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Abstract-

 

This paper compares the performances of Gini Mean, Clements and Box- Cox transformation methods for 
estimating process capability Indices when the distribution of the process

 

data is (skewed) non-normal. The use of 
Process Performance Index (PPI) is implored for process capability analysis (PCA) using Weibull distribution. Simulation 
of data was also carried out using R software using a decision interval (target point) of 1.0 and 1.5. Performance 
assessment was carried out using Boxplots, descriptive statistics and the root mean square deviation. The following 
were the findings from the results. The Gini mean difference based process capability indices performs best in 
estimating the process capability indices closest to a set target for varying distribution parameters at different sample 
sizes, followed by Clements and lastly, the Box-Cox transformation method [10, 19]. 
Keywords:

 

process control, capability indices, performance

 

index, standard error, skewed.

 
I.

 

Introduction

 
Statistical Process Control is the application of statistical tools and techniques in 

monitoring variation in a continuous process in order to detect variations that are of 
assignable causes, and therefore make recommendations for corrective check on the 
process. Control charts are used to monitor processes in order to detect assignable 
cause(s) that change the process parameters. [6, 7]

 

emphasized the importance of 
identification of assignable cause. When the distribution of the output quality of the 
process variable is continuous, the combination of two control charts such as an X -
chart and an R-chart are usually required to monitor both the process mean and the 
process variance [14]. However, recently [17] have shown that the two combined charts 
are not always reliable in identifying the nature of the change.

 

Measuring a process performance and acting upon the assessments based on the 
measurements are critical elements of any continuous quality improvement efforts [15], 
however, companies make assessments

 

of process performance based on different 
indicators. Most common of these indicators can be described in terms of process yield, 
process expected loss and capability indices of a particular process characteristic [4]. 
Among these indicators, Process Capability Indices (PCIs) have gained substantial 
attention both in academic community and several types of manufacturing industries 
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since 1980s [13]. The first process capability index proposed in the literature more than 
three decades ago is the Cp index, which is defined as:  

                                               Cp=   
𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿

6σ
                               (1) 

where USL and LSL denote the upper and lower specification limits respectively and σ  
is the standard deviation of the process characteristic of interest [2]. In order to 
overcome this problem, a second generation PCI, the Cpk index, is introduced. The Cpk 
is defined as:  

                                           Cpk  = min  �𝑈𝑈𝑈𝑈𝑈𝑈−  𝜇𝜇
3σ

,  
𝜇𝜇−𝐿𝐿𝐿𝐿𝐿𝐿

3σ
�                         (2) 

where μ  and σ  are the mean and the standard deviation of the quality characteristic 
studied, respectively. The mean of the process characteristic has an influence on the Cpk 

index and therefore it is more sensitive to departures from centrality than the Cp index 
[1, 11].  
Pp and Ppk are measures of process performance from a customer perspective [4, 12]. 

Non-normally distributed processes are not uncommon in practice. Combining 
this fact with the misleading results of applying basic PCIs to non-normal processes 
while treating them as normal distributions forced academicians and practitioners to 
investigate the characteristics of process capability indices with non-normal data [10, 
16, 20].  

There two approaches adopted in estimating PCI for non-normal process 
situation include:  
(1)  Data Transformation Approach: Data transformation approach is aimed at 

transforming the non-normal process data into normal process data [3, 5, 10].  
(2)  Distribution Fitting Method for Empirical Data: Distribution fitting methods use 

the empirical process data, of which the distribution is unknown [10]. These methods 
later fit the empirical data set with a non-normal distribution based on the 

parameters of the empirical distribution. Clements’  Method is  one of the most 
popular distribution approaches. Therefore, the percentile-based Cp is obtained by:  

                                                Cp= 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
𝜉𝜉0.99865 −𝜉𝜉0.00135

                                 (3) 

where ξ0.99865 and ξ0.00135 denote  the upper and lower 0.135th percentiles of the process 
distribution, respectively.  
Following the same logic, the Cpkindex can be obtained using a percentile approach:  

                                   Cpk  = min [
USL  -  𝜉𝜉0.5

𝜉𝜉0.99865 −𝜉𝜉0.5
, 

𝜉𝜉0.5-  LSL

𝜉𝜉0.5−𝜉𝜉0.00135
]            (4)  

where 𝜉𝜉0.5  is the median of the process distribution, which is used instead of the process 
mean, because the process mean is not indicative of the centrality of a non-normal 
distribution specially when skewness of the distribution is taken into account [1].  

The mean  difference is independent of any central measure of localization, which 
can be seen from its definition.  

                                          ∆1= ∫ ∫ |𝑥𝑥 − 𝑦𝑦|𝑑𝑑𝑑𝑑(𝑥𝑥)𝑑𝑑𝑑𝑑(𝑦𝑦)+∞
−∞

+∞
−∞         (5)  

When the random variable X is discrete (a case more often considered) the 
formula has the form  
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                                               ∆1=∑ ∑ |𝑥𝑥 − 𝑦𝑦|𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
𝑗𝑗=+∞
𝑗𝑗=−∞

𝑖𝑖=+∞
𝑖𝑖=−∞              (6) 

The analytic investigation of the discussed characteristic is made difficult 
because of the absolute value occurring in the formula. However, it facilitates the 
computations on numerical data, which also concerns, as is well known, the mean 
deviation. 

This paper therefore compares the performances of Gini Mean, Clements and 
Box- Cox transformation methods for estimating process capability Indices for a non-
normal case. 

II. Methodology 

a) Process Capability Indices 
The process capability index, the Cp index, which is defined as: 

                                                 Cp = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
6σ

                            (7)  

The Cpk can be defined as: 

                                              𝑚𝑚𝑚𝑚𝑚𝑚 �𝑈𝑈𝑈𝑈𝑈𝑈− 𝜇𝜇
3σ

, 𝜇𝜇−𝐿𝐿𝐿𝐿𝐿𝐿
3σ

�                                         (8) 

where USL and LSL denote the upper and lower specification limits, respectively, and σ 
is the standard deviation of the process characteristic of interest.  
Process Capability relative to one sided specification limit 

Cpu= 
USL- μ

3σ
  Process Capability relative to Upper specification limit 

Cpl= 
μ-LSL

3σ
 Process Capability relative to lower specification limit 

Ppu= 
USL- μ

3σ
 Process performance relative to Upper specification limit 

Ppl= 
μ-LSL

3σ
 Process performance relative to lower specification limit 

b) Clements Method (CM)  
For non-normal Pearsonian distribution (which includes a wide class of 

“populations” with non-normal characteristics), [3,18] proposed a method of non-normal 
percentiles to calculate process capability Cp and process capability for off center 
process Cpk indices based on the mean, standard deviation, skewness and kurtosis. 
Clements utilized the table of the family of Pearson curves as a function of skewness 
and kurtosis [8, 9]. 

Clements replaced 6𝜎𝜎 by (UP - LP) in the below equation, 

                                            Cp =         𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
𝑈𝑈𝑃𝑃−𝐿𝐿𝑃𝑃

                                             (9) 

where, UP is the 99.865 percentile and LP isthe 0.135 percentile, For Cpk, the process 

mean u is estimated by median M, and thetwo 305 are estimated by (UP — M) and 

(M—LP) respectively,  

                                     Cpk =  min �𝑈𝑈𝑈𝑈𝑈𝑈− 𝑀𝑀
𝑈𝑈𝑃𝑃−𝑀𝑀

,𝑀𝑀−𝐿𝐿𝐿𝐿𝐿𝐿
𝑀𝑀−𝐿𝐿𝑃𝑃

�                  (10) 

i. Algorithm for calculating PCIs using Clements method  
(1) Obtain the specification limits USL and LSL for a given quality characteristic 
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(2)  Estimate sample statistics for the given sample data: sample size, mean, standard 
deviation, skewness and kurtosis Calculate estimated 0.135percentile 𝐿𝐿𝑃𝑃  

(3)  Calculate estimated 99.865  percentile  𝑈𝑈𝑃𝑃  
(4)  Calculate estimated median M  
(5)  Calculate non-normal process  capability indices using equations.  

                                              Cp = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
𝑈𝑈𝑃𝑃−𝐿𝐿𝑃𝑃

                                               (11) 

USL- M

𝑈𝑈𝑃𝑃 −𝑀𝑀
, 

M-LSL

𝑀𝑀 − 𝐿𝐿𝑃𝑃
 

                                             Cpu = USL- M

𝑈𝑈𝑃𝑃−𝑀𝑀
                                               (12) 

                                              Cpl =  M-LSL

𝑀𝑀−𝐿𝐿𝑃𝑃
                                                (13) 

c) Box-Cox power Transformation (BCT)
 

The Box-Cox transformation was proposed by Box and Cox in 1964 and used for 

transforming non-normal data [9]. The Box-Cox transformation uses the parameter λ. In 
order to transform the data as closely as possible to normality, the best possible 

transformation should be performed by selecting the most appropriate value of λ. In 

order to obtain the optimal λ  
value, Box-Cox transformation method requires 

maximization of a log-likelihood function. After the transformation, process capability 
can be evaluated. They proposed a useful family of power transformations on the 
necessarily positive response variable X.  

                                      𝑋𝑋(𝜆𝜆) =  �
𝑋𝑋𝜆𝜆−1
𝜆𝜆  ,𝑓𝑓𝑓𝑓𝑓𝑓

 
𝜆𝜆

 
≠ 0

ln𝑋𝑋 ,𝑓𝑓𝑓𝑓𝑓𝑓
 

𝜆𝜆 = 0
�                         (14) 

where the variable X takes positive values. If the variable X takes negative values, then 
a constant value will be added in order to make the values positive. This continuous 

family depends on a single parameter 𝜆𝜆
 

that can be estimated by using maximum 
likelihood estimation.

 

Firstly, a value of 𝜆𝜆
 

from a pre-assigned range is collected. Then Lmax

 
is 

computed as in 
 

                    𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = − 1
2

ln𝜎𝜎�2 +  ln 𝐽𝐽(𝜆𝜆,𝑋𝑋) = − 1
2

ln𝜎𝜎�2 + (𝜆𝜆 − 1)∑ ln𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1       (15)

 

For all 𝜆𝜆, 𝐽𝐽(𝜆𝜆,𝑋𝑋)is evaluated as in Equation
 

                                        

𝐽𝐽(𝜆𝜆,𝑋𝑋) =  ∏ 𝜕𝜕𝑊𝑊𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

=  ∏ 𝑋𝑋𝑖𝑖𝜆𝜆−1𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖−            

 
            (16) 

                                                         
ln 𝐽𝐽(𝜆𝜆,𝑋𝑋) = (𝜆𝜆 − 1)∑ ln𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1                        (17) 

For fixed 𝜆𝜆,𝜎𝜎2  is estimated by using S(𝜆𝜆), which is the residual sum of squares of 

𝑋𝑋(𝜆𝜆).𝜎𝜎2

 

is estimated by the formula in the equation below [15].

 

                                                    𝜎𝜎�2 = 𝑆𝑆(𝜆𝜆)
𝑛𝑛                     (18)  
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d) Gini’s Mean Difference (GM) 
The Gini's mean difference for a set of n ordered observations, {x1, x2,…,xn}, of a 

random variable X is defined as: 

                                       Gn = 2
𝑛𝑛(𝑛𝑛−1)

∑ ∑ �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 �𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑗𝑗=1                           (18) 

                   Gn = 2
𝑛𝑛(𝑛𝑛−1)

∑ [(𝑥𝑥𝑖𝑖 − 𝑥𝑥1) + (𝑥𝑥𝑖𝑖 − 𝑥𝑥2) + ⋯+ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑛𝑛−1)]𝑛𝑛
𝑖𝑖=1       (19) 

                                     Gn = 2
𝑛𝑛(𝑛𝑛−1)

∑ (2𝑖𝑖𝑖𝑖 − 𝑛𝑛 − 1)𝑥𝑥(𝑖𝑖)
𝑛𝑛
𝑖𝑖=1                         (20) 

If the random variable X follows normal distribution with mean µ and variance 

σ2, then [21]  suggests a possible unbiased estimator of standard deviation (σ) as: 

                                       σ ∗ = c ∑ [(2𝑖𝑖𝑖𝑖−𝑛𝑛−1)𝑥𝑥𝑖𝑖]𝑛𝑛
𝑖𝑖=1

𝑛𝑛(𝑛𝑛−1)
                        (21) 

where 𝑐𝑐 = √𝜋𝜋 = 1.77245,σ∗  = 0.8862  Gn is an unbiased measure of variability. Gini's 
mean difference can be rewritten as: 

                                       Gn = 2
𝑛𝑛(𝑛𝑛−1)

∑ (2𝑖𝑖 − 𝑛𝑛 − 1)𝑥𝑥(𝑖𝑖)
𝑛𝑛
𝑖𝑖=1                 (23) 

If we write this as 

                                  Gn =  2
𝑛𝑛(𝑛𝑛−1)

∑ [(𝑖𝑖 − 1) − (𝑛𝑛 − 1)]𝑥𝑥(𝑖𝑖)
𝑛𝑛
𝑖𝑖=1                    (24) 

                       Gn = 2
𝑛𝑛(𝑛𝑛−1)

�∑ (𝑖𝑖 − 1)𝑥𝑥(𝑖𝑖) − ∑ (𝑛𝑛 − 1)𝑥𝑥(𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 �     (25) 

                                             Gn = 2
𝑛𝑛(𝑛𝑛−1)

[𝑈𝑈 − 𝑉𝑉]           (26) 

where U= and V=  
The unbiased estimator of Gini Mean difference for Weibull distribution is  

                                    𝐸𝐸(Gn) = �2 − 21−1
𝛽𝛽 �

Γ�1+1
𝛽𝛽�

𝜆𝜆
= 𝜎𝜎𝑔𝑔𝑔𝑔                (27) 

The Weibull probability density function is given as: 

                                       𝑓𝑓(𝑥𝑥) =  𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆)𝛽𝛽00000−1𝑒𝑒−(𝜆𝜆𝜆𝜆 )𝛽𝛽                        (28) 

To compute Cp and
 
Cpk using Gini’s mean difference as a measure of variability 

when the data follow a Weibull distribution
 

                                                               𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
5.3172𝜎𝜎𝑔𝑔𝑔𝑔

                       (29) 

                                                               𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
min (𝑈𝑈𝑈𝑈𝑈𝑈 −𝑚𝑚,𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐿𝐿)

2.6586𝜎𝜎𝑔𝑔𝑔𝑔
 

                                                            𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑈𝑈𝑈𝑈𝑈𝑈−𝑚𝑚
2.6586𝜎𝜎𝑔𝑔𝑔𝑔

         
  

          (30) 

                                                              𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿
2.6586𝜎𝜎𝑔𝑔𝑔𝑔

               (31) 

Performance Assessment of Mean Methods in Estimating Process Capability for Non-Normal Process for 
Weibull Family Life Distribution

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

V
Y
ea

r
20

19

47

  
 

( F
)

© 2019   Global Journals

Ref

21
.Y

it
zh

a k
i,
 S

 (
20

10
).

 G
in

i'
s 

m
ea

n
 d

if
fe

re
n
ce

: 
A

 s
u
p
er

io
r 

m
ea

su
re

 o
f 
v
ar

ia
b
il
it

y
 f
or

 n
on

-
n
or

m
al

 d
is

tr
ib

u
ti

on
s,

 M
et

ro
n
, 
61

(2
),

 p
p
. 
28

5-
31

6.



e) Performance Comparison of the Clements, Box-Cox transformation and the Gini 
Methods  

The performance comparison is carried out by generating Weibull data through 
simulation and for this reason, process performance indices (PPIs) are executed for 
computing process capability rather than process capability indices (PCIs).  

Weibull distribution is used or modeling most industrial processes especially in 
reliability field which is concerned with the failure of a product or the time to failure of 
the product. Only one sided (USL) process performance index PPu is considered. The 
USL is computed from the equation below using a targeted Ppu  of  1.0 and 1.5.  The 
targeted Ppu of 1.0 is indicating the process is marginally capable of meeting the 
specifications and the Ppu of 1.5 is indicating the process is good and very capable of 
meeting the specification limits [14].  

Box plots, descriptive statistics, the root-mean-square deviation (RMSD), which 
is used as a measure of error, are utilized for evaluating the performances of the 
methods. In addition, the bias of the estimated values is important as the efficiency 
measured by the mean square error.  

f) The Root-Mean-Square Deviation (RMSD)  
The root-mean-square deviation (RMSD) is used to measure the differences 

between the targeted Ppu values and the estimates obtained by BCT, Clements and 
Gini mean difference based methods.  

                                RMSD =  �∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  𝑃𝑃𝑃𝑃𝑢𝑢𝑖𝑖−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑃𝑃𝑃𝑃𝑢𝑢𝑖𝑖)2𝑟𝑟
𝑖𝑖=1

𝑟𝑟
                        (32) 

where r  is the number of data sets generated randomly for each Weibull distribution 
with specified parameters. The RMSD serves to aggregate the magnitudes of the errors 
in the predictions for various times into a single measure of predictive power and a 
measure of accuracy [8].  

III.  Result  and Data Analysis  

a) The Descriptive Statistics  

The tables below show the corresponding quantiles, mean, median along with 
skewness and kurtosis based on the specified parameter values of Weibull distribution. 
Kurtosis gives information about the relative concentration of values in the center of 
the distribution as compared to the tails.  

Table 1: Summary statistics of Weibull distribution at 𝛼𝛼 = 1 and  𝛽𝛽 = 1  for different 
sample sizes  

 
Weibull(α,β) X0.99865

 Median = X0.50
     Mean  Skewness  Kurtosis  

n=25 Weibull(1,1) 3.8939  0.7469  1.0296  1.5138  2.7650  

n=50 Weibull(1,1) 4.3501  0.6915  0.9989  1.6654  3.2510  

n=75 Weibull(1,1) 4.8491  0.6803  0.9733  1.8448  4.7940  

n=100 Weibull(1,1) 5.1722  0.7167  1.0130  1.8384  4.6222  
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Table 2: Summary statistics of Weibull distribution at 𝛼𝛼 = 1 and 𝛽𝛽 = 2 for different 
sample sizes 

 Weibull(α,β) X0.99865
 Median = X0.50

 Mean Skewness Kurtosis 

n=25 Weibull(1,2) 8.4542 1.4737 2.0537 1.7316 3.9214 

n=50 Weibull(1,2) 8.9368 1.4228 2.0194 1.6610 3.7344 

n=75 Weibull(1,2) 9.5834 1.3896 2.0026 1.7548 4.1068 

n=100 Weibull(1,2) 10.2353 1.4067 2.0281 1.7980 4.2492 

Table 3: Summary statistics of Weibull distribution at 𝛼𝛼 = 2 and 𝛽𝛽 = 1 for different 
sample sizes 

 Weibull(α,β) X0.99865
 Median= X0.50

 Mean Skewness Kurtosis 

n=25 Weibull(2,1) 1.9352 0.8284 0.8743 0.5722 0.3388 

n=50 Weibull(2,1) 2.0577 0.8495 0.8916 0.5426 0.0124 

n=75 Weibull(2,1) 2.0978 0.8295 0.8774 0.5650 0.0292 

n=100 Weibull(2,1) 2.2503 0.8158 0.8719 0.6686 0.3788 

Table 4: Summary statistics of Weibull distribution at 𝛼𝛼 = 2 and 𝛽𝛽 = 2 for different 
sample sizes 

 Weibull(α,β) X0.99865
 Median = X0.50

 Mean Skewness Kurtosis 

n=25 Weibull(2,2) 1.6916 1.7779 1.7770 0.5108 0.1892 

n=50 Weibull(2,2) 1.7177 1.5458 1.7537 0.5820 0.1896 

n=75 Weibull(2,2) 4.2828 1.6516 1.7703 0.5638 -0.0554 

n=100 Weibull(2,2) 4.4739 1.6662 1.7733 0.5898 0.1090 

The distribution plot of Weibull distribution for various shape and scale 
parameter is shown below.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:

 

Distribution plot of Weibull distribution using different shape and scale 
parameters

 

From the distribution plot in Figure 1, the distribution plots are positively 
skewed (non-normal) for the combinations of the shape and scale parameters with 
Weibull (1, 1) the most peaked.
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b) Process Capability Analysis  
i.  Gini Mean Difference based Process Capability Analysis  

The table of parameter estimation is given below using the generated data from 
Weibull distribution with varying shape and scale parameters of (1,1), (1,2) (2,1) and 
(2,2) at different sample sizes of n = 25, 50,75 and 100.  

Table 5:  Gini’s Estimated USL obtained from the data  

GMD 𝑪𝑪𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏  USL FOR GINI  

n=25  n=50  n=75  n=100  

Weibull( 1,1) 
1.0 3.4055  3.3501  3.3389  3.3753  

1.5 4.7348  4.6794  4.6682  4.7046  

Weibull( 1,2) 
1.0 3.8298  3.7789  3.7457  3.7629  

1.5 5.0079  4.9570  4.9238  4.9409  

Weibull (2,1) 
1.0 2.2086  2.2297  2.2096  2.1960  

1.5 2.8986  2.9198  2.8997  2.8861  

Weibull (2,2) 
1.0 3.1118  3.0668  3.0633  3.0778  

1.5 3.8176  3.7726  3.7691  3.7837  

Table 6:  Clements’s Mean Difference based Process Capability Analysis  

CA  𝑪𝑪𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏
 

 
USL FOR CLEMENTS ANALYSIS

 

n=25
 
n=50

 
n=75

 
n=100

 

Weibull 1,1
 

 
1.0 3.8939

 
4.3501

 
4.8491

 
5.1722

 

1.5
 

5.4674
 

6.1794
 
6.9335

 
7.3999

 

Weibull 1,2
 

 
1.0 8.4542

 
8.9368

 
9.5834

 
10.2353

 

1.5
 

11.9445
 

12.6937
 

13.6802
 

14.6495
 

Weibull 2,1
 

 
1.0 1.9352

 
2.0577

 
2.0978

 
2.2503

 

1.5
 

2.4886
 

2.6618
 
2.7319

 
2.9675

 

Weibull 2,2
 

 
1.0 1.6916

 
1.7177

 
4.2828

 
4.4739

 

1.5
 

1.6484
 

1.8036
 
5.5983

 
5.8777

 

 

Box - Cox’s Mean Difference based Process Capability Analysis  
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

BCT  𝑪𝑪𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏
 

 
USL FOR BCT

 

n=25
 
n=50

 
n=75

 
n=100

 

Weibull 1,1

 
 

1 2.6189
 

2.3984
 
2.0027

 
1.8314

 

1.5
 

3.7938
 

3.4562
 
2.7452

 
2.3774

 

Weibull 1,2

 
 

1 3.4239
 

3.0202
 
2.5266

 
2.1994

 

1.5
 

4.7835
 

4.1252
 
3.3355

 
2.8110

 

Weibull 2,1

 
 

1 1.6913
 

1.6490
 
1.6384

 
1.6528

 

1.5
 

2.2016
 

2.1041
 
2.0553

 
2.0790

 

Weibull 2,2

 
 

1 2.6310
 

2.3786
 
2.3879

 
2.3661

 

1.5
 

3.3389
 

2.9853
 
2.9895

 
2.9084

 

Performance Assessment of Mean Methods in Estimating Process Capability for Non-Normal Process for 
Weibull Family Life Distribution

© 2019   Global Journals

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

V
Y
ea

r
20

19

50

  
 

( F
)

Table 7:

Notes



c) Graphical Comparison of the computed Process Capabilities 
In order to compare the process capability methods graphically at each targeted 

Ppu (1.0 and 1.5), box plot or whisker plot is used to show the shape of the 
distribution, its central value (0.50), variability (0.75 – 0.25) and outliers by star 
symbol if it exists. The position of the median line in a box plot indicates the location 
of the values. The figures below shows the comparison  
 
 
 
 
 
 
 
 
 

a.)
 

Weibull(1,1), target Ppu 1.0 and n= 25              b.) Weibull(1,1), target Ppu 
1.5 and n= 25

 
 
 
 
 
 
 

Figure 2:

 

Weibull (1,1), target Ppu 1.0 

 

Figure 3: 

 

Weibull (1,1), target 
Ppu 1.5 and n= 50
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 and n= 50

Notes



 

Figure 4: Weibull(1,1), target  Figure  Weibull(1,1), 

Ppu 1.5 and n= 75 

From the boxplots, the results show that for different distribution parameters at 
different sample sizes, GMD methods is the best of the three methods for computing 
process capability for when the process is non-normal. 

d) Mean and Standard deviation of Computed Capability Indices
 

To confirm the result shown from the boxplots above, the mean values and the 
standard deviation (which shows how concentrated the data are around the mean) of 
the computed process capabilities are computed in the tables below.

 

Table 8:
 

Descriptive statistics for CA, BCT, and GMD methods when n = 25
 

n
 

= 25
 

Target 
Ppu

 
Statistics

 
Method

 
Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2) 

1 

Mean 

CA
 

1.1230
 

1.1930
 
1.0702

 
1.1163

 

BCT
 

1.1314
 

1.0663
 
1.0125

 
1.1055

 

GMD
 

1.0000
 

1.0000
 
0.9999

 
1.0000

 

Standard 
Deviation 

CA
 

0.4235
 

0.5112
 
0.3542

 
0.4386

 

BCT
 

0.3097
 

0.2478
 
0.2126

 
0.3483

 

GMD
 

0.0758
 

0.1706
 
0.0832

 
0.1696

 

1.5
 

Mean 

CA
 

1.6849
 

1.7897
 
1.6191

 
1.6774

 

BCT
 

1.7820
 

1.6351
 
1.5815

 
1.6583

 

GMD
 

1.5000
 

1.5000
 
1.5000

 
1.5000

 

Standard 
Deviation 

CA
 

0.6275
 

0.7665
 
0.5182

 
0.6465

 

BCT
 

0.6087
 

0.4404
 
0.3048

 
0.4828

 

GMD
 

0.0758
 

0.1706
 
0.0832

 
0.1696
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Table 9:  Descriptive statistics for CA, BCT, and GMD methods when n = 50 

n = 50 
Target 
Ppu Statistics Method Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2) 

1.0 

Mean 

CA 1.0577 1.1384 1.0262 1.0616 

BCT 1.2337 1.1833 0.9929 1.0356 

GMD 1.0000 1.0000 1.0000 1.0000 

Standard 
Deviation 

CA 0.2644 0.3955 0.1658 0.2691 

BCT 0.4849 0.5377 0.1333 0.1778 

GMD 0.0525 0.1204 0.0603 0.1172 

1.5 

Mean 

CA 1.5856 1.7068 1.5418 1.5930 

BCT 1.9822 1.8171 1.5461 1.5546 

GMD 1.5000 1.5000 1.5000 1.5000 

Standard 
Deviation 

CA 0.3907 1.5000 0.2517 0.4002 

BCT 0.9365 0.8660 0.1953 0.2396 

GMD 0.0525 0.1204 0.0603 0.1172 

Table 10: Descriptive statistics for CA, BCT, and GMD methods when n = 75 

n = 75 

Target 
Ppu Statistics Method Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2) 

1 

Mean 

CA 1.1044 1.0783 1.0396 1.0223 

BCT 1.2484 1.3056 0.9957 1.0203 

GMD 1.0000 1.0762 1.0000 1.0000 

Standard 
Deviation 

CA 0.3418 0.3200 0.2112 0.1540 

BCT 0.3859 0.5790 0.0945 0.1513 

GMD 0.0459 0.3183 0.0523 0.1025 

1.5 

Mean 

CA 1.6550 1.6168 1.5589 1.5345 

BCT 2.0129 2.0084 1.5295 1.5439 

GMD 1.5000 1.5000 1.5000 1.5055 

Standard 
Deviation 

CA 0.5053 0.4764 0.3071 0.2295 

BCT 0.7514 0.9211 0.1434 0.2088 

GMD 0.0459 0.0965 0.0523 0.1025 

Table 11: Descriptive statistics for CA, BCT, and GMD methods when n = 100 

n = 100
 

Target 
Ppu

 
Statistics

 
Method

 
Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2) 

1 

Mean 

CA
 1.0627

 
1.0552

 
1.0311

 
1.0287

 

BCT
 1.1825

 
1.2099

 
0.9890

 
1.0056

 

GMD
 1.0000

 
1.0000

 
1.0000

 
1.0000

 

Standard 
Deviation 

CA
 0.2580

 
0.2305

 
0.1834

 
0.1856

 

BCT
 0.3095

 
0.3763

 
0.0844

 
0.0865

 

GMD
 0.0394

 
0.0707

 
0.0436

 
0.0859

 

1.5
 

Mean CA
 1.5936

 
1.5829

 
1.5476

 
1.5428
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BCT
 

1.8554
 

1.8531
 

1.5156
 

1.5081
 

GMD
 

1.5000
 

1.5000
 

1.5000
 

1.5000
 

Standard 
Deviation 

CA
 

0.3850
 

0.3449
 

0.2776
 

0.2700
 

BCT
 

0.5458
 

0.5991
 

0.1000
 

0.1215
 

GMD
 

0.0394
 

0.0707
 

0.0436
 

0.0859
 

At Weibull (1, 1) and Weibull (1, 2) at sample size of 25, 50, 75 and 100, the 
Gini Mean Difference based process capability estimates approximately the the target 
Ppu of 1.0 and 1.5, the Clements method estimates is also close to the target Ppu while 
the Box-Cox transformation method is at deviance from the target (overestimated) the 
Ppu of 1.0 and1.5 as the sample size increases.

 

At Weibull (2,1) and Weibull (2,2) which indicate low symmetry and at sample 
size of 25, 50, 75 and 100, the three method estimates are all approximately target Ppu 
of 1.0 and 1.5 with the Gini Mean Difference based process capability estimates the best 
(closest).

 

e) The Root-Mean-Square Deviation (RMSD)

 

The root-mean-square deviation (RMSD) is used to measure the differences 
between the targeted Ppu values and the estimates obtained by Box-Cox 
Transformation, Clements and Gini mean difference based methods.

 

The tables below summaries the result obtained for each of the distribution 
parameter at different sample sizes

 

Table 12:

 

The root-mean-square deviations for CA, BCT, and GMD methods when     

 

n = 25

 

n

 

= 25

 

Target 
Ppu

 

Method

 

Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2) 

1  
CA

 

0.4369

 

0.5416

 

0.3576

 

0.4495

 

BCT

 

0.4794

 

0.2541

 

0.2108

 

0.3606

 

GMD

 

0.0750

 

0.1688

 

0.0824

 

0.1679

 

1.5

 
CA

 

0.6482

 

0.8122

 

0.5266

 

0.6641

 

BCT

 

0.6653

 

0.4564

 

0.3125

 

0.5035

 

GMD

 

0.0750

 

0.1688

 

0.0824

 

0.1679

 

 

The root-mean-square deviations for CA, BCT, and GMD methods when                
n = 50

 

n

 

= 50

 

Target 
Ppu

 

Method

 

Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2) 

1  
CA

 

0.3749

 

0.4153

 

0.1662

 

0.2734

 

BCT

 

0.5339

 

0.5629

 

0.1321

 

0.1795

 

GMD

 

0.0525

 

0.1192

 

0.0597

 

0.1160

 

1.5

 

CA

 

0.3961

 

0.6173

 

0.2526

 

0.4069

 

BCT

 

1.0048

 

0.9141

 

0.1988

 

0.2434

 

GMD

 

0.0525

 

0.1192

 

0.0597

 

0.1160
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Table 14: The root-mean-square deviations for CA, BCT, and GMD methods when      
n = 75 

n
 
= 75

 
Target 
Ppu

 
Method

 
Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2) 

1 

CA
 

0.3541
 

0.3263
 

0.2128
 

0.1540
 

BCT
 

0.4557
 

0.6496
 

0.0937
 

0.1512
 

GMD
 

0.0455
 

0.0956
 

0.0518
 

0.1015
 

1.5
 

CA
 

0.5237
 

0.4859
 

0.3097
 

0.2298
 

BCT
 

0.9036
 

1.0440
 

0.1450
 

0.2113
 

GMD
 

0.0455
 

0.0956
 

0.0518
 

0.1016
 

Table15: The root-mean-square deviations for CA, BCT, and GMD methods when           
n = 100 

n
 
= 100

 

  
Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2) 

1 

CA
 

0.2630
 

0.2348
 

0.1841
 

0.1860
 

BCT
 

0.3566
 

0.4276
 

0.0843
 

0.0858
 

GMD
 

0.0390
 

0.0700
 

0.0432
 

0.0850
 

1.5
 

CA
 

0.3925
 

0.3514
 

0.2789
 

0.2707
 

BCT
 

0.6467
 

0.6902
 

0.1002
 

0.1205
 

GMD
 

0.0390
 

0.0700
 

0.0432
 

0.0850
 

Results from the root-mean-square deviation (RMSD) in Table 12 to Table 15 
shows that the GMD methods have the lowest RMSDs across all the different 
distribution parameters and sample sizes 

IV. Conclusion 

In order to examine the impact of non-normal data, the parameter values of 
Weibull distribution were specified as (1, 1), (1, 2), (2, 1), and (2, 2) corresponding to 
(shape, scale) at different sample sizes of 25, 50, 75 and 100. These parameters of 
Weibull distributions are specified such that the effects of the tail behaviour on process 
capability could be examined. When the Weibull shape parameter is equal to 1, Weibull 
distribution reduces to Exponential distribution. Hence, this study covers all the 
Exponential family distributions as well. 

Conclusively, from our results and findings, the Gini Mean difference based 
approach is the best among three methods in estimating process capability in skewed 
(non-normal) situations. In general, methods involving transformation seem more 
burdensome in terms of calculation, though it provide estimates of PCIs that truly 
reflect the capability of the process when there is low symmetry as in Weibull (2, 2).  
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