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In this paper, we are finding solution of fraction Wave-Schrodinger equation by Laplace

 

transform in sense of 
Caputo fractional derivative. It was found that the fundamental

 

solution of the equation related to Wright function.
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The Laplacian operator 4k iterated k− times is defined by

4k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

)k

, (1.1)

where n is the dimension of space Rn, k is a nonnegative integer. A. Kananthai[1]

has proved that the generalized function (−1)kS2k(x) is an elementary solution of the

operator 4k, that is

4k(−1)kS2k(x) = δ,

where δ is the Dirac-delta distribution and S2k(x) is defined by

S2k(x) =
π−

n
2 2−2kΓ

(
n−2k

2

)
(x2

1 + x2
2 + ... + x2

n)
2k−n

2

Γ (k)
, (1.2)

In 2002, A.Kananthai, S. Suantai, V. Longani[2] have first introduced the operator 4k
i

and is defined by

4k
i =

(
p∑

i=1

∂2

∂x2
i

+ i

p+q∑
j=p+1

∂2

∂x2
j

)
, i =

√−1 (1.3)

They have proved the function (−1)k(−i)
q
2 S2k(x) is an elementary solution of the

operator 4k
i and S2k(x) is defined by (1.2).It is well known the linear Schrodinger

equation can be written as the following form
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∂

∂t
u(x, t) = i

∂2

∂x2
u(x, t), i =

√−1 (1.4)

with the initial condition

u(x, 0) = f(x).

The Schrodinger equation has been widely in application in science and engineering,

there are several integral transform such as Laplace transform, Fourier transform,

Wavelet transform etc. for solving the equation.

The purpose of this work is to introduce a new function where related the Wright

function [3] and studied Laplace transform of a new function.After that,we are solving

the fundamental solution of the wave-schrodinger equation as follows:

∂α

∂tα
φ(x, t) + i

∂2

∂x2
φ(x, t) = 0 , i =

√−1 , 1 < α ≤ 2 (1.5)

with the initial condition

φ(x, 0) = 0 , φt(x, 0) = δ(x),

where δ is the Dirac-delta distribution and ∂α

∂tα
is the Caputo derivative. Before going

that point, the following definitions and some important concepts are needed.

Let f(t) be a function an exponential order and piecewise continuous.

The Laplace transform of the function f is given by

L[f(t)] =

∫ ∞

0

e−stf(t)dt (2.1)

Let f(t) be a function of the Schwart space the Fourier transform of

f(t) is given by

f̂(w) =

∫

R
f(t)eiwtdt (2.2)

For m to be the smallest integer that exceeds α , the Caputo fractional

derivatives of order is defined by

Dαu(x, t) =
∂αu(x, t)

∂tα
=

{
1

Γ(m−α)

∫ t

0
(t− τ)m−n−1 ∂m

∂tm
u(x, t)

∂m

∂tm
u(x, t) , n = m

(2.3)

The Laplace transform of the Caputo fractional derivative is defined by

L[Dαf(t)] = sαF (s)−
n−1∑

k=0

sα−k−1f (k)(0) , n− 1 < α < n (2.4)

II. Preliminaries

De¯nition 2.1 

De¯nition 2.2 
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The Wright function Wα,β is defined by

Wα,β =
∞∑

n=0

Zn

n!Γ(nα + β)
, α > −1 , β ∈ C (2.5)

where Γ(x) is the Euler Gamma function is given by the integral

Γ(x) =

∫ ∞

0

tx−1e−6dt (2.6)

The function γ(a, t) is defined by the following expressions

γ(a, t) = t−α+1W−α , 2−α(at−α) (2.7)

and Laplace transform of γ(a, t) is given by

L[γ(a, t)] = sα−2easα

.

By (2.1) , we have

L[γ(a, t)] =

∫ ∞

0

e−stt−α+1W−α , 2−α(at−α)dt

=

∫ ∞

0

e−stt−α+1

∞∑

k=0

(at−α)k

k!Γ(−αk + 2− α)
dt

=
∞∑

k=0

ak

k!Γ(−αk + 2− α)

∫ ∞

0

e−stt−α−αk+1dt

=
∞∑

k=0

ak

k!Γ(−αk + 2− α)
L[t−α−αk+1]

=
∞∑

k=0

ak

k!Γ(−αk + 2− α)

Γ(−α− αk + 2)

s−α−αk+2

=
∞∑

k=0

ak

k!s−α−αk+2

= sα−2

∞∑

k=0

(asα)k

k!

= sα−2easα

(2.8)

That completes the proof.

Consider the Fractional Wave-Schrodinger equation

∂α

∂tα
φ(x, t) + i

∂2

∂x2
φ(x, t) = 0 , i =

√−1 , 1 < α ≤ 2 (3.1)

with the initial condition
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De¯nition 2.5 

Lemma 2.1 

III. Main Results

Theorem 3.1 

Proof: 
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φ(x, 0) = 0 , φt(x, 0) = δ(x)

where δ(x) is the dirac delta distribution.By the Laplace and Fourier transform,we

obtain the fundamental solution of the equation (3.1) is given by

φ(x, t) =
1

2

√
it−

α
2
+1W−α

2
, 2−α

2
(−
√

i|x|t−α
2 ) (3.2)

where Wα,β is the Wright function is defined by (2.5). If we put α = 2 in (3.1) the

fractional Wave-Schrodinger equation reduced to

∂2

∂t2
φ(x, t) + i

∂2

∂x2
φ(x, t) = 0 (3.3)

and the solution of (3.3) is given by

φ(x, t) =
1

2

√
iW−1,1(−

√
i|x|t−1) (3.4)

By (3.1) , we have

∂α

∂tα
φ(x, t) + i

∂2

∂x2
φ(x, t) = 0 (3.5)

Taking Laplace transform both sides of (3.5) and we get by definition 2.1

L
[ ∂α

∂tα
φ(x, t)

]
+ iL

[ ∂2

∂x2
φ(x, t)

]
= 0

sαφ(x, s)− sα−2δ(x) = −i
∂2

∂x2
φ(x, s). (3.6)

Applying Fourier transform respect to variable x both sides of (3.6),we obtained

sαFφ(x, s)− sα−2F [δ(x)] = −iF ∂2

∂x2
φ(x, s)

sαφ(ω, s)− sα−2 = iω2φ(ω, s)

φ(ω, s) =
sα−2

sα + (−i)ω2

=
isα−2

isα + ω2
. (3.7)

Applying inverse Fourier transform both sides of (3.7) , we obtain

φ(x, s) = F−1
[ isα−2

isα + ω2

]

=

√
isα−2e−|x|

√
is

α
2

2s
α
2

=
1

2

√
is

α
2
−2e−|x|

√
is

α
2 .
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By Lemma 2.1,we obtain the solution of (3.1) as follows

φ(x, t) =
1

2

√
ir(−

√
i|x|, t)

=
1

2

√
it−

α
2
+1W−α

2
,2−α

2
(−
√

i|x|t−α
2 ) (3.8)

If we put α = 2 in (3.1) and (3.8) respectively, the equation reduced to the Wave-

Schrodinger equation

∂2

∂t2
φ(x, t) + i

∂2

∂x2
φ(x, t) = 0, (3.9)

and the solution of (3.9) is given by

φ(x, t) =
1

2

√
iW−1,1(−

√
i|x|t−1). (3.10)

That completes the proof.
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