be an open bounded set and assume that  $T: Y \to 2^{X^*}$  is maximal monotone and  $0 \notin clT(\partial D)$ . If

$$\deg(T, D, 0) \neq 0,$$

then there is  $y \in D$  such that  $0 \in T(y)$ .

*Proof.* Assume deg $(T, D, 0) \neq 0$ , then there exists a sequence  $z_n \in D$  such that  $\tilde{T}_{n,\epsilon_n}(z_n) = 0$  for sufficiently small  $\epsilon_n > 0$ . This implies that there is the sequence  $\hat{z}_n \in T_n(z_n)$  such that  $\|\hat{z}_n + \epsilon J_n(z_n)\| < \epsilon_n$ . Since D is bounded then  $z_n$  converges weakly (in a subsequence) to some z. Since T is monotone, we conclude

$$\limsup_{n \to \infty} \langle J \circ i(z_n), i(z_n - z) \rangle \le 0,$$

and thus  $z_n$  converges strongly to  $z \in cl(D)$ . Let  $\hat{z}_n$  be the *n*-approximation of  $z_n^* \in T(z_n)$ . Since *T* is norm to weak-star upper semi-continuous, the sequence  $z_n^*$  converges weakly in a subsequence to some  $z^* \in T(z)$ . Let  $v \in Y$  be arbitrary. Consider the sequence  $(v_n), v_n \in Y_n$  and  $v_n \to y$ . Then we have

© 2019 Global Journals

Notes

 $\langle z_n^*, i(v_n) \rangle = -\epsilon \langle J \circ i(z_n), i(v_n) \rangle - \epsilon(T_{n,\epsilon_n}(z_n) - \hat{z}_n, v_n) \to 0,$ 

On the other hand,  $\langle z_n^*, i(v_n) \rangle \to \langle z^*, i(y) \rangle$ , and thus  $z^* = 0$  or equivalently  $0 \in T(z)$ . Since  $0 \notin clT(\partial D)$ , we conclude  $z \in D$ .

**Definition 2.6.** Let  $D \subset X$  be an open bounded set, and assume  $h: [0,1] \times Y \to 2^{X^*}$  be a continuous homotopy with respect to t such that for any  $t \in [0,1]$ , the map  $h(t): Y \to 2^{X^*}$  is maximal monotone. Furthermore assume that  $0 \notin \operatorname{clh}([0,1] \times \partial D)$ . The map h is called an admissible homotopy for maximal monotone maps.

**Proposition 2.7.** The degree defined in (2.4) is stable under the admissible homotopy of maximal monotone maps.

*Proof.* According to the definition of the admissible homotopy, the degree

 $\deg_B(\tilde{h}_{n,\epsilon_n}(t), D_n, 0)$ 

is independent of t due to the fact  $0 \notin \tilde{h}_{n,\epsilon_n}(t)(\partial D_n)$  for  $t \in [0,1]$  and the homotopy invariance of the Brouwer's degree. Now, the stability of the defined degree (2.4) with respect to n implies that the degree deg(h(t), D, 0) is independent of t.

#### III. DERGREE THEORETIC PROOFS

We give degree theoretic proofs of some theorems in convex analysis. The first theorem is due to D. DeFigueirdo [7].

**Theorem 3.1.** Assume that X is a separable uniformly convex Banach space,  $T: X \to 2^{X^*}$  is a maximal monotone map such that  $0 \notin (T + \lambda J)(S_r)$ , where  $S_r$ is the sphere of radius r and  $\lambda > 0$  is arbitrary. Then there exists  $u \in cl(B_r)$  such that  $0 \in T(u)$ , where  $B_r$  is the ball of radius r in X.

*Proof.* Assume that  $0 \notin T(\operatorname{cl}(B_r))$ . We show first that  $0 \notin \operatorname{cl}(S_r)$ . Otherwise there exist a sequence  $u_n \in S_r$  and  $u_n^* \in T(u_n)$  such that  $u_n^* \to 0$ . The sequence  $(u_n)$  converges weakly in a subsequence (that we show again by  $u_n$ ) to some  $u \in \operatorname{cl}(B_r)$ . Claim:  $[u, 0] \in \operatorname{graph}(T)$ . For any  $[x, x^*] \in \operatorname{graph}(T)$  we have the inequality

$$\langle x^*, x - u \rangle = \lim \langle x^* - u_n^*, x - u_n \rangle \ge 0$$

Since T is maximal monotone, the above inequality implies  $[x, 0] \in \operatorname{graph}(T)$  or equivalently  $0 \in T(u)$ . This contradicts the assumption  $0 \notin T(\operatorname{cl}(B_r))$ . It is also apparent that  $0 \notin \operatorname{cl}(J(S_r))$ . Next, we show  $0 \notin \operatorname{cl}((1-t)T+tJ)(S_r))$  for  $t \in (0,1)$ . Otherwise there exist  $t_n \in (0,1)$ ,  $u_n \in S_r$  and  $u_n^* \in T(u_n)$  such that

$$(1-t_n)u_n^* + t_n J(u_n) \to 0$$

Again for  $u_n \rightharpoonup u$  and  $t_n \rightarrow t$  we obtain by the monotonicity property of T the following inequality

$$\limsup \langle J(u_n), u_n - u \rangle \le 0,$$

that implies  $u_n \to u \in S_r$ . Claim:  $[u, \frac{-t}{1-t}J(u)] \in \operatorname{graph}(T)$ . For any  $[x, x^*] \in \operatorname{graph}(T)$  we obtain by the fact  $\frac{-t}{1-t}J(u_n) \in T(u_n)$  the following relation

$$\langle x^* + \frac{t}{1-t}J(u), x - u \rangle = \lim \langle x^* + \frac{t}{1-t}J(u_n), x - u_n \rangle \ge 0,$$

that proves the claim. Now by degree theoretic argument we have

 $\deg(T, B_r, 0) = \deg((1-t)T + tJ, B_r, 0) = \deg(J, B_r, 0) = 1.$ 

The above calculation guarantees the existence of  $u \in B_r$  such that  $0 \in T(u)$ and this contradicts the assumption  $0 \notin T(cl(B_r))$ . Therefore the assumption  $0 \notin T(cl(B_r))$  is wrong and thus  $0 \in T(cl(B_r))$ .

The next theorem is again from DeFigueirdo [7].

**Proposition 3.2.** Let X be a separable uniformly convex Banach space and assume that  $f: X \to X^*$  is a pseudo-monotone map. Then  $\operatorname{Rang}(\partial N_r + f) = X^*$  where  $N_r$  is the map

D. de Figuerido, An existence theorem for pseudo-monotone operator equation in Banach spaces J. Math. Anal. Appl., 34:151156, 1971.

2.

$$N_r(x) = \begin{cases} 0 & \text{if } x \in B_r \\ 1 & \text{if } x \in S_r \end{cases},$$

and  $\partial N_r$  is the set of the sub-gradients of  $N_r$ .

*Proof.* Apparently, we have

$$\partial N_r(x) = \begin{cases} 0 & \text{if } x \in B_r \\ \{\lambda J(x), \lambda \ge 0\} & \text{if } x \in S_R \end{cases}$$
(3.1)

Claim: for every  $f_0 \in X^*$ , we have

$$\deg(\partial N_r + f - f_0, B_r, 0) \neq 0.$$
(3.2)

First we show if  $0 \notin (\partial N_r + f - f_0)(\operatorname{cl}(B_r))$  then

$$0 \notin \operatorname{cl}(\partial N_r + f - f_0)(S_r). \tag{3.3}$$

Otherwise, there is a sequence  $u_n \in S_r$  and  $u_n^* \in \partial N_r(u_n)$  such that  $u_n^* + f(u_n) - f_0 \to 0$ . But  $u_n \rightharpoonup u \in \operatorname{cl}(B_r)$  in a sub-sequence. We prove that  $[u, f_0 - f(u)] \in \operatorname{graph}(\partial N_r)$ . Let  $f_0 = u_n^* + f(u_n) + \epsilon(n)$  where  $\epsilon(n) \in X^*$  and  $\epsilon(n) \to 0$ . For any arbitrary  $[x, x^*] \in \operatorname{graph}(\partial N_r)$ , we have

$$\langle x^* - f_0 + f(u), x - u \rangle = \lim \langle x^* + f(u) - u_n^* - f(u_n), x - u_n \rangle \ge \\ \lim \langle f(u) - f(u_n), x - u \rangle.$$

But

2019

Year

106

Global Journal of Science Frontier Research (F) Volume XIX Issue I Version I

$$0 = \lim \langle u_n^* + f(u_n) - f_0, u_n - u \rangle \ge \limsup \langle f(u_n), u_n - u \rangle$$
(3.4)

Since f is pseudo-monotone we obtain  $f(u_n) \rightharpoonup f(u)$  and therefore

$$\langle x^* - f_0 + f(u), x - u \rangle \ge 0.$$

This implies that  $[u, f_0 - f(u)] \in \operatorname{graph}(\partial N_r)$  and thus  $0 \in (\partial N_r + f - f_0)(\operatorname{cl}(B_r))$ which is impossible by the assumption. Now consider the affine homotopy

$$h(t) = (1-t)(\partial N_r + f - f_0) + tJ.$$
(3.5)

for  $t \in (0, 1]$ . We show

$$0 \notin \operatorname{cl}((1-t)(\partial N_r + f - f_0) + tJ)(S_r)$$

Otherwise, there is a sequence  $u_n \in S_r$ ,  $u_n^* \in \partial N_r(u_n)$  and  $t_n \to t$  such that

$$(1-t_n)(u_n^* + f(u_n) - w) + t_n J u_n \to 0.$$

But  $u_n \rightharpoonup u \in \operatorname{cl}(B_r)$  in a subsequence. W show

$$[u, f_0 - f(u) - \frac{t}{1-t}J(u)] \in \operatorname{graph}(\partial N_r).$$

For any  $[x, x^*] \in \operatorname{graph}(\partial N_r)$  we have

$$\langle x^* - f_0 + f(u) + \frac{\iota}{1 - t} J(u), x - u \rangle =$$
$$\lim \langle x^* + f(u) + \frac{t}{1 - t} J(u) - u_n^* - f(u_n) - \frac{t_n}{1 - t_n} J(u_n), x - u \rangle \geq$$
$$\limsup \langle f(u) - f(u_n), x - u \rangle + \lim \inf \langle \frac{t}{1 - t} J(u) - \frac{t_n}{1 - t_n} J(u_n), x - u \rangle$$

We conclude  $u_n \to u \in S_r$  and  $f(u_n) \rightharpoonup f(u)$  because f is pseudo-monotone. Therefore we obtain again

 $\geq$ 

Notes

$$0 \in (\partial N_r + f + \frac{t}{1-t}J - f_0)(\operatorname{cl}(B_r)).$$

But  $(\partial N_r + f + \frac{t}{1-t}J - f_0)(\operatorname{cl}(B_r)) = (\partial N_r + f - f_0)(\operatorname{cl}(B_r))$  and then  $0 \in (\partial N_R + f - f_0)(\operatorname{cl}(B_r))$  that is impossible. Finally we use the homotopy invariance property of degree and write

$$\deg(\partial N_R + f - f_0, B_r, 0) = \deg(h(t), B_R, 0) = \deg(J, B_r, 0) = 1.$$

Therefore there exist  $u \in cl(B_r)$  such that  $f_0 \in \partial N_r(u) + f(u)$ .

The following theorem is due to F. Browder [8] for the surjectivity of the monotone maps with locally bounded inverse.

**Theorem 3.3.** Assume  $A : X \to X^*$  is a demi-continuous monotone map such that  $A^{-1}$  is locally bounded, that is, for every  $f \in X^*$  there is a bounded  $V_f \ni f$  such that  $A^{-1}(V_f)$  is bounded. Then A is onto.

*Proof.* For any  $f \in X^*$ , we show that there is sufficiently large r = r(f) such that:

 $\deg(A, B_r, f) \neq 0.$ 

Choose r>0 such that for a neighborhood  $V_f \ni f$  the following condition is satisfied

$$S_r \cap A^{-1}(V_f) = \emptyset$$

or equivalently  $f \notin clA(S_r)$ . Since there is  $\epsilon > 0$  such that

$$\deg(A, B_r, f) = \deg(A + \epsilon J, B_r, f)$$

it is enough to show

$$\deg(A + \epsilon J, B_r, f) \neq 0, \tag{3.6}$$

for sufficiently large r and sufficiently small  $\epsilon > 0$ . First, we show

 $\deg(A + \epsilon J, B_r, 0) \neq 0.$ 

In fact, if  $(A + \epsilon J)(z) = 0$  for  $z \in \partial B_r$ , then

$$\langle A(z) - A(0), z \rangle + \epsilon ||z||^2 + \langle A(0), z \rangle = 0$$

Since A is monotone, the inequality  $\epsilon ||z||^2 + \langle A(0), z \rangle \leq 0$  implies  $\epsilon ||z|| \leq ||A(0)||$ , that is impossible for sufficiently large r. Since  $A + \epsilon J$  is a map of class  $(S)_+$ , define the homotopy  $h(t) = tA + \epsilon J$ . It is simply seen that  $0 \notin h(t)(\partial B_r)$  and then

 $\deg(A + \epsilon J, B_r, 0) = \deg(h(t), B_r, 0) = \deg(J, B_r, 0) \neq 0.$ 

The proof of (3.6) is completely similar to one presented above.

#### **References** Références Referencias

- 1. F. Browder. The theory of degree of mapping for nonlinear mappings of monotone type, Nonlinear partial differential equations and their applications, 6:165–177, 1982.
- 2. M. Niksirat, A new generalization of the Browder's degree of (S)+ maps, appear soon.
- A. Cellina, Approximation of set valued functions and fixed point theorems, Ann. Mat. Pura Appl., 82:1724, 1969.
- 4. N. G. Lloyd, *Degree Theory*, Cambridge University Press, 1978.
- 5. V. P. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Springer, 2010.
- 6. F. Browder and B. A. Ton, Nonlinear functional equations in Banach spaces and elliptic super regularization, Math Z., 105:177–195, 1968.

## ${ m R}_{ m ef}$

- 7. D. de Figuerido, An existence theorem for pseudo-monotone operator equation in Banach spaces, J. Math. Anal. Appl., 34:151156, 1971.
- 8. F. Browder. Nonlinear operators and nonlinear equations of evolution in Banach spaces. Americam Math. Soc., 1976.

Notes