

Two-Dimensional Image of Seismic Refraction Tomography and Electrical Resistivity Tomography Survey in a Geophysical Proposed Test Site at Shika, Ahmadu Bello University Nigeria

By Daniel Eshimiakhe, Raimi Jimoh & Zainab Musa

Ahmadu Bello University

Abstract- Due to the growing and advancement in technology being applied in geophysics, it is of importance that a geophysical test site center be established for calibration, training and demonstration of such equipment. An integrated geophysical survey of the area was carried out with the aim of characterizing the subsurface structures and lithology of the area. Thereafter, different types of objects that respond to all geophysical techniques will be buried at different depths in the site. Seismic refraction and electrical resistivity tomography was used, using both the seistronix RAS 24 seismograph and SAS 4000 ABEM Terameter equipment. A total of five profiles were taken at a total length of 300 m and an inter-profile spacing of 45 m. The results of this survey in correlation with borehole data revealed three distinct layers; overburden, weathered basement and fresh basement. The overburden consist of the top soil and lateritic clay, averaging a depth of 3-6 m and having a seismic velocity of 85 m/s – 300 m/s. Underneath the overburden is the weathered basement, consisting of brownish fine to medium grained coarse sand, gravel and some disintegrated schistose material, having a seismic velocity of 583 m/s – 4834 m/s. The depth to the third layer (fresh basement) suggested less compact subsurface, a close examination of the velocities with depth shows higher velocities at deeper depths.

GJSFR-H Classification: FOR Code: 040403

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Two-Dimensional Image of Seismic Refraction Tomography and Electrical Resistivity Tomography Survey in a Geophysical Proposed Test Site at Shika, Ahmadu Bello University Nigeria

Daniel Eshimiakhe^a, Raimi Jimoh^a & Zainab Musa^a

Abstract- Due to the growing and advancement in technology being applied in geophysics, it is of importance that a geophysical test site center be established for calibration, training and demonstration of such equipment. An integrated geophysical survey of the area was carried out with the aim of characterizing the subsurface structures and lithology of the area. Thereafter, different types of objects that respond to all geophysical techniques will be buried at different depths in the site. Seismic refraction and electrical resistivity tomography was used, using both the seistrionix RAS 24 seismograph and SAS 4000 ABEM Terameter equipment. A total of five profiles were taken at a total length of 300 m and an inter-profile spacing of 45 m. The results of this survey in correlation with borehole data revealed three distinct layers; overburden, weathered basement and fresh basement. The overburden consist of the top soil and lateritic clay, averaging a depth of 3-6 m and having a seismic velocity of 85 m/s – 300 m/s. Underneath the overburden is the weathered basement, consisting of brownish fine to medium grained coarse sand, gravel and some disintegrated schistose material, having a seismic velocity of 583 m/s – 4834 m/s. The depth to the third layer (fresh basement) suggested less compact subsurface, a close examination of the velocities with depth shows higher velocities at deeper depths.

I. INTRODUCTION

Geophysical test sites are very important in carrying out training, demonstrations, calibration and research for many aspects of shallow geophysical surveys. Such sites are found in some parts of the world, such as Leicester University Onatoria; where field test of Scintrex products are carried out. In Nigeria, no such site exist, however few academic geophysics programs provide field schools because of limited equipment, lack of interpretation software, expense and liability issues. These constraints mean many students are only briefly exposed to geophysical field work in a show-and-tell type of exercise and many do not have experience with the full workflow of a geophysical survey. This led to the need to establish a

geophysical test site in Ahmadu Bello University Zaria, to serve the graduate students of geophysics. An integrated geophysical survey of the area is needed with the aim of characterizing the subsurface structures. Thereafter, different types of objects that respond to all geophysical techniques will be buried at different depths in the site.

The use of geophysical methods for investigating a site is increasingly becoming popular all over the world and has the possibility to give an image of the subsurface to the geologist and geotechnical engineers (Benson *et al.*, 1984; Goldstein, 2009; Benson & Yuhr, 2002).

In this respect, seismic refraction is the most efficient geophysical tool used increasingly in site investigation. It is widely applied in investigating the shallow subsurface conditions in sites such as roads, tunnels, dams, quarries, hydroelectric power plants, subways, nuclear power plants, bridges and many other purposes (Sjogren & Sandberg, 1979; Dutta, 1984; Kilty *et al.*; 1986). Particularly, when in conjunction with the exploratory drill, significant information about the subsurface layers in terms of velocities, thickness and water saturation as well as elastic properties can be obtained. Also, geoelectric resistivity imaging has also been used in many studies in site investigation for civil engineering (Aizebeokhai, 2010; Yilmaz, 2011; Coşkun, 2012). In the resistivity methods, artificially generated electric current are driven into the ground. Any variation in subsurface resistivity (conductivity) alters the current flow patterns which in turns affect the distribution of electric potential. The resulting potential differences established are measured at the surface. Any variations observed from the pattern of potential differences expected from uniform earth are deviations from the uniform earth.

Both the seismic refraction and resistivity survey were carried out to investigate the shallow subsurface condition under the investigated site. This is to give a clear picture of the subsurface structures before a target object is buried in the site.

Author a: Department of Physics, Ahmadu Bello University, Zaria Kaduna state. e-mail: eshimiakhedaniel@yahoo.com

Author p: Federal College of Education, Zaria Kaduna state.

The literature gives many investigations employing several geophysical methods together, such as seismic, GPR, and ERT (Gaffney *et al.*, 2004; Leucci, 2004; Lascano *et al.*, 2003; Murdie, 2003).

II. LOCATION AND GEOLOGY OF THE STUDY AREA

The study area which is part of Ahmadu Bello University farm is situated in Shika, along Zaria-Funtua road, north of Ahmadu Bello University main campus. It lies between latitudes 11° 12' 12"N and 11° 11' 28"N and longitudes 07° 35' 42"E and 07° 35' 34"E.

The study area belongs to the Nigeria Basement Complex which according to McCurry (1973), is composed of four distinct rock types.

The rocks typically found within the basement complex include gneisses, migmatites, metasediments and some intercalation of amphibolites. The rocks of the basement complex occupy more than 50% of the total land surface of Nigeria. The basement complexes accommodate the metasediments and are made up of gneisses. Exposures are scanty and highly weathered. The rock types are biotite, gneisses, granite gneisses and in parts with subordinate migmatites. The contact between the gneisses and metasediments are gradational, Dahomeyan-Birimian in age (McCurry, 1970).

The Zaria crystalline rocks are part of the Nigerian Basement Complex. Oyawoye (1964) has shown that there is a structural relationship between this Basement Complex and the rest of the West African

basement. This is partly due to the fact that the whole region was involved in a single set of orogenic episode, the Pan African orogeny, which left an imprint of structural similarity upon the rock units.

Granitic intrusions form a suite of batholiths (the Zaria Batholiths), part of which outcrops as the *Kufena Hill*. The gneisses are found as small belts within the granite intrusions, and are also found east and west of the batholiths. The biotite gneiss extends westwards to form a gradational boundary with the schist belt. The gneiss continues eastwards to some extent and is occasionally broken up by the Older Granite (McCurry, 1970). The Older Granite intrusion is supposed to have been formed at the bottom of a fold mountain belt (Wright and McCurry, 1970).

The thrusting imposed on the basement complex during the Pan African Orogeny movement is believed to have brought together rocks of different ages with different structural and metamorphic styles (Grant, 1969). The metasediment probably belongs to the sedimentary and granite facies that were formed in a geosynclinal trough which had earlier developed at the end of the Pan African Orogeny (Tokarski, 1972). During the Pan African Orogeny, the sediments and igneous material, together with the former metamorphosed basement rocks behaved as one tectonic unit. Some of these metamorphosed rocks became assimilated into the granite intrusions that accompanied the last orogeny (Grant, 1969). The study area is completely underlain by the basement rocks which form part of the Paleozoic basement complex of Nigeria (Figure 1).

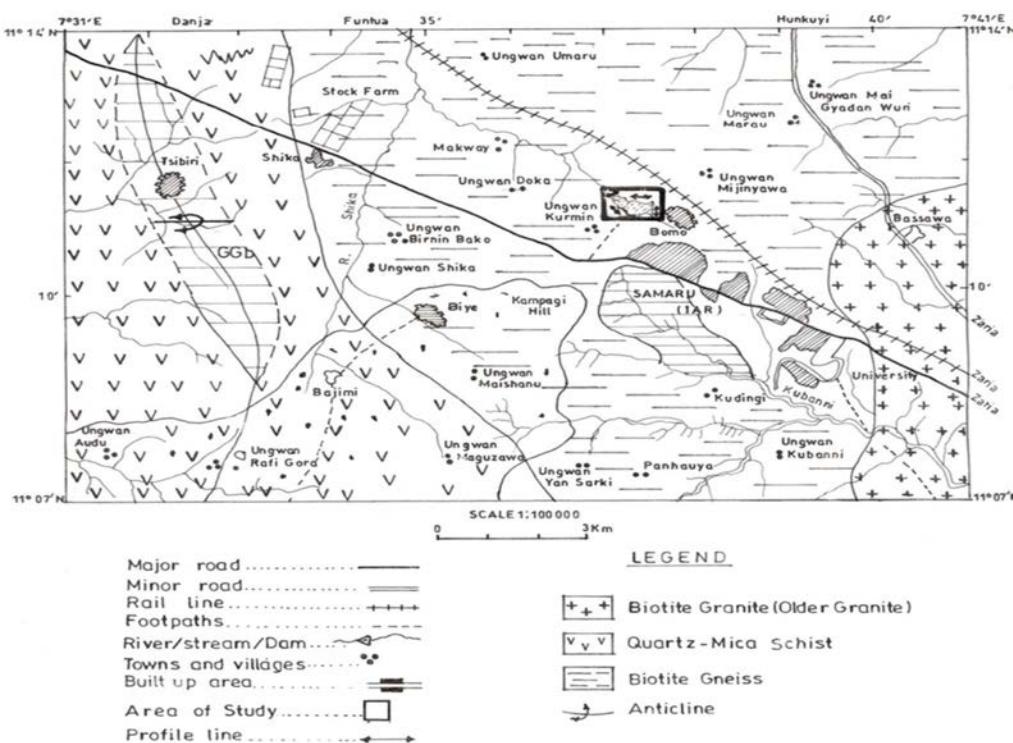


Figure 1: Geological Map of Shika and its Surrounding showing the Study Area (adapted from Ojo *et al.*, 2013)

III. ELECTRICAL RESISTIVITY TOMOGRAPHY

In the E.R.T. method, the distribution of the electrical resistivity of the subsoil is obtained by injecting electrical current (by the current electrodes) into the ground and measuring the potential difference (potential electrodes) at two determined points of the subsurface. The apparent resistivity values depend on the true resistivity distribution. The true distribution in the investigated medium can be estimated by an inversion procedure based on the minimization of a suitable function (Dey & Morrison, 1979).

This function is generally the sum of the squared difference between measured and calculated apparent resistivities. The investigated medium is discretized in a 2D (or 3D) grid of cells, where each cell is assigned an initial resistivity value. A finite-difference (Dey & Morrison, 1979) or finite-element (Silvester & Ferrari, 1990) procedure computes the predicted apparent resistivity at the surface. The solution to the problem, as is well known, is not unique. For the same measured data set, there is wide range of models that can give rise to the same calculated apparent resistivity values. To narrow down the range of possible models, normally some assumptions are made concerning the nature of the subsurface (i.e. geology of the subsurface, whether the subsurface bodies are expected to have

gradational or sharp boundaries) that can be incorporated into the inversion subroutine. The current method o solution minimizes the difference between measured and calculated apparent resistivities using the smoothness-constrained inversion formulation, which constrains the change in the model resistivity values to become smooth (Loke & Barker, 1996; Loke, 2001). The “smoothness-constrained robust inversion” method (Loke 2001) has proved to be much more useful when the subsurface bodies have sharp boundaries (Loke, 2001).

a) ERT Measurements

The ERT measurements were carried out along 5 parallel profiles oriented approximately N-S (Figure. 2). The profiles were separated by 10 m inter-profile spacing.

Apparent resistivity data were collected using the SAS 4000 terrameter resistivity-meter from ABEM instruments in multi-electrode configuration.

The distance between profiles was m and a total of 24 electrodes spaced at 1-m intervals were employed. Data were collected using the dipole-dipole array (Figure 2). The dipole-dipole array was chosen because, as is well known, it is very sensitive to horizontal changes in resistivity, and is therefore suitable for mapping vertical structures (Loke, 2001).

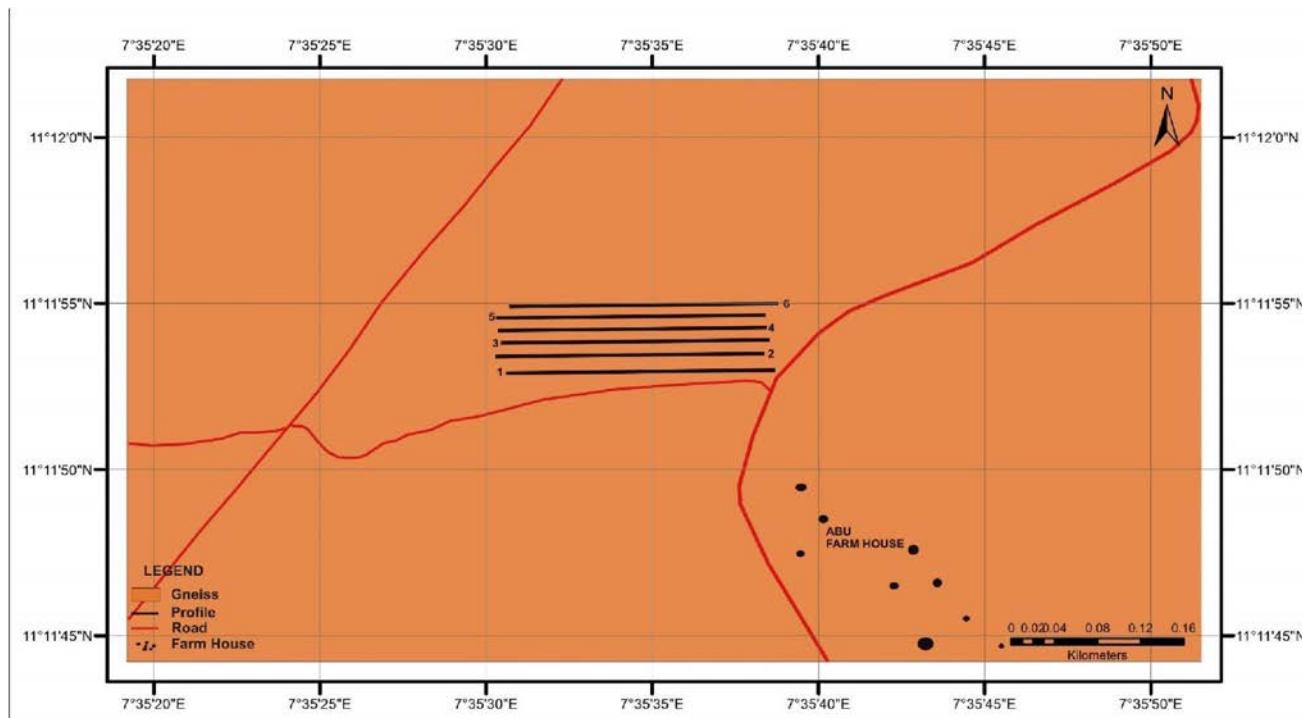


Figure 2: Survey area showing the profile layout

b) ERT Data Processing and Results

The robust inversion scheme was used in order to obtain an image of the true resistivity distribution as a function of depth. The robust inversion method (Loke, 2001) minimizes the absolute changes (l1-norm) in the

model resistivity values (Loke, 2001). All dipole-dipole inverted resistivity sections produced low RMS errors (<3%). The Res2dinv software (Loke, 2001) was used to invert all 2D data sets. Figure 3-7 gives the inverted section relating to each of the profiles taken.

Considering all profiles, the lithology of the area was observed in correlation to a borehole data within the study area. Each profile consist of three distinct layer, the overburden, weathered and fresh basement. The top layer (overburden) is occupied by earth materials interpreted as lateritic soil with resistivity values ranging

from 370 Ωm – 750 Ωm with depth approximately ranging 1 m-7 m. underneath this layer is the weathered basement, with depth range of 6 m-23 m. The resistivity of this layer ranges between 56 Ωm – 370 Ωm and can be interpreted as fine brownish gravel and clay materials.

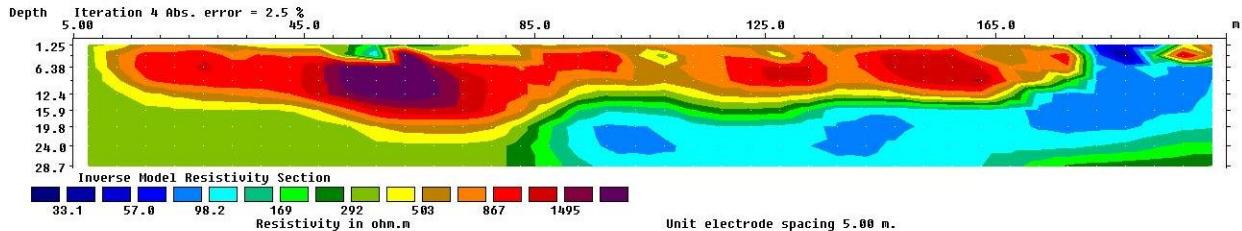


Figure 3: 2D inversion of profile 1.

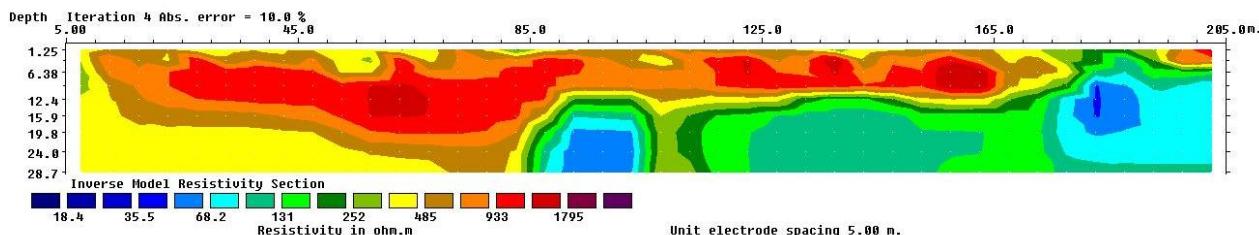


Figure 4: 2D inversion of profile 2.

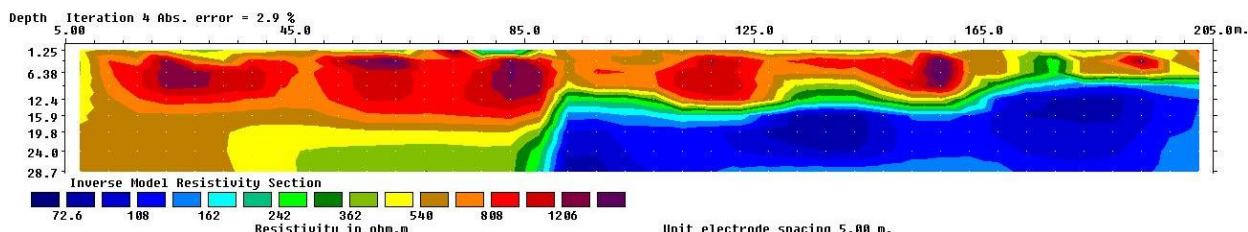


Figure 5: 2D inversion of profile 3.

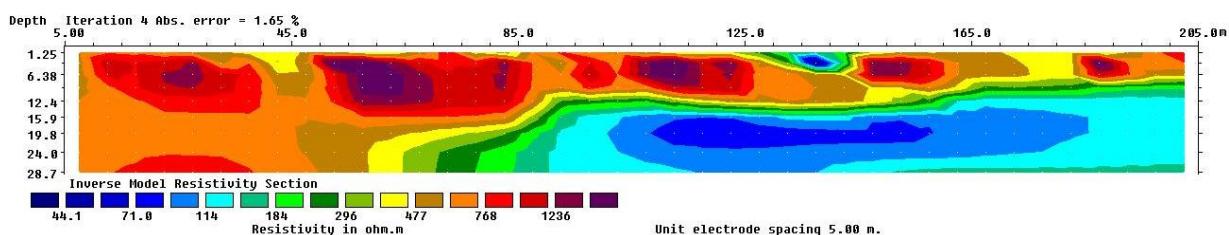


Figure 6: 2D inversion of profile 4.

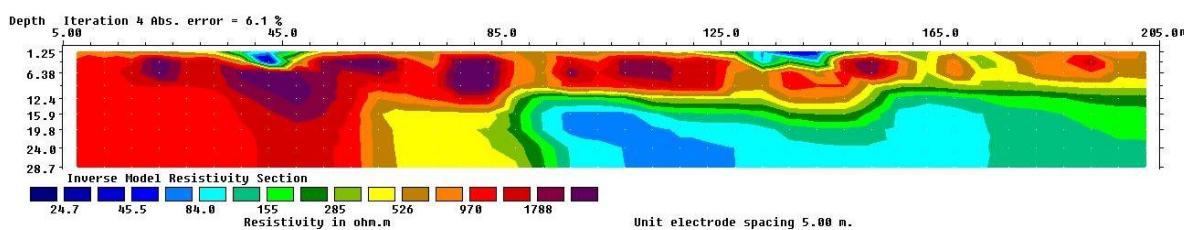


Figure 7: 2D inversion of profile 5.

IV. SEISMIC REFRACTION TOMOGRAPHY

In the seismic refraction method, the seismic waves, created by artificial sources such as a hammer, propagate through the medium and are refracted at interfaces, where the seismic velocity or density changes. Geophones laid on a single line record the waves returning to the surface after travelling different distances through the ground. By measuring the travel time between the break and the recording of a seismic signal, the seismic velocity in the subsurface and the depth of the interfaces may be inferred. Conventional analysis of seismic refraction data sets makes simplified assumptions about the velocity structure that conflict with observed heterogeneity, lateral discontinuities, and gradients (Parasnis, 1997). Refraction tomography is designed to resolve velocity gradients and lateral velocity changes, enabling it to be applied in settings where traditional techniques fail.

Seismic data were collected in a rectangular area of 15 m by 12 m, along 2 m spaced parallel profiles oriented approximately N-S, using 24 geophones (14 Hz) at 5 m intervals. A seistrionix RAS-24 seismograph instruments were used. The acquisition was achieved using a sledgehammer striking a steel plate as an energy source and a shot-point for each geophone position. Data were stacked at least three times for each source.

a) Seismic Refraction Data Processing and Interpretation

For interpretation of refraction data five shots were selected on the seismic line: one in the middle, two

near shots at the edges of the line, and two on geophones number 4 and 12, respectively. Seismic data was processed using "Seisimager" 2D software. This software employs the intercept time analysis, tomography as well as raytracing for interpretation processing. The very first thing was to download the data from seistrionix RAS-24 seismograph by connecting via a local area network cable to the computer. The data were now converted into seisimager format, using the software for the interpretation of the raw data. A value of 5 was set for the "receiver start" in the import data menu, 300 for the "receiver end", 0 for the shot position and input format "SEG2" was chosen. A band pass frequency of 15 Hz low cutoff and 300Hz high cutoff were applied to take out the low and high frequency noise. These cutoff frequency were chosen considering the range of frequencies (5 Hz-50 Hz) and observing the seismogram. In addition, a manual gain filter was also performed on the band filtered data. The gain function helped in revealing positions of the first arrivals much better (Sandmeier, 2008). Figure 8-11 shows the seismic tomography of each profile line.

The results of each profile indicates that the subsurface structure consists of three seismic layers; the first layer is unsaturated overburden with seismic velocity range from 100 to 700 m/s and depth varies from 3 to 6 m. The second layer is weathered basement with velocity range from 700 to 2100 m/s and maximum depth of about 30 m. The third layer is fresh basement with seismic velocity range from 2100 to 3200 m/s and maximum depth greater than 45 m.

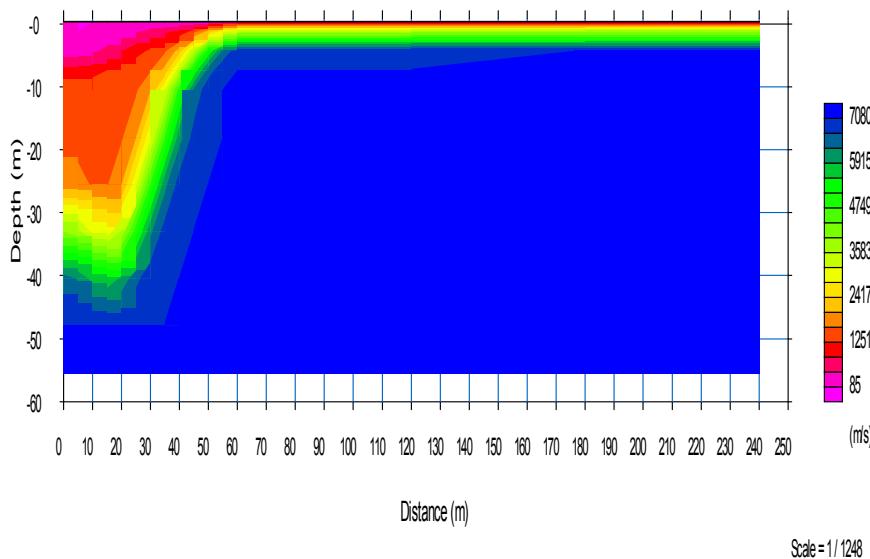


Figure 8: Tomographic section of profile 1

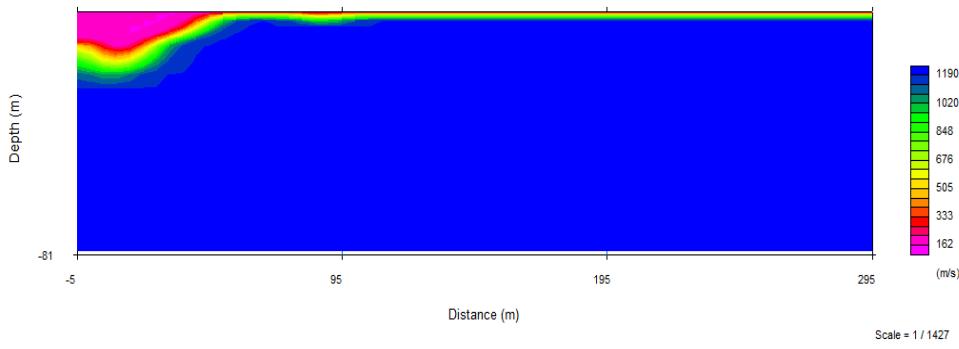


Figure 9: Tomographic section of profile 2

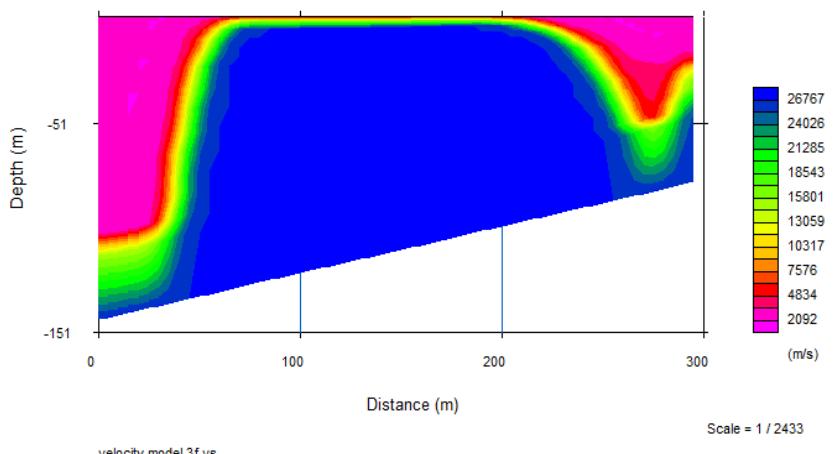


Figure 10: Tomographic section of profile 3

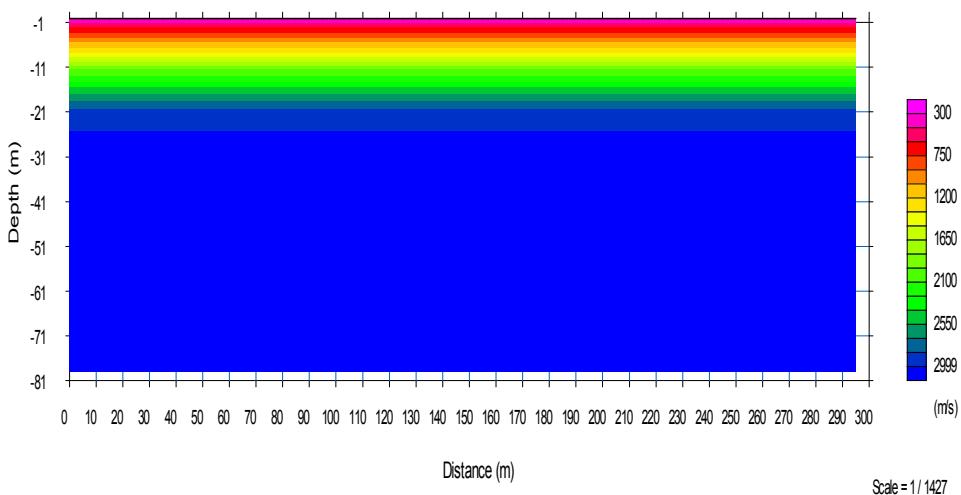


Figure 11: Tomographic section of profile 4

V. DISCUSSION OF RESULTS

In order to map the lithological structures at the proposed geophysical field test site (at Ahmadu Bello University Nigeria), electrical resistivity tomography (ERT) and seismic-refraction tomography methods were used. The results highlighted the reliability of the integrated data interpretation based on two physical parameters with different resolution and sensibility. The integrated interpretation of seismic refraction and

resistivity tomography makes it possible to reduce ambiguity. In fact relatively high resistivity and high velocity anomalies could be due to more compact material.

The field data interpretation showed three geological layer over the entire study area; the top layer, weathered basement layer, and fresh basement layer. The wide range of velocity values may be attributed to the heterogeneous nature of the top soil, due to

collective effects of long periods of erosions and weathering suffered by rocks, which has led to some rock exposures. Due to the compact nature and the heterogeneous nature of the weathered layer, it shows abnormally high velocities compared to the velocities of the bedrock in a basement complex.

The seismic responses of the top layer along all the profiles are characteristics of topsoil and lateritic clay with a depth of 0-5 m for seismic profile 1 (85 m/s and 300 Ω m resistivity), 0- 6 m for seismic line 2 (300 m/s velocity and 350 Ω m resistivity), 0- 8 m for seismic line 3 and 0- 6 m for seismic line 4 (300 m/s velocity and 400 Ω m resistivity). The velocity and resistivity difference between the profiles suggest that the top soil for profile 2 and 4 is a little compact than that of profile 1 and 3.

The seismic responses of the weathered layer along seismic profile 1 to 4 are characteristic of clay, gravel and schist. The variations in the seismic velocity responses of the weathered basement at a depth of 11 - 20 m, suggest the heterogeneous nature of the layer. The seismic velocity of the weathered basement recorded along this profiles are composed of consolidated earth materials. The seismic line 1 has a velocity of 1250 m/s – 2000 m/s (100 Ω m resistivity), seismic line 2 has a velocity of 800 m/s – 1150 m/s (200 Ω m resistivity), line 3 has a velocity of 4000 m/s – 4834 m/s (96 Ω m resistivity) and seismic line 4 has a velocity of 1250 m/s – 2000 m/s (150 Ω m). As can be seen, the high velocity in seismic profile 1, 3 and 4 can be attributed to the influence of ground water. The depth of the third layer (fresh basement) on seismic line 1 and 4, suggest less compact subsurface, a close examination of the velocities with depth shows higher velocities at deeper depths.

VI. CONCLUSION

Seismic refraction method provides one of the effective means of environmental studies in geophysics. The physical property; p-wave velocity, helps in making reliable inferences about the nature and lithology of the subsurface. It is obvious from this research that there are three geological layers over the entire study area. The overburden has two lithologic units' i.e. top soil (having an average thickness of 5 m) and the lateritic clay (3.5 m). The first two layers are resting on a basement structure made up of predominantly weathered basement rock, which has an average thickness of 20 m. Generally, the subsurface is made up of clay, sandy clay, fairly weathered granite and schist, laterite and dry loose sand.

ACKNOWLEDGMENT

The authors would like to thank Prof. Kola Lawal, department of Physics, Ahmadu Bello University Zaria Nigeria, for his field contribution.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Aizebeokhai, A. P. (2010). 2d and 3d geoelectrical resistivity imaging: theory and field design. *Scientific Research and Essays*, 5(23):3592–3605.
2. Benson, R., Glaccum R.A, and Noel M.R. 1982. *Geophysical Techniques for Sensing Buried Wastes and Waste Migration*. Environmental Monitoring Systems Laboratory, Office of Research and Development. U.S. Environmental Protection Agency. Las Vegas, Nevada.
3. Benson, R. and Yuhr, L. (2002). Site characterization strategies: old and new. In *Second Annual Conference on the Application of Geophysical and NDT Methodologies to Transportation Facilities*, Federal Highway Ad-ministration, April, pages 15–19.
4. Coskun, N. (2012). The effectiveness of electrical resistivity imaging in sinkhole investigations. *International Journal of Physical Sciences*, 7(15):2398–2405.
5. Dey A., Morrison H.F. Resistivity modelling for arbitrarily shaped three-dimensional shaped structures, *Geophysics* 44 (1979) 753e780.
6. Dutta, N. (1984). Seismic refraction method to study the foundation rock of a dam. *Geophysical prospecting*, 32(6):1103–1110.
7. Gaffney V., Patterson H., Piro S., Goodman D., Nishimura Y. Multi-methodological approach to study and characterize forum novum (Vescovio, Central Italy), *Archaeological Prospection* 11 (2004) 201e212.
8. Grant, N.K., (1969). The late Precambrian to early Palaeozoic Pan-African orogeny in Ghana, Togo, Dahomey, and Nigeria. *Bull. Geology Society of America*, 80: 45—56.
9. Goldstein, N. E. (2009). Expedited site characterization geophysics: geophysical methods and tools for site characterization.
10. Kilty, K. T., Norris, R. A., McLamore, W. R., Hennon, K. P., and Euge, K. (1986). Seismic refraction at horse mesa dam: An application of the generalized reciprocal method. *Geophysics*, 51(2):266–275.
11. Lascano E., Osella A., De La Vega M., Buscaglia S., Senatore X., Lanata J.L. Geophysical prospection at Floridablanca archaeological site, San Julian Bay, Argentina, *Archaeological Prospection* 10 (2003) 175e192.
12. Leucci G., I metodi elettromagnetico impulsivo, elettrico e sismico tomografico a rifrazione per la risoluzione di problematiche ambientali: sviluppi metodologici e applicazioni, PhD Thesis in Environmental Geophysics, 2004.
13. Loke M.H., Barker R.D. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method, *Geophysical Prospecting* 44 (1996) 131e152.

14. Loke M.H. Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys, RES2DINV Manual, IRIS Instruments, www.irisinstruments.com, 2001.
15. McCurry, P. (1970). The Geology of the Zaria sheet 102 S.W. and its Region. Mortimore, M.J. (Ed.). Department of Geography Occasional Paper No. 4, Ahmadu Bello University, Zaria. pg 7.
16. Murdie R.E., Goult N.R., White R.H., Barratt G., Cassidy N.J., Gaffney V. Comparison of geophysical techniques for investigating an infilled ditch at Bury Walls Hill Fort, Shropshire, Archaeological Prospection 10 (2003) 256e276.
17. Oyawoye, M. O. (1964). Geology of the Nigerian Basement Complex. *Journal of Nigeria Mining, Geological and Metallurgical Society*. 5: 87-102.
18. Parasnis D.E. Principles of Applied Geophysics, fifth ed., Chapman and Hall, London, 1997. Sandmeier, J.K (2008). Windows ^Dc 9x/NT/2000/XP-program for the processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data.
19. Silvester P.P., Ferrari R.L. Finite Elements for Electrical Engineers, second ed., Cambridge University Press, Cambridge, 1990.
20. Sjøgren, B., Sandberg, J. (1979). Seismic classification of rock mass qualities. *Geophysical Prospecting*, 27(2):409–442.
21. Tokarski, A. (1972). Heterogeneous Terrace Arrangement West of Ahmadu Bello University. Occasional paper, No. 1, Department of Geology, Ahmadu Bello University, Zaria. p 6.
22. Wright, J. B. and McCurry, P. (1970). The geology of Nigeria Sheet 102 SW, Zaria and its regions. Edited by M.J. Moretimore. Department of Geography, Occasional Paper, No. 4, Ahmadu Bello University, Zaria.
23. Yilmaz, S. (2011). A case study of the application of electrical resistivity imaging for investigation of a landslide along the highway. *Int J Phys Sci*, 6(24):5843–5849.