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. [INTRODUCTION

Functional calculus for thesequence of operators 4; on a Banach space X is a
“method” of associating a closed sequence of operators f;(4;) to allf, = fi(z) taken
from a Set of functions in such a way that formulae valid for the functions turn into
valid formulae for the operators upon replacing the independent variables Z; by A4;. A
common way to establish such a calculus is to start with an algebra of “good” functions
f;i where definitions of f;(4;) as bounded sequence of operators are more or less
straightforward, and then extend this “primary” or “elementary calculus” by means of
multiplicative in[l,Chapter 1] and [2]. It is then natural to ask which of the so
constructed closed sequence of operators fj(4;) are actually bounded, a question
particularly relevant in applications, e.g., to evolution equations,see, [3,4].

The latter question links functional calculus theory to the theory of vector-valued
singular integrals, best seen in the theory of sectorial operators with a bounded H® -
calculus, see, [5]. It appears there that in order to obtain nontrivial results the
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underlying Banach space must allow for singular integrals to converge, i.e., be a UMD
space. Furthermore, even if the Banach space is a Hilbert space, it turns out that
simple resolvent estimates are not enough for the boundedness of an H* -calculus.
However, some of the central positive results in that theory — show that the
presence of a Cy-group of operators does warrant the boundedness of certain H* -calculi.
In [6], the underlying structure of these results was brought to light, namely a

transference principle, a factorization of the sequence of operators f;(4;) in terms of

vector-valued Fourier multiplier operators. Finally, in [7], it was shown that C; -
semigroups also allow for such transference principles.

Markus Haase and Jan Rozendaal [8] developed this approach further. They
apply the general form of the transference principle for semigroups given in [9] to obtain

bounded functional calculi for the sequence of generators of C; -semigroups. These
results, in theorems 3.3, 3.7, and 4.3,are proved for general Banach spaces. However,

they make use of the analytic L'*¢(R; X) Fourier multiplier algebra, and hence are
useful only if the underlying Banach space has a geometry that allows for nontrivial
Fourier multiplier operators. In case X = H is a Hilbert space one, obtains particularly
nice results, which want to summarize here.

Theorem 1.1: Let —A; be the sequence of generators of bounded Cj—semigroups
(TV () er . on a Hilbert space H with M:= sup;eg, . Then the following assertions hold.

(a) For ;<0 and f;€H”(R,,) one has f; (A)T/ (14€) € L (H ) with

—~
—_
~—

D H@)T Aol <c+em Y |f lie (v, )
j ) ]

where ¢(1+¢€ ) = O(Jlog(1+€)]) as(1 +€) VO, and c(1+¢€) = O(1) as (1 + &) — °°.
(b) For w;<0<f+ ¢ and A € C with Re ;<0 there is £ = -1 such that

2. 5@ @& =N <@+ am? ) gl g, ) ?
j J J

For all f,€H”(R,;). In particular, dom(Aj[Hg) CSdom(f; (4;)).
(¢) 4 has strong m-bounded H® -calculus of type 0 for each m € N.

When X is a UMD space, one can derive similar results, we extend the Hilbert
space results to general Banach spaces by replacing the assumption of boundedness of

the semigroup by its y; -boundedness, a concept strongly put forward by Kalton and
Weis [9]. In particular, Theorem 1.1 holds true for y; -bounded semigroups on arbitrary
Banach spaces with M being the y; -bound of the semigroups.

Stress the fact that in contrast to [1], where sectorial operators and, accordingly,
functional calculi on sectors, were considered, deals with general sequence of semigroup
generators and with functional calculi on half-planes. The abstract theory of
(holomorphic) functional calculi on half-planes can be found in [2 corollaries 6.5and 7.1]
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The starting point of the present work was the article [10] by Hans Zwart. There

is shown that one has an estimate (1) with c(1+¢&)=0((1+¢&)"V?) as (1+¢) N 0.
(The case f+¢&>1/2) in (2) is an immediate consequence, however, that case is
essentially trivial)

In [7] and its sequal paper [11], the functional calculus for a semigroup generator
is constructed in a rather unconventional way using ideas from systems theory.
However, a closer inspection reveals that transference is present there as well, hidden in
the very construction of the functional calculus.

a) Notation and terminology
Write N:= {1, 2, . . .} for the natural numbers and R, := [0, ) for the
nonnegative reals.The letters X and Y are used to denote Banach spaces over the

complex number field. The space of bounded linear operators on X is denoted by £(X).

For a closed sequence of operators4d; on X their domainsare denoted by dom(4;) and

their ranges by ran(4;). The spectrums of A; are 0(4;) and the resolvent sets p(4;): =
C “ o(4;). For all z€p(4;) the operatorsR(Z;, 4;) := (z — A;)"'€ L (X) is the resolvents
of 4; at z.

For ¢ > 1, L'*® (R; X) is the Bochner space of equivalence classes of X - valued

(14-¢) —Lebesgue integrable functions on R.The HOlder conjugate of (1+4-¢) is (:i) The

norm on L'*¢(R, X)is usually denoted by/||-|l;4¢-

For w;€ R and z€C, let e, (z) := e“/%. By M(R) (resp. M(R, )), denote the
space of complex-valued Borel measures on R (resp. R,) with the total variation norm,
and writeM,, (R, ) for the distributions @ on R, of the form w/ (ds) = e“ v/ (ds) for

some v/ € M(R,). Then M,;(R.) is a Banach algebra under convolution with the series

of norms
Z“Mj ”ij (Ry) - Z ||e_wf'uj ||M(R+)
Ji ]

For /e M,, (R,), let supp(u/) be the topological support of €_w, W, functions g/
such that e_,, g/ €L} (R,) are usually identified with its associated measures /€ M, (R,)

given by p/(ds) =g/ (s) ds. Functions and measures defined on R, are identified with
their extensions to R by setting them equal to zero outside R,.

For an open subset Q # @ of C, let H*(Q) be the space of bounded holomorphic
functions on Q, until Banach algebra concerning to the series of norms

Dl = D 1l ey = suPsen D @] € H (@)
J J J

Consider the case where Q is equal to a right half-planes
Ry, = {Z]- € (C|Re(zj) > wj}
for some w;€ R (we write C, for Ry).
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For convenience abbreviate the coordinate functions Z; v z simply by the
letters z,. Under this convention, f; = f; (z) for functions f; defined on some domain
Qcc.

The Fourier transform of an X-valued tempered distribution ® on R is denoted
by FO. If W eM(R) then F,€L” (R) are given by

D FO= Y et wEs  Een
j R J

For w;€ R and p/€ M, (R, ), let WEH(R,,) N C(Ry,)),

> () =fmze-zf'5uf(ds) (5 €R,)
) 0 J

Be the Laplace—Stieltjes transforms of u/.

[I.  FOURIER MULTIPLIERS AND FUNCTIONAL CALCULUS

Discuss some of the concepts that will be used in what follows (see,e.g., [8]).

a) Fourier multipliers
Fix a Banach space X and let m €L*(R; £(X)) and € = 0. Then m is a bounded
L'*¢(R; X)-Fourier multiplier if there exists € >-1 such that

Th(g) =F (mFg) e @ 0 and > i (0|l =a+2) llgyll,,,
J 1+e J

for each X-valued Schwartz functions¢;. In this case, the mappings T,{l extends
uniquely to bounded sequence of operators on L1*¢(R; X) if e < © and on Cy(R; X) if
e = . Let ||m||M(1+g)(X) be the norms of the operators T,fl and let My,.(X) be the
unital Banach algebra of all bounded L'*¢(R; X)-Fourier multipliers, endowed with the
norm [l ., 00

For w€R and € = 0, we let

AME,, (ij) = {]; € H® (ij) If (w; + i) € MHS(X)} (3)

be the analytic L"(1+4¢€)(R; X)-Fourier multiplier algebras on R'(w’j ), endowed the
series of norms

Z”ﬁ ||AJ'M{(+£ - Z”ﬁ ||AJ'M€(1+£)(ij) - Z”E (w] * .)”M(l"'f)(x)
] ] ]

Here f; (w; + i) EL”(R) denotes the trace of the holomorphic functions f; on the
boundary 3Ra,}. = w; + iR. By classical Hardy space theories,
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f; (wj +is) = limg o, fi (a’)j + is) (4)

Exists for almost all s € R, with Z]-”ﬁ- (wj +1i -)||L00 (R):Zj”f} ||H00(Rw').
J

Remark 2.1: (Important!). To simplify notation sometimes omit the reference to the

Banach space X and write 4; M; (Rw].) instead of 4; M (Rw].), whenever it is convenient.
The spaces 4; M., (ij) are until Banach algebra, constructively embedded

in H® (ij), and A4; M (ij): A; MZ (ij) are contractively embedded in 4; M., (ij)

for alle > 0,

Need two lemmas about the analytic multiplier algebra.

Lemma 2.2: For every Banach space X, all (0 < & < ),

ZA]-M{(H (ij) ={f eH” (ij) | sups, o, z”ﬁ(d)j iy <
J J

With
Z”fj- ||A]_M{(+£(ij) = Supcb}->wj Z”f} (d)} +1i ')||M(1+S)(X)
] ]

for all f; € A4M{, . (Ra,)

Proof. Let w;€R, ;€ AiM;, . (R, ). For all ®;>w; and s €R,

J

A N fi(w; —ir)

The right-hand side is the series of the convolutions of ]j-(wj —i') and the
Poisson kernel

b — w;

Py _, (1) = L
o0 ) = 20T @ — w)D)

_1,

Since ): || P, =
2, | LA(R)

(@j—wj)

Zﬁ(d’j +1i) = Z”ﬁ(‘“f' AL =Z”ﬁ”A,-Mza+ )Ra))
. j j ) w}
j ]

M1+ X) J

The converse follows from (4) m
For p/ EM(R) and € > 0, let L#]-EIZ(L“"g (R; X)),

Li(f)=wxf, (fiel* R X)), (5)
be the convolution sequence of operators associated with u’.
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Lemma 2.3: For each w;€R the Laplace transform induces an isometric algebra
isomorphism from M, (R.) onto 4; M{C(ij): A M{ (R,). Moreover,

j
le“j”AjMi&g Ra)) z
]

J

L

o]
“ Nl aroxy)

for all u/ eM,;(R,), €20

Proof: The mappings u +— Ly w and fi— fi(- +w;) are isometric algebra

isomorphisms M,, (R,) — M(R,) and 4 My,.(R,;) — AiM14.(C,), respectively. Hence it

suffices to letw;= 0.The Fourier transform induces an isometric isomorphism from M(R)

onto My(X). If W/ eM(R,) and f; = @ € H*(C,) then fi(i) = Fu € My(X) with
. . ] - —_— . j

Z]”]j (i )||M1(X) ZJ”# ”M(]R+) Moreover, for € = 0,

D5 o = D supa,., < IFGEIF D, = suppy,, <o ) 10 8., = D ol gy,
j j Jj

J
If f; € AM;(C,) then f;(i-) = Fu/ for some p/ € M(R). An application of
Liouville’s theorem shows that supp(u/) € R., hence fi :[[j_ [ ]

b) Functional Calculus
Assume that we are familiar with the basic notions and results of the theory of

Co-semigroups as developed, e.g., in [5]
All Cy—semigroups T/ = (T/ (t))ter, on a Banach space X has the type (M, wj)
for some M = 1 and w; € R, which means that ||Z]- T/ (t) || <MY, e®"® for all t = 0.

The generators of T/ are the uniqueclosed sequence of operators —A4; such that

D 0+ 4) = f Y et @xdt (xeX)
J 0o J

for Re(4;) large. The Hille—Phillips (functional) calculus for A; are defined as follows.
Fix M =0 and (wj)o € R such that T/ has types(M,—(wj)O). For u/ EM(w],)O(IR{+)
defines Tlf]- € L(X) by

Z T, x = f T (Oxd (dt), (x € X) (6)
Jj 0o J

For f; = I € A M, (R(“’J')o) sets fj(4;):= T:j. The mappings f; +— fj(4;) is an
algebra homomorphism. In a second stepthe definitions of f;(4;) is extended to a larger
class of functions via regularization, i.e.,

fi (4) =el4) " €f)4)
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If there exists e EAle(R(wj) ) such that e(4;) 1is injective and
0
ef; € A M (R(wj) ) Then fj(4;) is closed and unbounded operator on X and the
0
definition of f;(4;) are independents of the choice of regularize. The following lemma

shows in particular that for w; <(w;)o the sequence of operators f;(4;) are defined for all
f; € H*(R,,;) by virtue of the regularizes e(z) = (Z = 4)™"

where Re(4;) <w;.
Lemma2.4:Let,b’+£> 4 € Cand w; , (wj)o € R, & = 0.Then
fi (z)(z — /1]-)_(!”'5) € AM, (R, ) - for all f; € H*R,

Proof: After shifting suppose that w; = 0. Sets hi(z):=f; (z)(z — %) ¢*9 for
z € C4. Then h;(i-) € L*(R) with

fillye
Zhj(i. f Z |f(152(|ﬁ+8) f Z” ”M (;C(;+g)
]

2 |is —

Hence h; = gl for some g/ € [3(R,). Then e—(wj)ogj € L'(R,) ande_, g (z) = h
(z + (w;)o ) for z; € C; . Lemma 2.3 yields h; € A M R, y, With

Zn Bl Znh( D] Z le-onotll 1o,

The Hille—Phillips calculus is an extension of the holomorphic functional calculus
for the sequence of operators of half-plane type discussed in [2]. The sequence operators

of A; are of the half-plane types (w;)o € R if 0(4;) € R(w;), with

supecvng, an 40| < o0,

for all >0

One can associate the sequence of operators fj(4;) € L(X) to certain elementary
functions via Cauchy integrals and regularize as above to extend the definitions to all
fi € H* (R,;). If —=A; generates C, -semigroups of types (M, —=(w;)o ) then A4; are of half-
plane types(w;)o, for w; <(wj)o,& >0 andf; € H* (ij) the definitions of f; (4;) via the

Hille—Phillips calculus and the half-plane calculus coincide.

Lemma 2.5: (Convergence Lemma). Let A; be densely defined sequence of operators of
half-plane types(w;)o € R on a Banach space X. Let w; <(w;)o and (fj);e; € H” (ij)
be satisfying the following conditions:

1) sup{|(f);(%)|| 7 € Ry, jET} < o0
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(2) (£);(4)) € L(X) for all j € J and sup; ¢ || (f;); (4) || < o3
(3) fi(z):= Limjg; f; (7 )exists for all z € Ry,
Then f; € H®(R,,), fi(4;) € L(X), () (4;) — f; (4;) strongly and

Notes

Let A; be the sequence of operators of half-plane types (w;)o and w; <(wj)o. For
a Banach algebra F of functions continuously embedded in H® (Ra,]_), say that A; has
bounded F -calculus if there exists a constant & -1 such that f; (4;) € L(X) with

Y| =a+a)lfl, foraf er (7)

The sequence of operators —4; generates a Cy-semigroups (T’ (t))ter, of types

(M, wy) if and only if - (4; + w;) generates the semigroups sequence of (e~ T () er .
of types (M, 0). The functional calculi for Ajand 4; + w; are linked by the simple

composition rules “f; (4; + w;) = f;(w; + % )(4;)". Henceforth we shall mainly consider
bounded semigroups; all results carry over to general semigroups by shifting.

[II. FUNCTINAL CALCULUS FOR SEMIGROUP (GENERATORS

Define the function n: (0, ) X (0, «) X [1, ] - R, by
1@ +e 1+ = inf {ul,, loilliclty <o = e ey onle o) ®)

The set on the right-hand side is not empty: choose for instance
1
l/)] = 1[0,t]e—(ﬁ+s) and Y = ?3_([;4_8). By Lemma A].,

nB+et,1+¢)=0(Jlog((B+ &)t) as (B + &)t — 0,for e > 0.

For the following result recall the definitions of the operators L ; from (5) and Tlf ;
from (6).

Proposition 3.1: Let (T (t))cer, be Co-semigroup of type (M, 0) on a Banach space X.
Lete 2 0, 1+¢, w;> 0 and / € M_,, (R,) with supp(W ) C [1+€, ). Then

Lew}- H‘J

ZTij SMZUZ(wj,1+£,1+£)
j j

> L(X) L(L1+s (X))

Proof: Factorizes Td ; as Td ;j=Po Ly, wol where
]

!

a) 1: X — L'¥(R; X) is given by

© 2019 Global Journals



Y; (=T (=s)x if s<0,

€ X
0 ifs>o0, &%

t(x)(s) = {

b) P : L'*¢(R; X) — X is given by

Y P = [ Y oOr @ ¢ e R D)
Ref ] Lie ]

c) Y; € L'**(R,) and ¢; € L= (R,) are such that y; * ¢; = e_w; on [1+&, ).
This is deduced that W = (W) = (pj)ewj /. Holder’s inequality then implies

>l Y lwll,,,
J

- Lewj U}

loj 1o
J ) ¢

L(L1+E(X)

and taking the infimum over all such ; and ¢; yields (9). |
Define, for a Banach space X, w; € R, and &> -1, the spaces

AM{te)a+e) (Ro)) = {15' € AM{ie (ij) 5 (z) = 0(9_(1+£)Re(z")) as |z | - °°}

end owed with the norms of 4; M{,, (ij).

Lemma 3.2: For every Banach space X, w; ER,1<e<o,and , €-1

AME L 5 e (ij) = 4M{i, (ij) Ne_(14e)H” (ij) = e_ (44 MLy ) (ij) (10)
. X . .
In particular, 4 M(14 ¢y (14¢) (Rw,) are closed ideal in 4; M(’§+ o) (Rw))-

Proof:  The first equality in (10) is «clear, and so are the inclusions
e_1+e)4 M1+ 5)(ij) C 4 M()gJr &),(1+¢) (ij ). Conversely, if  f; €AMqyy S)(ij n

e_+e)H” (R, ) then ey f; € AiM(14 ¢y (R,,), since

Z”e(lﬂ)(wﬁi')ﬁ (o +i -)||M(1+8)(X) N Ze(1+£)wj 15 (o + i.)||M(1+s)(X)
7 ]

Suppose that ((f;)n)nen € A Ma+ o) 1+e) (Rw].) converges to f; € AiM S)(ij).
The Maximum Principle implies

Z||e(1+e)(ﬁ)n”f1°°(zew.) - Z et ”(ﬁ)n””w("’wﬂ '
j S

J

Global ]()urna| of Science Frontier Research (F) Volume XIX Issue V Version I E Year 2019

hence (e(14¢)(fj)n)nen is Cauchy in H® (Ra,}_). Since it converges pointwise to e f;,

(].O) 1mphes f} S A} M(1+ €),(1+¢) (Rw}_). |
To prove the main result [8] of this section. Note that the union of the ideals

8. M.Haase, J.Rozendaal: Functional calculus for the of semigroup generators via
transference.

A Mgflﬂ)’(lﬂ)(ij) for e> -1 is densest in A M()L_ ¢)(Ry;) with respect to pointwise and
bounded convergence of sequences. If there was a single constant independent of € > —1

© 2019 Global Journals
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bounding the A]-M(X1 +e),1+e)(Ry;) - calculus for all, the Convergence Lemma would

imply that A; has bounded A4; M(Xl +e) (ij) -calculus, but this is known to be false in
general [1, Corollary 9.1.8].

Theorem 3.3: For each 0 < ¢ < oo, there exists a constant c¢;,, =0 such that the

following holds. Let —A; the sequence of generates C; -semigroups (T () ¢er . of type
(M, 0) on a Banach space X and let(1 + €), w;> 0. Then f;(4;) € L(X) and

. . 1 £
(C(1+2)MZZ|10g (wj(1+ &) ||]j-||Ang(l+£) ifw (1+ &) < min (1+ o’ 1+£)
Zﬁ(Aj) = 2] (1+¢) 1 £
- —w;(1+e . . ] ,
7 | 2M Ze j ||]j||Ang(1+s),sz](1+ e)>mm<1+g, 1+s)

J

for all f; € AjM()gH),(HS)(R_w],). In particular, 4; has bounded AjM(X1+g),(1+g)(R—wj) -
calculus.

Proof: First consider f; € AjMy 4 g)(R_wj). Let O(14¢) € M_w],(]R+) be the unit point
mass at &> —1. By Lemmas 3.2 and 2.3 there exists w/ €eM_, (R,) such that
fi = ecrol! =6a4q* . SinceSuyqx i € M, (R,) with supp (84 *#/)E
[1+¢, =), Proposition 3.1 and Lemma 2.3 yield

Zﬁ )| < MznZ(‘“ﬁ(l +e),(+ 9) 150 .. )
i J

Suppose f; € AiM(1y )14+ (ij) are arbitrary. For ¢ ; 0,k € N and z € R_,,

and (]j-)ke(zj) = ]j(zj + e)g{;(zj + 6). Lemma 2.4 yields
i ke € AiMy (14 g)(R_w],), hence, by what have shown,

Set s g{c,(zj)::

D Ere @ <M Y @1+ 81+ Nkell
J J

The inclusions A4; Ml(R_w]_) CAM,,, (R_w]_) are contractive, so Lemma 2.3 implies
that g}, € A My, (R—w,) with

Zg{{ = Z”g{c”Ale = klle—kllir,y =1
j j

X
AjMy ¢

Combining this with Lemma 2.2 yields

D e
J

< z”]‘]'( +6)||Ang(1+£)”g£{(' +6)||Ang(1+£) < Z||ﬁ||AjM{1+s)
7 J

X
AjM{14 ¢
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In particular, supy .

the proof. m

Remark 3.4: Because A;M;(R_,) = AMs(R_,;) are contructively embedded in
A M(1+£)(R_a,j) Theorem 3.3 also holds for e = 0. However, 4; trivially has abounded

A; M;-calculus bylimma 2.3 and the Hille-Phillips calculus.

Note that the exponential decays of Z]-| f; (Zj)l are only required as the real parts
of z tends to infinity. If Zjl f; (Z]-)l decays exponentially as |Z]| — oo the result is not

interesting by lemma 2.4.

Equivalently formulate Theorem 3.3 as a statement about composition with

sequence semigroupoperators.

Corollary 3.5: Under the assumptions of Theorem 3.3,f; (4;)T/ (14 ¢ ) € L(X) and

Z;;- AT (1+ &)
j

1
I cr,eM® Y Jlog (wy L+ DI, o, i+ ) < min (e
j

. i 1 £
L 2MZZ||;;||AjM{(+E,lf w1+ &) > min(——,——)
J

For all f; € A M{,, (R-w,)-

1+ &’'1+ ¢

<

Proof. Note that Y; f; (A]-)Tj 1+ o)=2; (e_(1+ g)];)(Aj) and Zjlle_(lJre)jj- ||

- z ewj(1+s)||ﬁ||AjM{+£ -
j

X
AjMgyq

a) Additional results

As the first corollary of Theorem 3.3 we obtain a sufficient condition for a

semigroupgenerator to have a bounded A; My .- calculus (see,e.g.,[8]).

Corollary 3.6: Let —A; be the sequence of generates bounded C, -semigroups (T

(t)cer, S L(X) with

U Zran(Tj 1+ &))=X

e>=1 j

Then A; has bounded 4; M., (ij)—calculus for all w;j 0, &= 0.

&

(7, || <0 and supie [Z;(f)ke )] < oo The
Convergence Lemma 2.5 implies that f;(4;) € £L(X) satisfies (11). Lemma A.1 concludes

)

Global ]()urnal of Science Frontier Research (F) Volume XIX Issue V Version I E Year 2019

Proof: Using Corollary 3.5 note that f;(4;)T/ (1 + ¢) € £L(X) implies ran (T/(1+ ¢)) S O

dom(f; (4;)). An application of the Closed Graph Theorem (using the Convergence

Lemma) yields (7). m
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Theorem 3.7: Let 0 <& <oo, , w;> 0 andB+¢, 4 € C with Re(4;) < 0 < Re(B +¢).
There exists a constant C = C(1+¢, B+¢, 4, w;) =0 such that the following holds.
Let —A; be the sequence of generates Co— semigroups(T’ (t))ieg,of type (M,0) on a

Banach space X. Then dom ((4; — 4)®*9)) cdom (f;(4;)) and

ZE(A])(A] _ /1]_)_(B+€) < (1'|'<€)1\422.||f]"||14].1\,1{(_'_‘g N
- 7 otes

for all f; € A Mf(+g(R_wj).
Proof: ‘First note that —(4;-4;) generates the exponentially stable semigroups
(eM*(T7 ())ser, - Hence to write

1 «° .
E A — 2) By = —f t(B+e)-1 E eMNtT) () xdt  (x€X

Fix fj € AiMy, . (R, ) and set a:= i min {ﬁ = } . By Corollary 3.5,

)
J w; 1+ ¢

f ehe@ )t Rt | 6 ()T (00| de < L+ M2 D [, e Il < o0
0 - - J €
J J

for all x € X, where

a [ee}
C = C1+sf tRe(ﬁ+s)—1Z|log(wj t)l e(Re(/lj)+wj)tdt + ZJ tRe(ﬁ+g)—1z e(Re(/lj))tdt
0 - a -
J J

are independents of f;, M, and x. Since fj(4;) are closed operators, this implies
that(4, — 4)~®*9maps into dom f; (4;) with

1 ® .
Z_E(Aj) =47 s ), “’””‘1]26%3 (4)7 0yt

as a strong integral. [ ]

Remark 3.8: Theorem 3.7 shows that for all analytic multiplier functions f;  the
domainsdom (f; (4;
(X,dom(4;))g,1+¢) and the complex interpolation spaces [X, dom(Aj)] g for all

0 € (0,1)and € > 0.

)) are relatively large, it contains the real interpolation spaces

Remark 3.9: Describe the ranges of f(4)(4 —24) %®*9in Theorem 3.7. More
explicitly. In fact

ran(ﬁ' (4)(4 - ’11')_(“8)) ¢ dom(4, - )"

for all Re(B)< Re(B + ¢). Indeed, this follows if show that
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) ¢ dom ((A,- —3) ;;(Aj))impnes

ran( (4 = 3) "
dom ((4; = %) f;(4)) = dom(f; (4)) n dom ([(z — %) £;(5)1(4))
The inclusion ran (4, = 4)" ") @ dom(f; (4))) follows from Theorem 3.7. Since
Noe  1@=25@]@)4 =57 =1 -4)"55)]4) = 4 —4)

The same holds for the inclusion ran((Aj — /1]-)_([“—8)) C dom ([(z] — /1])[{]3 (zj)](Aj))

b) Semigroups on Hilbert spaces

If X = H is a Hilbert space, Plancherel’s Theorem implies 4; M= H® with
equality of norms. Hence the theory above specializes to the following result, implying E
(a) and (b) of Theorem (1.1),

Year 2019

Corollary 3.10: Let —A;be the sequence ofgenerates bounded Cy-semigroups (TV (£))er .

of type (M, 0) on aHilbert space H. Then the following assertions hold.

(a) There exists a universal constant c¢>0 such that the following holds.
Let 1+ ¢, w;>0. Thenf;(4;) € L(H) and

[ssue V Version I

j

1
JCMZZ log(ey L+ Dlfll, i y(1+2) <3

Volume XIX

Zﬁ(Aj) = 1
- | ZMZZe—wJ(1+£)”ﬁ_”m if o (1+¢) >

\ ,.

for all f; € e_14,H* (R_,;). Moreover, f; (A4)T (1+¢) € L(H ) with

(e tog(e 1 + ) SIS if w1+ 6) <2
AT (1+9) < J .
JZ 2 YA, if e t+e) >
)
for all f; € H°°(R_wj),
(b) If

U Zran(Tf(1+s)) =H

e>—=1 j

Global Journal of Science Frontier Research (F)

then 4; has bounded H* (R, )-calculus for all w;<0.

(c) For wj<0 andf + ¢, 4; € C with Re(4;) <0 < Re(B + ¢) there is C = C(B + ¢, 4, w;)
such that

o
> 5 — el <em gl
) )
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for all f; € H*(R,,;). In particular, dom(Aerg) € dom(f; (4;)).

Note: We can deduce that:

(1+¢)
Yl === Ny,
j J

From Theorem 3.7 and Corollary 3.10 Part (c).
Part (c) shows that, even though the sequence of semigroup generators on

Hilbert spaces do not have abounded H*-calculus in general, each functions f; that
decays with polynomial rate & > 0 at infinity yields bounded sequence of

operators f; (4;). For g + £>% this is already covered by Lemma 2.4, but for § + € €(0, %]

it appears to be new.

Remark 3.11: Part (c) of Corollary 3.10 yields a statement about stability of numerical
methods. Let —A; be the sequence generates an exponentially stable

semigroups (T/ (t)),s on a Hilbert space,
Let r € H*(C,) be such that |||y ,) <1, and let § + &, h;>0. Then

sup {”r(hJ-Aj)nx”ln EN,x € dom(AfJ“E)} < (12)

Follows from (c) in Corollary 3.10 after shifting the generator. Elements of the
form 7(h; A;)" x are often used in numerical methods to approximate the solution of the

abstract Cauchy problem associated to —A; with initial value x, and (12) shows that
such approximations are stable whenever x € dom(Af +€).

[V. M-BouNDED FuncTiONAL CALCULUS

Describe another transference principle for semigroups, one that provides
estimates for the norms of the sequence ofoperators of the form ]Z.(m)(Aj) for f; analytic
multiplier functions and };(m)i‘cs m-th derivatives, m € N. Moreover, recall our
notational simplifications 4; My, (R, ):= 4; Mmf,, (Rw;) (Remark 2.1).

Let wj<(wj)o be real numbers. The sequence operators of A; of half-plane
types (w;)o a Banach space X, has an m-bounded AjM{(+g (ij )-calculus if there

exists € = -1, such that fj(m)(Aj) € L(X) with

Yrmw@lsa+a s lyy,  forailfy €AMELR,)
;i 7

This is well defined since the Cauchy integral formula implies that ];.(m)is

bounded on every half-planes Rd,j with @;>w;.
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Say that A; has a strongm-bounded 4; M{,, -calculus of types (wj)o if A; has an
m-bounded 4; M., (ij) -calculus for every w;< (w;)o such that for some € = 0 one has

DI ARl ”)]Z sl LR (13)

J
for all f; € AjMf(Jrg (R )and w; i(w;)o-

Lemma 4.1: Let A; be the sequence of operators of half-plane types (w;)o € R on a
Banach space X, and let0 <& < o, and me€ N. If 4, has a strong m-bounded
A; M{,. -calculus of types(w;)o, then A; has a strong n-bounded A4; M{,. -calculus of
types(w;)o for all n, &> 0,

Proof: Let w;< B +e<(wj)o.fj € A]-MH_S(RQ,].) and n € N. Then

() . (n)! fi((B+e) +ir)
ZE B+is)=om fz((ﬁ+s)+ir)—(ﬁ+is)"+1dr

_ !

T 2m!

7 2, (FB+ i)+ (=)™ D) ®
j
For some s € R, by the Cauchy Integral formula. Hence, using lemma 2.2,

PNACETD

J

Ol
<ol i) 1||L1(R>Z||z;(<ﬂ+s>+z Mcg 00

M1e)(X)

- C
<o 2l
J

for some C = C(n) =0 independents of f; , B, f + ¢ and w;. Letting f + ¢ tend to w;
yields

Z ];(n)

J

PNARICEED

J

< Cz (ﬂ n ”]; ”A M(Hg)(ij) (14)

AjM( 1) (Rp) M(1+e)X)

Let € > 0. Applying (14) with n —m in place of n shows that f(n ™ e AiMyy, (Rg)
with

n ' 1 n—-m
PNAD SC}ZW—_W”E( )”Aij(Rﬁ)

j
<cc'y : 51
- (@) = B™(B — w)r ™ " 1AM o) (Ro )

Finally, letting £+ ¢ = %((wj +(w;)o),
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S| <Y s lIf
7 b - ((@)o — @) T4 Ma e Ra )

for some C* > 0 independents of f; and w;. =

For the transference principle in Proposition 3.1 it is essential that the support of
woe M, (R,) are contained in some interval [1+ &, ©) with &> -1. One cannot expect
to find such a transference principle for arbitraries W/, as this would allow one to prove
that the sequence of semigroup generators has a bounded analytic multiplier calculus.
However, if we let ty/ be given by (tw/)(dt):= t/ (dt) then we can deduce the following
transference principle. Use the conventions 1/00:= 0, 00%: = 1.

Proposition 4.2: Let —A; be the sequence of generators of a Cy —semigroups (T (©)rer+
of type (M, 0) On a Banach space X. Let 0 <& <o, w;j0and @/ €M, (R,). Then

T’] Mzz| |(1+£) )(1+s) (1%)
W

L

J
ol gt ey

J

Proof:- Factorizes TJ as Tt] j= PoL, o
@j

Proposition 3.1 with 1/)j,<pj = 1g, e,,. Since (; * ¢; )e_mjuf =t /. Then

ZTfjll] < MZZ || 1+£

- Y a0 () (1%)

o 1, where 1 and P are as in the proof of

Jj €w; ||
e‘“’j“ A | Fp

LLME00)

L

o
el e o
by Holder’s inequality. [

To prove our main result m - bounded functional calculus, a generalization of
theorem 7.1 in [2] to arbitrary Banach spaces.

Theorem 4.3: Let A; be densely defined sequence of operators of half-plane type 0 on a
Banach space X.Then the following assertions are equivalent:

(i) —4; is the sequence of generators of bounded C, -semigroup on X.

(ii) A; has a strong m-bounded AjMf(Jrg -calculus of type 0 for some/all € > 0 and
some/allm € N.

If —A; be the sequence of generates bounded C; -semigroup then A; has an
m-bounded 4; M., (ij)—calculus for all w;< 0, € = 0and me N.

Proof. (i) = (ii) By Lemma 4.1 it suffices to let m = 1. Proceed along the same lines as
the proof of Theorem 3.3. Let (T/ (t))¢er, S £(X) be the sequence semigroups generated
by —-4; and fix wj< 0,6 =0and f; € A M;,, (Ra,]_). Define the functions (f;)ie:= f;
(4 e)g{c (+ +€) for k €N ande> 0, where g{c(zj): = i for z €R,,. Then

Zj—a)]-+k
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ke € A-Ml(Ra,j) by Lemma 2.4, and Lemma 2.3 yields (u/);. € M, (R,) with
(i dke= My - Then

f Neelz +h)— (relz
Z(ﬂ')k,e(zj) = limhj_mz(ﬁ)k' (5 + ]h) (Fire(Z)
g ]

)
. - e_(zf+h1')t —e
= llmh]._,ofz n
0 J J
== ) )

j
for z € Rw , by the Dominated Convergence Theorem. Hence (f ) (A )— —T] , and
Pr0p031t10n 4 2 and Lemma 2.3 imply

Z(ﬂ)ke(x‘l) <(1+¢&) (1+s) <1+£) (%)MZZ

e .
J

—Z]'t

(Wi == [ D e (@0
0o J

||(ﬁ)k E”A M{(+s
||

.the(fj)i are uniformly bounded. By the

Furthermore, SUPk,e”Zj(ﬁ)k,e”A,Mx
j M 1+e .
Cauchy Cauchy integral formula, so are the derivatives (f;)r. on every smaller half-
plane. Since (]j)ke(z )—> (]j z;) for all z € Rw as k — oo, € — 0, the Convergence
Lemma yields f (4;) € L(X) with

ZE(A <@+ e (1 : 8) () MzZ”f' |||A 1|v11

which is (4.1) for m = 1.
For (ii) = (i) assume that A; has a strong m-bounded A; M, .-calculus of type 0
for some € > 0 and some m € N. Then

e € Ale (ij) < AjM1+s(ij)

for all t > 0 and w;< 0, with

< = —tw;
Ze_t —Z”e—tllAle(ij) Ze

/ AjM1+£(ij) J g

Then, (e_,)™ = (—t)™ e_,implies

1
tm z e—tAj S CZ — e—t(l)j
j j |wj |
Letting w;:= — % ] yields the required statement [
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If X = H is a Hilbert space then Plancherel’s theorem yields the following result.

Corollary 4.4: Let A; be densely defined sequence of operators of half-plane type 0 on a
Hilbert space H. Then the following assertions are equivalent:

(i) —4; is the sequence of generators of a bounded C; -semigroup on H.

(i) 4; has strong m-bounded H* -calculus of type 0 for some/all m € N.

In particular, if —4; be the sequence of generates bounded Cy-semigroup then 4;
has m-bounded H”(R,,, )-calculus for all w;j< 0 and m € N.

V. SEMIGRoOUPS ON UMD SPACES

A Banach space X is a UMD space if the function t + sgn(t) is a bounded
L*(X)-Fourier multiplier. For w; €R, let

HE (Ry,) = {f; € H* Ru)|(Z — w)f.(z) € H*(R,))]

be the analytic Mikhlin algebras on Ra,]_, a Banach algebra endowed with the series of
norms

DMl = 2 Wil ) = spers, D15 G+ D15 = 0)f ()1 (5 € (R, )
J J J j
Lemma 2.2 yield the continuous inclusion

Hy’ (wa) & A ML (ij)

For each ¢ > 0, if X is a UMD space. Combining this with Theorems 3.3 and 4.3
and Corollaries 3.5 and 3.6 proves the following theorem (see ,e.g., [8]).

Theorem 5.1: Let —A;be the sequence of generates Cy-semigroups (T/ (t))cer, of type (M,
0) on a UMD space X. Then the following assertions hold.

(a) For each &€ >0, there exists a constant c,;; = c(1+¢, X) >0 such that the
following holds.

2 . _ 1 £
Ceq1M Z|log(wj 1+ e))| ||]j ”Hi"’ if wj(1+¢&)<min {1_—|-£'1_-I-e}
J

AIE .
7 I( 2¢.4 M? Z e i ||f ”Hf° if (1+e)> min{l +e' 1+ s}
J

for all fi € H"(R—y,,) N e_q4eyH” (R-,,), and fj (4)T/ (1 +¢) € L(X) with
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(ADT (1+¢)

1
(cosm? leog(w(1+s))| e Of o if 0 (142 < minf—e

IA

1+¢’ 1+£}

\
for all f; € HY” (R—;).
(b) If

2c, 41 M? Z”]j”HfQ if wi(1+¢)> min{
j

U Z ran(TV(1+¢)) =X

e>—-1j

then 4; has bounded Hy°(R,;) -calculus for all w;< 0.
(c) A; has a strong m-bounded Hy” -calculus of type 0 for all m € N.

Remark 5.2: Theorem 3.7 yields the domain inclusions dom (A]ﬁ ™) € dom( fi(4;)) for
all B+¢€Ci,wj<0and f; € H (Ra,j), on a UMD space X. However, this inclusion in
fact, holds true on a general Banach space X. Indeed, for 4 € C with Re(4;) < 0,

fj(zj)
W €AM, (C,), hence
fi(4)( — A)"P*) € £(X) and dom(AerE) C dom(fj (4;)). Series estimates

Bernstein’'s Lemma [12, Proposition 8.2.3] implies

Z];.(A,) A — A <1+ e)leﬁllH;o(Ra,g
i J :

then follows from an application of the Closed Graph Theorem and the Convergence
Lemma.

Remark 5.3: To apply Theorem 5.1 one can use the continuous inclusion
H? (R, U (S,, +@)) € HY (R, (15)

J

For bj>w;, a € R and ¢; ( ,7|. Here R, U (S(p],+ a) are the union of Ry, and
the translated sectors Sy 0] + a, Where

Sp, = {7 € C|larg @) < o;}
Indeed, to derive (15) it suffices to let a = 0, yields the desired result.

VI. Y — BOUNDED SEMIGROUPS

The geometry of the underlying Banach space X played an essential role in the
results of properties of the analytic multiplier algebras A; M{,.. To wit, in to identify
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nontrivial functions in A4; M{,, one needs a geometric assumption on X, for instance that

it is a Hilbert or a UMD space. Take a different approach and make additional
assumptions on the semigroup instead of the underlying space. Show that if the

semigroups in questions arey; -bounded then one can recover the Hilbert space results
on an arbitrary Banach space X.

Assume to be familiar with the basics of the theory of y; -radonifying sequence
of operators and y; -boundedness as collected in the survey article by van Neerven[13].

Let H be a Hilbert space and X a Banach space. The linear sequence of Notes

operators T/ : H — X is Y; —summing if

2 1/2

DI, =supe ) (B[ > opn,h|| | <o,
J

j hJEF X

Where the supremum is taken over all finite orthonormal systems F € H and
((yj)hj)hjep is an independent collection of complex-valued standard Gaussian random

variables on some probability space. Endow
) (H; X):=-T : H— X | TV arey; -summing}
with the norms ”'”V,- and let the spacesy; (H ; X) of all y; -radonifying sequence of
operators be the closure in (¥;)o (H ; X) of the finite-rank sequence of operators H ® X.
For a measure spaces (Q, p/) let y;(Q; X) (resp. (¥ (Q; X)) be the space of all

weakly L?—functions fi+ Q — X for which the integration sequence of operators of

Dy, P(Q) = X,
Z(I)fj(g") = f Zg" Sdw (@ e ()
7 a g

Is y; -radonifying (y;—summing), and endow it with the norms”]j- ||y = ” (])fj ” .
J Vj

Collections 7/ € L(X) are y; -bounded if there exists a constant C = 0 such that

o 1/2 2 1/2

E[> D 0T <cy || D) opwrn
J - J -

T/ eTI T/eTi

for all finite subsets T3 € T J | sequences () i) pie 7+ € X and independent complex-
valued standard Gaussian random variables ((¥j)7)) - The smallest such C is the y;
-bound of 77and is denoted by.[[Tj ]]yj Every y; -bounded collections are uniformly
bounded with supremum boundless than orequal to the y; -bound, and the converse
holds if X is a Hilbert space.

An important result involving y/ -boundedness is the multiplier theorem. State a
version that is tailored to the purposes. Given a Banach space Y, a function g/: R - Y
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is piecewise W1® if g e W'*(R “ {a; , . . ., a,}; Y) for some finite set
{a;,...,a, } SR

Theorem 6.1 (Multiplier Theorem): Let X and Y be Banach spaces and

TV : R — L(X, Y) a strongly measurable mappings such that
T=-T/ (s) | s € R}

are y; -bounded. Suppose furthermore that there exists a dense subset D € X such that
s +— T/ (s)x is piecewise W1l®for all x € D. Then the multiplication sequence of
operators

My F(R) @ X - LA(R;Y), My (®x)=f (T ()x
Extends uniquely to boundedsequence of operators
My (L (R); X) — ¥, (L (R); Y)

with

ZMTJ' SZ[[Tj]]Yj

Proof: That M;; extends uniquely to bounded sequence of operators into
()/]-)OO(LZ(]R);Y) with ||¥; M| < Zj[[Tj]]yj. To see that in facts ran(M ;) €¥;(R; Y),
employ a density argument. For x € D let a; , . . ., a, € R be such that s — T/ (s)x
EWM (R “{ay ,...,a, }; Y), and set ag:= =00, ay4q:= . Let f; € C, (R) be given

and note that

joY

1l 2, 17 (50 s < o

aj+1
j

for all j € {1, ..., n}. Furthermore,

ay | |
f_w2||f7'||Lz(_w,s) 177 (s) x||ds < oo
]

yields (1(q;,q; ., /] YT ()x €y;(R; Y) for all 0 < j < n, hence f;()TV (-)x € % (R; Y).
Since C.(R) ® D is dense in L*(R) ® X, which in turn is dense iny; (L?(R); X), theresult

follows. ]

To prove a generalization of part (a) of Corollary 3.10, recall that
e_a4eyH” (Ry, ) ={ f €H” (Ry, ) | £ (z) = O (e 0+ REas 7| — =}

for e> -1,w; € R.
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Theorem 6.2: There exists a universal constant c¢= 0 such that the following holds.
Let—A;be sequence of generatesy;- bounded Cy-semigroups (TV (t))¢er ,with M::[[Tj ]]yj on
Banach space X, and let 14 &, w;> 0. Then f;(4;) € L(X) with

for all f; € e_(14oH” (R_wj).

In particular, A4; has a bounded e_(14 oH® (R_w], )-calculus.

1
(02 Y loglayL+ NN, iF i+ o <o

< J

1
2M2 ) eI |Ip]| - if o1+ &) >3
e ’ 2 Notes

J

ZE(AJ)

Proof: Only need to show that the estimate (9) in Proposition 3.1 can be refined to

T
J

for u/ € M_,, (R, ) with suppy/ € [1+ €, ). Then one uses that

Z Lew,-uf = Z ”e/‘“J\“J ||H°°(<C+) - Z”ﬁj”Hm(R“”f)
)

J LyjRX)

Lewj#j|

(16)

< MznZ(wj, 1+¢2)
Jj

£(r; (X))

by the ideal properties of y; (L? (R); X) [13, Theorem 6.2], and proceeds as in the proof
of Theorem 3.3 to deduce the desired result.

To obtain (16) we factorizes Tp{f as T:j: PeL, —,°t, where u X— ;(R; X) and
P:y;(R; X) — X are given by ]

x(s):=P; (-9)T/ (-s)x (x € X, s €R),
Zpgj =J Z(pj(t)Tj Og®dt (g €y (R X))
j ©
for 1, ¢; € I2(R,) such that ; * ¢; = ey, on [1 + &, ©). Show that the maps t and P

are well-defined and bounded. To this end, first note that s — T/ (-s)x is piecewise W1*
for all x in the dense subset dom(4;) € X and that

Y (=) ® x € L*(==, 0) ® X ¥ (L*(R); X).
Therefore Theorem 6.1 yields 1x € y; (R, X) with
D= ||| s v o@xl, =My g, el
] . ] . ] ]
v vj

As for P, write
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PN IYCICLICEICLE WARICY
j J !

And use Theorem 6.1 once again to see that T/g/ € y;(R; X). Hence

508 = Sl Wl =Yl JE1,
7 j J

X

Finally, estimating the norms of T/ ; through this factorization and taking the
infimum over all y;and ¢; yields (16).m

Note: In putting p/ by t 4/ in the proof of Theorem 6.2 we have,

g_(l‘g?)
2.l 4y 80) Z| a+o ()

J
Corollary 6.3: Corollary 3.10 generalizes to y; —bounded semigroups on arbitrary

J
e“’j“ L(L1+€(X))

Banach spaces upon replacing the uniform bound M of T/ by[[Tf ]]yj .
Theorem 4.3 can be extended in an almost identical manner to yj—Vversions
(see,e.g., [8]).

Theorem 6.4: Let —A;be the sequence generates y; -bounded Cp-semigroup on a Banach
X. Then 4; has a strongm-bounded H%-calculus of type 0 for all m € N.

Appendix A. Growth estimates
In this appendix we examine the function n: (0, «) x (0, «) x [1, ] — R, from (3.1):

1B +ent+e) =inf vl oy« 0 = e oo on [t}
&

Use the notation f; < g/ for real-valued functions fis g/: Z — R on some set Z
to indicate that there exists a constant ¢ > 0 such that f; (z) <cg/(z) for all z € Z.

Lemma A.1: For each € > 0 there exist constants ¢y, ,d;4, = 0 such that
dipellogfi(B + ))|<n(B + &t 1+ ¢) < ¢4, |logf(B + e)t)| (A.1)

If (B + &)t <min {141_ 1+£} If (B+¢e)t>min {11 }then
eIt <n(B+et,1+¢) <2e o (A.2)

Proof: First note that N(f +e¢, t, 1+¢e)=n((f+e)t, 1, 1+¢) =n(l, (B+e)t, 1+¢),
1+

for all PB+4+e t andl+e Indeed, for oy € LM(R,.), ¢; €L« (R,) with
W) @) = e_puey on [L, o) defines (1)), () = Ey; (D) and (), (s) = ¢ Ty (s/0)

for some s = 0. Then
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Zw),)t*(go]) (r)—wa, o ()2 =w-

J

for all r >0, so (;); * ()¢ = e_(g+) On [t, ). Moreover,

D= [ Yl QI F= [ Xwer as= Yl
J 0 J 0 Jj J

and similarly Z]-”((pj)t”ﬁ: Zj”goj ||ise - Hence n(B + ¢, t,1+¢) < n((B+ )t 1,1+ ¢)).
Considering () 1,1 and (®i)ase yiélds NB+e t, 1+e) =n((B+e)t, 1, 1+¢). The
other equality follows immediately. Hence, to prove all of the inequalities in (A.1) or
(A.2), assume either that f + & = 1 or that t = 1 (but not both).

For the left-hand inequalities, assume that f +& = 1 and firshgonsider the left-

hand inequality of (A.1). Let t < 1 and ¥; € L'** (R,), ¢; € L= (R,) such that
Yj *@; = e_q on [t, ). Then

1

llog()] = — log(t) = f—<ef == f b &S

t t t

N

1
ef [ 2t =nlloolars
t 0 J
effz'*”f“ dsly; () dr
0

r

IA

IA

(el en
=effz LOASES LS ASE| s+r] derS—Sin(n/l+£)Z”¢j”1+£”(pj”1¥
0 0 J j

where used Hilbert’s absolute inequality [14, Theorem 5.10.1]. It follows that

sin(t/1+ €)

For the left-hand inequality of (A.2), assume that f+¢& = 1 and let t > 0 be
arbitrary. Then

=W = [ Y lue-llo©lds <l ol
j 0 7 j ¢

By Holder's inequality, hence e™* < n(1,t,1 + ¢).

For the right-hand inequalities in (A.1) and (A.2), assume that t = 1 and first
consider the right-hand inequality in (A.1) for f + & < min { ! T } In the proof of
Lemma A.1, it is shown that

(W0 * (@)0)(s) = {51 "S 65[2’11)
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for

Z(ll)j)o = Zﬁj 1,41 and (¢;)o = Zﬁ} 1+
7 j=0 j=0

p (L
where (8;); and (f;); are sequences of positive scalars such that f; :O((l +j) (1+£)) and

g = o(a+)NE)as j — oo Let i e oo and = e_gan(@)o.
Then ¥; * ¢;= e_(g4¢) on [1,00) and

1+e 1+e o j+1 o
- ) e—(ﬁ2+ﬂ(1+e)+e)j
lej = Z e—(g+e) o = Z,Bj ¢ f e~ (114 gs < Z T+

J 1+¢ J 1+¢ j=0 j j=0

< —(B2+B(1+e)+e)s < s

<1 +j ¢ ds = 1 + e(B*+8(+e)+e) f s
1+s s
0 aq

The constant in the first inequality depends only on 1 + . Since (B2 +B(e+1)+&) <1,

e S

ds

S S

1+¢ 1 0
-s
Z Y| S 1+ (POt ° ds+ j
j lte (B+e)(1+¢) 1

1
<1+ J 1 ds + e(ﬁz+ﬁ(1+€)+s)J e Sds
S
B+e)(1+e) 1

= 1= log(% + B(1L+ &) +) + (971 < log (o ; 5)+2

Moreover, u;lTs) > 14 &> 1 hence log (ﬁ) >log(1+¢)>0
and
log (57) + 2 = (1 + i) g (752)
Therefore
1
1 \I+e 1
Dol swe(gas)  =les@ o
j

1+¢

For a constant depending only on 1 + €. Similarly deduce
(7%
Yol stog@+elE
j Lte
&
for a constant depending only on % (and thus on 1+¢). This yields (A.1).
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For the right-hand side of (A.2) we assume that t = 1 and, without loss of
. . 1+e 1
generality (Since(B +¢,t,1+¢) =n(B +¢&t, -, that p+e> = let 9 = 1paiepiae
2
and 1), = (B*+B (1+e)+e)

e (B2+B(1+e)+e) _q

1]R+ e_(/;+g) . Then

1
B2+ B +e)+e) _ _ _
z¢f 95 (1) = —Graror 1 eWraEe (T ds = e=rer

J 0 Notes

For r = 1. Hence
1B +e 11+ < Dl o e
- &
j
(%)

) 1
_ (.32 +B(1+e)+e) f e—(ﬁz+ﬁ(1+5)+e)s ds f e([f+s)((£)(1‘aj)s)ds
0

(%)

T eBPHB+e)+e) — 1
0

5 (L) 1 (lg?) 1
_ B+ B(1+e)+e)\lte J. o (BE+B(+e)+e)s 4o | — (e(ﬁ2+ﬁ(1+e)+e) _ 1)—(m)
0

eB2+B(1+e)+e) — 1

1
< 2(TF)e=6B+e) < pe-GB+e)

Where haveused the assumption (B?2+pB(1+¢&)+¢€)>1in the penultimate
inequality. m

Note: Deduce that:

Oz wll,,, < Mg, Zj”‘pjnlgi

2) e < [yl Nlosllie <267+
When f+e=1,6>0

Proof. (1) Since

S| <loges+ e (@
J 1+e¢

And
Yol| < nogs+ o)) )
T e

&

Divide we have
E ¥ < Mg, E o) | 1+¢
" " &
J 1+¢ J
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1-¢
Where we have Mp , = [log(f + g)|(m)
(2)From (A.2), we can get

e < ) Iyl oy llise ©
J

1 1
2 V]
2 2 ~
<[ Dl ) [ Dol | =il ol <2050
J j
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