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[.  INTRODUCTION
The Laplacian operator A* iterated k— times is defined by

0?02 2 \"
k_ R
A= (8x%+8x§+"'+am%) ’ (1)

where n is the dimension of space R", k is a nonnegative integer. A. Kananthail[l]
has proved that the generalized function (—1)*Ss(z) is an elementary solution of the

operator A¥, that is
AF(=1)F Sy (x) = 0,

where 9§ is the Dirac-delta distribution and Sg(z) is defined by

2k—n

227 (22E) (2 + ad + .+ a?) 2
I (k) ’

In 2002, A.Kananthai, S. Suantai, V. Longani[2] have first introduced the operator /¥
and is defined by

3 p 82 ' p+q 82 .
AR = Z@—HZ@ i=/—1 (1.3)
— £

They have proved the function (—1)*(—i)2 Sy (z) is an elementary solution of the
operator AF and Sop(z) is defined by (1.2).It is well known the linear Schrodinger

equation can be written as the following form
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——u(z,t),i=v-1 (1.4)

with the initial condition
u(z,0) = f(z).

The Schrodinger equation has been widely in application in science and engineering,
there are several integral transform such as Laplace transform, Fourier transform,
Wavelet transform etc. for solving the equation.

The purpose of this work is to introduce a new function where related the Wright
function [3] and studied Laplace transform of a new function.After that,we are solving

the fundamental solution of the wave-schrodinger equation as follows:

le% 2

0 0 )
% ( t)—FZﬁ ($,t>=0,l=\/—1,1<0¢§2 (15)
with the initial condition

d(2,0) =0, ¢(z,0) =d(x),

where 0 is the Dirac-delta distribution and 876,1 is the Caputo derivative. Before going

that point, the following definitions and some important concepts are needed.

I1. PRELIMINARIES

Definition 2.1 Let f(t) be a function an exponential order and piecewise continuous.

The Laplace transform of the function f is given by

CIf(1)] = / et (2.1)

Definition 2.2 Let f(t) be a function of the Schwart space the Fourier transform of
f(t) is given by

= /R f(t)e™*dt (2.2)

Definition 2.3 For m to be the smallest integer that exceeds « , the Caputo fractional

derivatives of order is defined by

ote

D%u(x,t) = —8O‘u(1;,t) = { (m—a) fo e lgtmu(x,t) (2.3)

875mu(ﬂlt t) , n=m

Definition 2.4 'The Laplace transform of the Caputo fractional derivative is defined by

3
,_.

LIDf(t)] = s*F(s) — saklf J0), n—1<a<n (2.4)
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Definition 2.5 The Wright function W, s is defined by

o0

zn
Wa’g—nzzom,a>—l,ﬁe(c (25)

where I'(x) is the Euler Gamma function is given by the integral

Notes [(x) = /OOO " te~Odt (2.6)

Lemma 2.1 The function v(a,t) is defined by the following expressions
y(a,t) =t W o o o(at™) (2.7)
and Laplace transform of vy(a,t) is given by

L[y(a,t)] = s* 2.

Proof: By (2.1) , we have

o0

e MW, o o(at™®)dt

Il
ghh

Lly(a,1)]

o0

(at™™
7Stt a+1 a dt
Z kT (—ak —l— 2 —a)

Z a* /OO t k+1
= e TN dt
— ET(—ak +2—a) J,
a’k [t—a—ak-i-l]

— ET(—ak + 2 — «)
R a® [(—a —ak+2)
B — El(—ak +2—«)  s—a—ok+2
o Z Ll g—a—ak+2

k=0
o La—2 - (asa)k
=9 Z k!

k=0

= 522" (2.8)
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That completes the proof.
[II.  MAIN REsuLTS
Theorem 3.1 Consider the Fractional Wave-Schrodinger equation

le' 2
%d)(x,i)#—za— (¢, t)=0,i1=v—-1, 1<a<?2 (3.1)

2
with the initial condition
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gf)(l‘,O) =0, ¢t<x70) = (5(5(7)

where §(x) is the dirac delta distribution.By the Laplace and Fourier transform,we
obtain the fundamental solution of the equation (3.1) is given by

(o t) = %\/%t—%ﬂw_; s (—Vilz]t %) (3.2)

where W, 5 is the Wright function is defined by (2.5). If we put o = 2 in (3.1) the N .
otes

fractional Wave-Schrodinger equation reduced to

0? 02

a0 ) +iso(r,t) =0 (3.3)

and the solution of (3.3) is given by
1
o(x,t) = 5\/Evv,l,l(—\/ﬂxu*l) (3.4)

Proof: By (3.1) , we have

o _0?
S0 t) + (1) = 0 (35)

Taking Laplace transform both sides of (3.5) and we get by definition 2.1

c[a—;qa( )} +z£[§22¢(x,t)} —0
sp(x,8) — s*26(x) = —18—2 (x,s). (3.6)

Ox2
Applying Fourier transform respect to variable = both sides of (3.6),we obtained

2

s*Fo(z,s) — s*2F[5(z)] = —z]—"a— (x,s)

a 2
G(w, 5) — 5" = iwP(w, 5)
Soc—2
) = o e
Z'Soz—2
=Tt (3.7)

Applying inverse Fourier transform both sides of (3.7) , we obtain

Fo—2

1S
-]
o, s) 5% + w?
\/; a—2 —\ac|\/s2
B 25%

\/_s lexfs2'
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By Lemma 2.1,we obtain the solution of (3.1) as follows

8a,t) = 3Vir(—Vilz). )
_ %\/;t—zﬂw_gg_g(_mxu—%‘) (3.8)

If we put @ = 2 in (3.1) and (3.8) respectively, the equation reduced to the Wave-
Notes Schrodinger equation
02 02

and the solution of (3.9) is given by
1
o(x,t) = 5\/EW,1,1(—\/ny\rl). (3.10)

That completes the proof.
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