

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES Volume 19 Issue 5 Version 1.0 Year 2019 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Performance Assessment of Mean Methods in Estimating Process Capability for Non-Normal Process for Weibull Family Life Distribution

By Braimah, Joseph Odunayo

Ambrose Alli University

Abstract- This paper compares the performances of Gini Mean, Clements and Box- Cox transformation methods for estimating process capability Indices when the distribution of the process data is (skewed) non-normal. The use of Process Performance Index (PPI) is implored for process capability analysis (PCA) using Weibull distribution. Simulation of data was also carried out using R software using a decision interval (target point) of 1.0 and 1.5. Performance assessment was carried out using Boxplots, descriptive statistics and the root mean square deviation. The following were the findings from the results. The Gini mean difference based process capability indices performs best in estimating the process capability indices closest to a set target for varying distribution parameters at different sample sizes, followed by Clements and lastly, the Box-Cox transformation method [10, 19].

Keywords: process control, capability indices, performance index, standard error, skewed.

GJSFR-F Classification: MSC 2010: 11H60

PERFORMANCE ASSESSMENTOFMEANMETH DDS I NEST I MATING PROCESSCAPABILITY FORNONN DRMALPROCESSFORWE I BULLFAMILY LIFED I STR I BUT I DN

Strictly as per the compliance and regulations of:

© 2019. Braimah, Joseph Odunayo. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org /licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Braimah, Joseph Odunayo

Abstract- This paper compares the performances of Gini Mean, Clements and Box- Cox transformation methods for estimating process capability Indices when the distribution of the process data is (skewed) non-normal. The use of Process Performance Index (PPI) is implored for process capability analysis (PCA) using Weibull distribution. Simulation of data was also carried out using R software using a decision interval (target point) of 1.0 and 1.5. Performance assessment was carried out using Boxplots, descriptive statistics and the root mean square deviation. The following were the findings from the results. The Gini mean difference based process capability indices performs best in estimating the process capability indices closest to a set target for varying distribution parameters at different sample sizes, followed by Clements and lastly, the Box-Cox transformation method [10, 19].

Keywords: process control, capability indices, performance index, standard error, skewed.

I. INTRODUCTION

Statistical Process Control is the application of statistical tools and techniques in monitoring variation in a continuous process in order to detect variations that are of assignable causes, and therefore make recommendations for corrective check on the process. Control charts are used to monitor processes in order to detect assignable cause(s) that change the process parameters. [6, 7] emphasized the importance of identification of assignable cause. When the distribution of the output quality of the process variable is continuous, the combination of two control charts such as an Xchart and an R-chart are usually required to monitor both the process mean and the process variance [14]. However, recently [17] have shown that the two combined charts are not always reliable in identifying the nature of the change.

Measuring a process performance and acting upon the assessments based on the measurements are critical elements of any continuous quality improvement efforts [15], however, companies make assessments of process performance based on different indicators. Most common of these indicators can be described in terms of process yield, process expected loss and capability indices of a particular process characteristic [4]. Among these indicators, Process Capability Indices (PCIs) have gained substantial attention both in academic community and several types of manufacturing industries

3d virtual iournal

 $R_{\rm ef}$

Author: Department of Mathematics and Statistics, Faculty of Physical Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria. e-mail: ojbraimah2014@gmail.com

since 1980s [13]. The first process capability index proposed in the literature more than three decades ago is the C_p index, which is defined as:

$$C_{p} = \frac{USL - LSL}{6\sigma}$$
(1)

where USL and LSL denote the upper and lower specification limits respectively and σ is the standard deviation of the process characteristic of interest [2]. In order to overcome this problem, a second generation PCI, the Cpk index, is introduced. The Cpk is defined as:

$$C_{pk} = \min\left[\frac{USL - \mu}{3\sigma}, \frac{\mu - LSL}{3\sigma}\right]$$
(2)

 R_{ef}

Hall, Suffolk.

10. Kotz, S and Johnson, N.L (1993). Process Capability Indices. 2nd Ed. Chapman &

where μ and σ are the mean and the standard deviation of the quality characteristic studied, respectively. The mean of the process characteristic has an influence on the C_{pk} index and therefore it is more sensitive to departures from centrality than the Cp index [1, 11].

Pp and Ppk are measures of process performance from a customer perspective [4, 12].

Non-normally distributed processes are not uncommon in practice. Combining this fact with the misleading results of applying basic PCIs to non-normal processes while treating them as normal distributions forced academicians and practitioners to investigate the characteristics of process capability indices with non-normal data [10, 16, 20].

There two approaches adopted in estimating PCI for non-normal process situation include:

- (1) Data Transformation Approach: Data transformation approach is aimed at transforming the non-normal process data into normal process data [3, 5, 10].
- (2) Distribution Fitting Method for Empirical Data: Distribution fitting methods use the empirical process data, of which the distribution is unknown [10]. These methods later fit the empirical data set with a non-normal distribution based on the parameters of the empirical distribution. Clements' Method is one of the most popular distribution approaches. Therefore, the percentile-based Cp is obtained by:

$$C_{p} = \frac{USL - LSL}{\xi_{0.99865} - \xi_{0.00135}}$$
(3)

where $\xi_{0.99865}$ and $\xi_{0.00135}$ denote the upper and lower 0.135th percentiles of the process distribution, respectively.

Following the same logic, the Cpkindex can be obtained using a percentile approach:

$$C_{pk} = \min\left[\frac{USL - \xi_{0.5}}{\xi_{0.99865} - \xi_{0.5}}, \frac{\xi_{0.5} - LSL}{\xi_{0.5} - \xi_{0.00135}}\right]$$
(4)

where $\xi_{0.5}$ is the median of the process distribution, which is used instead of the process mean, because the process mean is not indicative of the centrality of a non-normal distribution specially when skewness of the distribution is taken into account [1].

The mean difference is independent of any central measure of localization, which can be seen from its definition.

$$\Delta_1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |x - y| dF(x) dF(y)$$
(5)

When the random variable X is discrete (a case more often considered) the formula has the form

$$\Delta_1 = \sum_{i=-\infty}^{i=+\infty} \sum_{j=-\infty}^{j=+\infty} |x - y| p_i p_j \tag{6}$$

The analytic investigation of the discussed characteristic is made difficult because of the absolute value occurring in the formula. However, it facilitates the computations on numerical data, which also concerns, as is well known, the mean deviation.

This paper therefore compares the performances of Gini Mean, Clements and Box- Cox transformation methods for estimating process capability Indices for a nonnormal case.

II. Methodology

a) Process Capability Indices

Notes

The process capability index, the Cp index, which is defined as:

$$Cp = \frac{USL - LSL}{6\sigma}$$
(7)

The Cpk can be defined as:

$$min\left[\frac{USL-\mu}{3\sigma}, \frac{\mu-LSL}{3\sigma}\right] \tag{8}$$

where USL and LSL denote the upper and lower specification limits, respectively, and σ is the standard deviation of the process characteristic of interest. Process Capability relative to one sided specification limit

$$\begin{split} \mathbf{C}_{\mathrm{pu}} &= \frac{\mathrm{USL} \cdot \mu}{3\sigma} \text{ Process Capability relative to Upper specification limit} \\ \mathbf{C}_{\mathrm{pl}} &= \frac{\mu \cdot \mathrm{LSL}}{3\sigma} \text{ Process Capability relative to lower specification limit} \\ \mathbf{P}_{\mathrm{pu}} &= \frac{\mathrm{USL} \cdot \mu}{3\sigma} \text{ Process performance relative to Upper specification limit} \\ \mathbf{P}_{\mathrm{pl}} &= \frac{\mu \cdot \mathrm{LSL}}{3\sigma} \text{ Process performance relative to lower specification limit} \\ b) \text{ Clements Method (CM)} \end{split}$$

For non-normal Pearsonian distribution (which includes a wide class of "populations" with non-normal characteristics), [3,18] proposed a method of non-normal percentiles to calculate process capability Cp and process capability for off center process Cpk indices based on the mean, standard deviation, skewness and kurtosis. Clements utilized the table of the family of Pearson curves as a function of skewness and kurtosis [8, 9].

Clements replaced 6σ by $(U_P - L_P)$ in the below equation,

$$Cp = \frac{USL - LSL}{U_P - L_P} \tag{9}$$

where, U_P is the 99.865 percentile and L_P is the 0.135 percentile, For Cpk, the process mean u is estimated by median M, and the two 305 are estimated by $(U_P - M)$ and $(M-L_P)$ respectively,

$$Cpk = \min\left[\frac{USL - M}{U_P - M}, \frac{M - LSL}{M - L_P}\right]$$
(10)

i. Algorithm for calculating PCIs using Clements method

(1) Obtain the specification limits USL and LSL for a given quality characteristic

- (2) Estimate sample statistics for the given sample data: sample size, mean, standard deviation, skewness and kurtosis Calculate estimated 0.135 percentile L_P
- (3) Calculate estimated 99.865 percentile U_P
- (4) Calculate estimated median M
- (5) Calculate non-normal process capability indices using equations.

$$Cp = \frac{USL - LSL}{U_P - L_P}$$
(11)

$$\frac{\text{USL- M}}{U_P - M}, \ \frac{\text{M-LSL}}{M - L_P}$$

$$Cpu = \frac{USL-M}{U_P - M}$$
(12)

$$Cpl = \frac{M-LSL}{M-L_P}$$
(13)

c) Box-Cox power Transformation (BCT)

The Box-Cox transformation was proposed by Box and Cox in 1964 and used for transforming non-normal data [9]. The Box-Cox transformation uses the parameter λ . In order to transform the data as closely as possible to normality, the best possible transformation should be performed by selecting the most appropriate value of λ . In order to obtain the optimal λ value, Box-Cox transformation method requires maximization of a log-likelihood function. After the transformation, process capability can be evaluated. They proposed a useful family of power transformations on the necessarily positive response variable X.

$$X^{(\lambda)} = \begin{cases} \frac{X^{\lambda} - 1}{\lambda} , \text{for } \lambda \neq 0\\ \ln X, \text{for } \lambda = 0 \end{cases}$$
(14)

where the variable X takes positive values. If the variable X takes negative values, then a constant value will be added in order to make the values positive. This continuous family depends on a single parameter λ that can be estimated by using maximum likelihood estimation.

Firstly, a value of λ from a pre-assigned range is collected. Then $L_{_{\rm max}}$ is computed as in

$$L_{max} = -\frac{1}{2}\ln\hat{\sigma}^2 + \ln J(\lambda, X) = -\frac{1}{2}\ln\hat{\sigma}^2 + (\lambda - 1)\sum_{i=1}^{n}\ln X_i$$
(15)

For all $\lambda, J(\lambda, X)$ is evaluated as in Equation

$$J(\lambda, X) = \prod_{i=1}^{n} \frac{\partial W_i}{\partial X_i} = \prod_{i=1}^{n} X_i^{\lambda - 1}$$
(16)

$$\ln J(\lambda, X) = (\lambda - 1) \sum_{i=1}^{n} \ln X_i$$
(17)

For fixed λ, σ^2 is estimated by using $S(\lambda)$, which is the residual sum of squares of $X^{(\lambda)}, \sigma^2$ is estimated by the formula in the equation below [15].

$$\hat{\sigma}^2 = \frac{S(\lambda)}{n} \tag{18}$$

 $R_{\rm ef}$

9

d) Gini's Mean Difference (GM)

The Gini's mean difference for a set of n ordered observations, $\{x_1, x_{2,\dots,}x_n\}$, of a random variable X is defined as:

$$Gn = \frac{2}{n(n-1)} \sum_{j=1}^{n} \sum_{i=1}^{n} |x_i - x_j|$$
(18)

$$Gn = \frac{2}{n(n-1)} \sum_{i=1}^{n} [(x_i - x_1) + (x_i - x_2) + \dots + (x_i - x_{n-1})]$$
(19)

$$Gn = \frac{2}{n(n-1)} \sum_{i=1}^{n} (2i_i - n - 1) x_{(i)}$$
(20)

If the random variable X follows normal distribution with mean μ and variance σ^2 , then [21] suggests a possible unbiased estimator of standard deviation (σ) as:

$$\sigma * = c \, \frac{\sum_{i=1}^{n} [(2i_i - n - 1)x_i]}{n(n-1)} \tag{21}$$

where $c = \sqrt{\pi} = 1.77245$, $\sigma^* = 0.8862$ G_n is an unbiased measure of variability. Gini's mean difference can be rewritten as:

$$Gn = \frac{2}{n(n-1)} \sum_{i=1}^{n} (2i - n - 1) x_{(i)}$$
(23)

If we write this as

$$Gn = \frac{2}{n(n-1)} \sum_{i=1}^{n} [(i-1) - (n-1)] x_{(i)}$$
(24)

$$Gn = \frac{2}{n(n-1)} \left[\sum_{i=1}^{n} (i-1) x_{(i)} - \sum_{i=1}^{n} (n-1) x_{(i)} \right]$$
(25)

$$Gn = \frac{2}{n(n-1)} [U - V]$$
(26)

where U = and V =

The unbiased estimator of Gini Mean difference for Weibull distribution is

$$E(Gn) = \left(2 - 2^{1 - \frac{1}{\beta}}\right) \frac{\Gamma\left(1 + \frac{1}{\beta}\right)}{\lambda} = \sigma_{gw}$$
(27)

The Weibull probability density function is given as:

$$f(x) = \lambda \beta(\lambda x)^{\beta 00000 - 1} e^{-(\lambda x)^{\beta}}$$
(28)

To compute Cp and Cpk using Gini's mean difference as a measure of variability when the data follow a Weibull distribution

$$C_{npg} = \frac{USL - LSL}{5.3172 \,\sigma_{gw}} \tag{29}$$

$$C_{npkg} = \frac{\min(USL - m, m - LSL)}{2.6586\sigma_{gw}}$$

$$C_{npug} = \frac{USL - m}{2.6586 \sigma_{gw}} \tag{30}$$

$$C_{nplg} = \frac{m - LSL}{2.6586 \,\sigma_{gw}} \tag{31}$$

 \mathbf{R}_{ef}

2019

Year

Global Journal of Science Frontier Research (F) Volume XIX Issue V Version

 \mathbf{R}_{ef}

e) Performance Comparison of the Clements, Box-Cox transformation and the Gini Methods

The performance comparison is carried out by generating Weibull data through simulation and for this reason, process performance indices (PPIs) are executed for computing process capability rather than process capability indices (PCIs).

Weibull distribution is used or modeling most industrial processes especially in reliability field which is concerned with the failure of a product or the time to failure of the product. Only one sided (USL) process performance index P_{Pu} is considered. The USL is computed from the equation below using a targeted Ppu of 1.0 and 1.5. The targeted Ppu of 1.0 is indicating the process is marginally capable of meeting the specifications and the Ppu of 1.5 is indicating the process is good and very capable of meeting the specification limits [14].

Box plots, descriptive statistics, the root-mean-square deviation (RMSD), which is used as a measure of error, are utilized for evaluating the performances of the methods. In addition, the bias of the estimated values is important as the efficiency measured by the mean square error.

f) The Root-Mean-Square Deviation (RMSD)

The root-mean-square deviation (RMSD) is used to measure the differences between the targeted Ppu values and the estimates obtained by BCT, Clements and Gini mean difference based methods.

$$RMSD = \sqrt{\frac{\sum_{i=1}^{r} (Estimated Ppu_i - Targeted Ppu_i)^2}{r}}$$
(32)

where r is the number of data sets generated randomly for each Weibull distribution with specified parameters. The RMSD serves to aggregate the magnitudes of the errors in the predictions for various times into a single measure of predictive power and a measure of accuracy [8].

III. Result and Data Analysis

a) The Descriptive Statistics

2019

Year

48

Global Journal of Science Frontier Research (F) Volume XIX Issue V Version I

The tables below show the corresponding quantiles, mean, median along with skewness and kurtosis based on the specified parameter values of Weibull distribution. Kurtosis gives information about the relative concentration of values in the center of the distribution as compared to the tails.

Table 1: Summary statistics of Weibull distribution at $\alpha = 1$ and $\beta = 1$ for different sample sizes

	$\operatorname{Weibull}(\alpha,\beta)$	$X_{0.99865}$	$Median = X_{0.50}$	Mean	Skewness	Kurtosis
n=25	Weibull(1,1)	3.8939	0.7469	1.0296	1.5138	2.7650
n=50	Weibull(1,1)	4.3501	0.6915	0.9989	1.6654	3.2510
n=75	Weibull(1,1)	4.8491	0.6803	0.9733	1.8448	4.7940
n=100	Weibull(1,1)	5.1722	0.7167	1.0130	1.8384	4.6222

Table 2: Summary statistics of Weibull distribution at $\alpha = 1$ and $\beta = 2$ for different sample sizes

	$\operatorname{Weibull}(\alpha, \beta)$	$X_{0.99865}$	$Median = X_{0.50}$	Mean	Skewness	Kurtosis
n=25	Weibull(1,2)	8.4542	1.4737	2.0537	1.7316	3.9214
n=50	Weibull(1,2)	8.9368	1.4228	2.0194	1.6610	3.7344
n=75	Weibull(1,2)	9.5834	1.3896	2.0026	1.7548	4.1068
n=100	Weibull(1,2)	10.2353	1.4067	2.0281	1.7980	4.2492

 N_{otes}

Table 3: Summary statistics of Weibull distribution at $\alpha = 2$ and $\beta = 1$ for different sample sizes

	Weibull(α, β)	$X_{0.99865}$	$Median = X_{0.50}$	Mean	Skewness	$\operatorname{Kurtosis}$
n=25	Weibull(2,1)	1.9352	0.8284	0.8743	0.5722	0.3388
n=50	Weibull(2,1)	2.0577	0.8495	0.8916	0.5426	0.0124
n=75	Weibull(2,1)	2.0978	0.8295	0.8774	0.5650	0.0292
n=100	Weibull(2,1)	2.2503	0.8158	0.8719	0.6686	0.3788

Table 4: Summary statistics of Weibull distribution at $\alpha = 2$ and $\beta = 2$ for different
sample sizes

	Weibull(α, β)	$X_{0.99865}$	$\mathrm{Median} = \mathrm{X}_{\mathrm{0.50}}$	Mean	Skewness	Kurtosis
n=25	Weibull(2,2)	1.6916	1.7779	1.7770	0.5108	0.1892
n=50	Weibull(2,2)	1.7177	1.5458	1.7537	0.5820	0.1896
n=75	Weibull(2,2)	4.2828	1.6516	1.7703	0.5638	-0.0554
n=100	Weibull $(2,2)$	4.4739	1.6662	1.7733	0.5898	0.1090

The distribution plot of Weibull distribution for various shape and scale parameter is shown below.

Figure 1: Distribution plot of Weibull distribution using different shape and scale parameters

From the distribution plot in Figure 1, the distribution plots are positively skewed (non-normal) for the combinations of the shape and scale parameters with Weibull (1, 1) the most peaked.

b) Process Capability Analysis

i. Gini Mean Difference based Process Capability Analysis

The table of parameter estimation is given below using the generated data from Weibull distribution with varying shape and scale parameters of (1,1), (1,2) (2,1) and (2,2) at different sample sizes of n = 25, 50,75 and 100.

GMD	C _{npug}	USL FOR GINI				
		n=25	n=50	n=75	n=100	
$W_{oibull}(1,1)$	1.0	3.4055	3.3501	3.3389	3.3753	
weibun(1,1)	1.5	4.7348	4.6794	4.6682	4.7046	
W_{a} : h_{u} $ll(1.9)$	1.0	3.8298	3.7789	3.7457	3.7629	
Weibuil $(1,2)$	1.5	5.0079	4.9570	4.9238	4.9409	
$\mathbf{W}_{\mathbf{a}}$: built (2.1)	1.0	2.2086	2.2297	2.2096	2.1960	
Weibull $(2,1)$	1.5	2.8986	2.9198	2.8997	2.8861	
W_{a} :h11 (2.2)	1.0	3.1118	3.0668	3.0633	3.0778	
Weibull $(2,2)$	1.5	3.8176	3.7726	3.7691	3.7837	

Table 5: Gini's Estimated USL obtained from the data

Table 6: Clements's Mean Difference based Process Capability Analysis

CA	<i>C</i>	USL FOR CLEMENTS ANALYSIS				
ŬĂ	Snpug	n=25	n=50	n=75	n=100	
Weibull 1 1	1.0	3.8939	4.3501	4.8491	5.1722	
Weibuli 1,1	1.5	5.4674	6.1794	6.9335	7.3999	
W-:h11 1 0	1.0	8.4542	8.9368	9.5834	10.2353	
weibuli 1,2	1.5	11.9445	12.6937	13.6802	14.6495	
Wathan 11 0 1	1.0	1.9352	2.0577	2.0978	2.2503	
weibuli 2,1	1.5	2.4886	2.6618	2.7319	2.9675	
Weibull 2,2	1.0	1.6916	1.7177	4.2828	4.4739	
	1.5	1.6484	1.8036	5.5983	5.8777	

Table 7: Box - Cox's Mean Difference based Process Capability Analysis

	C	USL FOR BCT				
BCT	C _{npug}	n=25	n=50	n=75	n=100	
	1	2.6189	2.3984	2.0027	1.8314	
Weibull 1,1	1.5	3.7938	3.4562	2.7452	2.3774	
	1	3.4239	3.0202	2.5266	2.1994	
Weibull 1,2	1.5	4.7835	4.1252	3.3355	2.8110	
	1	1.6913	1.6490	1.6384	1.6528	
Weibull 2,1	1.5	2.2016	2.1041	2.0553	2.0790	
Weibull 2,2	1	2.6310	2.3786	2.3879	2.3661	
	1.5	3.3389	2.9853	2.9895	2.9084	

Notes

c) Graphical Comparison of the computed Process Capabilities

In order to compare the process capability methods graphically at each targeted Ppu (1.0 and 1.5), box plot or whisker plot is used to show the shape of the distribution, its central value (0.50), variability (0.75 - 0.25) and outliers by star symbol if it exists. The position of the median line in a box plot indicates the location of the values. The figures below shows the comparison

Figure 3: Weibull (1,1), target Ppu 1.5 and n = 50

2019

Year

Figure 5: Weibull(1,1), target Ppu 1.5 and n=75

From the boxplots, the results show that for different distribution parameters at different sample sizes, GMD methods is the best of the three methods for computing process capability for when the process is non-normal.

d) Mean and Standard deviation of Computed Capability Indices

To confirm the result shown from the boxplots above, the mean values and the standard deviation (which shows how concentrated the data are around the mean) of the computed process capabilities are computed in the tables below.

	n = 25									
Farget Ppu	Statistics	Method	Weibull(1,1)	Weibull(1,2)	Weibull(2,1)	Weibull(2,2)				
		CA	1.1230	1.1930	1.0702	1.1163				
	Mean	BCT	1.1314	1.0663	1.0125	1.1055				
1		GMD	1.0000	1.0000	0.9999	1.0000				
1	0, 1, 1	CA	0.4235	0.5112	0.3542	0.4386				
	Standard Deviation	BCT	0.3097	0.2478	0.2126	0.3483				
		GMD	0.0758	0.1706	0.0832	0.1696				
		CA	1.6849	1.7897	1.6191	1.6774				
	Mean	BCT	1.7820	1.6351	1.5815	1.6583				
15		GMD	1.5000	1.5000	1.5000	1.5000				
1.5	Ci 1 1	CA	0.6275	0.7665	0.5182	0.6465				
	Standard Deviation	BCT	0.6087	0.4404	0.3048	0.4828				
	Deviation	GMD	0.0758	0.1706	0.0832	0.1696				

Table 8: Descriptive statistics for CA, BCT, and GMD methods when n = 25

	n = 50								
Target Ppu	Statistics	Method	Weibull(1,1)	Weibull(1,2)	Weibull(2,1)	Weibull(2,2)			
		CA	1.0577	1.1384	1.0262	1.0616			
	Mean	BCT	1.2337	1.1833	0.9929	1.0356			
1.0		GMD	1.0000	1.0000	1.0000	1.0000			
1.0	Standard	CA	0.2644	0.3955	0.1658	0.2691			
	Deviation	BCT	0.4849	0.5377	0.1333	0.1778			
		GMD	0.0525	0.1204	0.0603	0.1172			
		CA	1.5856	1.7068	1.5418	1.5930			
	Mean	BCT	1.9822	1.8171	1.5461	1.5546			
15		GMD	1.5000	1.5000	1.5000	1.5000			
1.0	Standard	CA	0.3907	1.5000	0.2517	0.4002			
	Deviation	BCT	0.9365	0.8660	0.1953	0.2396			
	Deviation	GMD	0.0525	0.1204	0.0603	0.1172			

 $N_{\rm otes}$

Table 9: Descriptive statistics for CA, BCT, and GMD methods when n = 50

Table 10: Descriptive statistics for CA, BCT, and GMD methods when n = 75

	n = 75									
Target Ppu	Statistics	Method	Weibull(1,1)	Weibull(1,2)	Weibull(2,1)	Weibull(2,2)				
		CA	1.1044	1.0783	1.0396	1.0223				
	Mean	BCT	1.2484	1.3056	0.9957	1.0203				
1		GMD	1.0000	1.0762	1.0000	1.0000				
1	Standard Deviation	\mathbf{CA}	0.3418	0.3200	0.2112	0.1540				
		BCT	0.3859	0.5790	0.0945	0.1513				
		GMD	0.0459	0.3183	0.0523	0.1025				
		$\mathbf{C}\mathbf{A}$	1.6550	1.6168	1.5589	1.5345				
	Mean	BCT	2.0129	2.0084	1.5295	1.5439				
15		GMD	1.5000	1.5000	1.5000	1.5055				
1.0	C(1 1	\mathbf{CA}	0.5053	0.4764	0.3071	0.2295				
	Standard Deviation	BCT	0.7514	0.9211	0.1434	0.2088				
	Deviation	GMD	0.0459	0.0965	0.0523	0.1025				

	n = 100										
Target Ppu	Statistics	Method	Weibull(1,1)	Weibull(1,2)	Weibull(2,1)	Weibull(2,2)					
		CA	1.0627	1.0552	1.0311	1.0287					
	Mean	BCT	1.1825	1.2099	0.9890	1.0056					
1		GMD	1.0000	1.0000	1.0000	1.0000					
1	Standard Deviation	$\mathbf{C}\mathbf{A}$	0.2580	0.2305	0.1834	0.1856					
		BCT	0.3095	0.3763	0.0844	0.0865					
		GMD	0.0394	0.0707	0.0436	0.0859					
1.5	Mean	$\mathbf{C}\mathbf{A}$	1.5936	1.5829	1.5476	1.5428					

		BCT	1.8554	1.8531	1.5156	1.5081
		GMD	1.5000	1.5000	1.5000	1.5000
	Ctau dan d	CA	0.3850	0.3449	0.2776	0.2700
Deviation	BCT	0.5458	0.5991	0.1000	0.1215	
		GMD	0.0394	0.0707	0.0436	0.0859

At Weibull (1, 1) and Weibull (1, 2) at sample size of 25, 50, 75 and 100, the Gini Mean Difference based process capability estimates approximately the the target Ppu of 1.0 and 1.5, the Clements method estimates is also close to the target Ppu while the Box-Cox transformation method is at deviance from the target (overestimated) the Ppu of 1.0 and 1.5 as the sample size increases.

At Weibull (2,1) and Weibull (2,2) which indicate low symmetry and at sample size of 25, 50, 75 and 100, the three method estimates are all approximately target Ppu of 1.0 and 1.5 with the Gini Mean Difference based process capability estimates the best (closest).

e) The Root-Mean-Square Deviation (RMSD)

The root-mean-square deviation (RMSD) is used to measure the differences between the targeted Ppu values and the estimates obtained by Box-Cox Transformation, Clements and Gini mean difference based methods.

The tables below summaries the result obtained for each of the distribution parameter at different sample sizes

Table 12: The root-mean-square deviations for CA, BCT, and GMD methods when

n = 25

	n = 25					
Target Ppu	Method	Weibull(1,1)	Weibull(1,2)	Weibull(2,1)	Weibull(2,2)	
1	CA	0.4369	0.5416	0.3576	0.4495	
	BCT	0.4794	0.2541	0.2108	0.3606	
	GMD	0.0750	0.1688	0.0824	0.1679	
1.5	CA	0.6482	0.8122	0.5266	0.6641	
	BCT	0.6653	0.4564	0.3125	0.5035	
	GMD	0.0750	0.1688	0.0824	0.1679	

Table 13: The root-mean-square deviations for CA, BCT, and GMD methods when n = 50

	n = 50				
Target Ppu	Method	Weibull(1,1)	Weibull(1,2)	Weibull(2,1)	Weibull(2,2)
1	CA	0.3749	0.4153	0.1662	0.2734
	BCT	0.5339	0.5629	0.1321	0.1795
	GMD	0.0525	0.1192	0.0597	0.1160
1.5	CA	0.3961	0.6173	0.2526	0.4069
	BCT	1.0048	0.9141	0.1988	0.2434
	GMD	0.0525	0.1192	0.0597	0.1160

 N_{otes}

Table 14: The root-mean-square deviations for CA, BCT, and GMD methods when

	n = 75					
	n = 75					
Target Ppu	Method	Weibull(1,1)	Weibull(1,2)	Weibull(2,1)	Weibull(2,2)	
1	CA	0.3541	0.3263	0.2128	0.1540	
	BCT	0.4557	0.6496	0.0937	0.1512	
	GMD	0.0455	0.0956	0.0518	0.1015	
1.5	CA	0.5237	0.4859	0.3097	0.2298	
	BCT	0.9036	1.0440	0.1450	0.2113	
	GMD	0.0455	0.0956	0.0518	0.1016	

N_{otes}

Table15: The root-mean-square deviations for CA, BCT, and GMD methods when n = 100

n = 100						
Target Ppu	Method	Weibull(1,1)	Weibull(1,2)	Weibull(2,1)	Weibull(2,2)	
1	\mathbf{CA}	0.2630	0.2348	0.1841	0.1860	
	BCT	0.3566	0.4276	0.0843	0.0858	
	GMD	0.0390	0.0700	0.0432	0.0850	
1.5	\mathbf{CA}	0.3925	0.3514	0.2789	0.2707	
	BCT	0.6467	0.6902	0.1002	0.1205	
	GMD	0.0390	0.0700	0.0432	0.0850	

Results from the root-mean-square deviation (RMSD) in Table 12 to Table 15 shows that the GMD methods have the lowest RMSDs across all the different distribution parameters and sample sizes

IV. Conclusion

In order to examine the impact of non-normal data, the parameter values of Weibull distribution were specified as (1, 1), (1, 2), (2, 1), and (2, 2) corresponding to (shape, scale) at different sample sizes of 25, 50, 75 and 100. These parameters of Weibull distributions are specified such that the effects of the tail behaviour on process capability could be examined. When the Weibull shape parameter is equal to 1, Weibull distribution reduces to Exponential distribution. Hence, this study covers all the Exponential family distributions as well.

Conclusively, from our results and findings, the Gini Mean difference based approach is the best among three methods in estimating process capability in skewed (non-normal) situations. In general, methods involving transformation seem more burdensome in terms of calculation, though it provide estimates of PCIs that truly reflect the capability of the process when there is low symmetry as in Weibull (2, 2).

References Références Referencias

- 1. Anis, M.Z. (2008). Basic Process Capability Indices: An Expository Review, International Statistical Review, 76(3), pp.347-367.
- Bordignon, S and Scagliarini, M. (2002). Statistical Analysis of Process Capability Indices with Measurement Errors. *Quality and Reliability Engineering International*, 18(4), pp.321–332.

- 3. Chang, Y.S., Choi, I.S. and Bai, D.S (2002). Process capability indices for skewed populations, *Quality and Reliability Engineering International*, 18(5), pp. 383–393.
- Chen, J. P. (2000). Re-evaluating the Process Capability Indices for Nonnormal Distributions. *International Journal of Production Research*, 38 (6), pp. 1311–1324.
- Chen, K.S., Huang, M.L and Li, R.K. (2001). Process Capability Analysis for an Entire Product, *International Journal of Production Research*, 39(17), pp. 4077– 4087.

 $\mathbf{N}_{\mathrm{otes}}$

- Ding, J. (2004). A Method of Estimating the Process Capability Index from the First Moments of Non-normal Data, *Quality and Reliability Engineering International*, 20(8) pp. 787–805.
- 7. Golafshani, N. (2003). Understanding Reliability and Validity in Qualitative Research, *The Qualitative Report*, 8(4) pp.597–607.
- 8. Hoerl, R.W and Snee, R. D (2010). Statistical Thinking and Methods in Quality Improvement: A Look to the Futu re, *Quality Engineering*, 22 (3), pp.119-129.
- 9. Hoerl, R.W and Snee, R. D. (2010). Flexible Process Capability Indices *The American Statistician*, 64(1), pp.10-14.
- 10. Kotz, S and Johnson, N.L (1993). *Process Capability Indices.* 2nd Ed. Chapman & Hall, Suffolk.
- Kotz, S and Johnson, N. L. (2002). Process Capability Indices: A review, Journal of Quality Technology, 34(1), pp.2–53.
- Lovelace, C. R and Swain, J. J (2009). Process Capability Analysis Methodologies for Zero-Bound and Non-normal Process Data, *Quality Engineering*, 21(2), pp.190–202
- McCormack Jr, D.W, Harris, I.R, Hurwitz, A.M and Spagon, P.D. (2000). Capability Indices for Non-Normal Data, *Quality Engineering*, 12(4), pp.489–495.
- 14. Montgomery, D. C and Runger, G. C. (2009). Applied Statistics and Probability for Engineers.3Ed. John Wiley & Sons, New York.
- 15. Spiring, F., Leung, B., Cheng, S and Yeung, A (2003). A Bibliography of Process Capability Papers. Quality and Reliability Engineering International, 19(5), pp. 445-460.
- 16. Spiring, F.A. (1995). Process Capability: A Total Quality Management Tool. Total Quality Management & Business Excellence, 6(1) pp. 21–34.
- Vännman, K and Albing, M. (2007). Process Capability Indices for One-Sided Specification Intervals and Skewed Distributions, *Quality and Reliability Engineering International*, 23(6) pp.755–765.
- Wu, C. W, Pearn, W. L and Kotz, S (2009). An Overview of Theory and Practice on Process Capability Indices for Quality Assurance, *International Journal of Production Economics*, 117(2), pp.338–359.
- Wu, H. H and Swain, J. J (2009). A Monte Carlo Comparison of Capability Indices when Processes are Non-normally Distributed. *Quality and Reliability Engineering International*, 17(3), pp. 219–231.
- 20. Yum, B.J.and Kim, K.W (2010). A Bibliography of the Literature on Process Capability Indices: 2000–2009, Quality and Reliability Engineering International, 27(3), pp.251-268.
- 21. Yitzhaki, S (2010). Gini's mean difference: A superior measure of variability for non-normal distributions, *Metron*, 61(2), pp. 285-316.

© 2019 Global Journals