

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES Volume 19 Issue 1 Version 1.0 Year 2019 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896

On Some Maps Concerning $\beta\mbox{-}Closed$ Sets and Related Groups

By Sanjay Tahiliani

Abstract- The concept of group of functions, say $\beta ch(X,\tau)$ preserving β -closed sets containing homeomorphism group $h(X,\tau)$ was studied by Arora, Tahiliani and Maki. In continuation to that, we study some new isomorphisms, mappings, subgroups and their properties.

Keywords: α -open, β -open and β -irresolute mappings.

GJSFR-F Classification: MSC 2010: 33B20

ON SOMEMAPS CONCERNING CLOSED SETS AND RELATED GROUPS

Strictly as per the compliance and regulations of:

© 2019. Sanjay Tahiliani. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $R_{\rm ef}$

R. A. Mahmoud and Abd-El-Monsef, β -irresolute and β -topological invariant, Proc.

Pakistan. Acad.Sci., **27** (1990), 285-296

ы. С

On Some Maps Concerning β-Closed Sets and Related Groups

Sanjay Tahiliani

Abstract- The concept of group of functions, say β ch(X, τ) preserving β -closed sets containing homeomorphism group h(X, τ) was studied by Arora, Tahiliani and Maki. In continuation to that, we study some new isomorphisms, mappings, subgroups and their properties.

Keywords: α -open, β -open and β -irresolute mappings.

I. INTRODUCTION AND PRELIMINARIES

Throughout this paper we consider spaces on which no separation axiom are assumed unless explicitly stated. The topology of a space(By space we always mean a topological space) is denoted by τ and (X,τ) will be replaced by X if there is no chance of confusion. For A \subseteq X, the closure and interior of A in X are denoted by Cl(A) and Int(A) respectively. Let A be a subset of the space (X,τ) . Then A is said to be β -open [1] if A \subseteq Cl(Int(Cl(A))). Its complement is β -closed. The family of all β -open sets containing A is denoted by β O(A) and all β -closed sets containing A is denoted by β C(A). A is said to be α -open[6] if A \subseteq Int(Cl(Int(A))) and its complement is α -closed. The union of all β -open sets contained in A is called β -interior of A, denoted by β Int(A)[2].

A map $f:(X,\tau) \to (Y,\sigma)$ is called β -irresolute[4] if the inverse image of every β -open set in Y is β -open in X. It is called β c-homeomorphism[5] if f is β -irresolute bijection and f⁻¹ is β -irresolute.

II. Subgroups of $\beta CH(X;\tau)$

For a topological space (X,τ) we have $h(X;\tau) = \{f \mid f:(X,\tau) \to (X,\tau) \text{ is a homeomorphism}\}[5]$ and $\beta ch(X;\tau) = \{f \mid f:(X,\tau) \to (X,\tau) \text{ is a } \beta c\text{-homeomorphism}\}[5].$

In this section, we investigate some structures of $\beta ch(H;\tau|H)$ for a subspace $(H,\tau|H)$ of (X,τ) using two subgroups of $\beta ch(X,\tau)$, say $\beta ch(X, X " H; \tau)$ and $\beta ch_0(X, X " H; \tau)$ below.

Definition 2.1 For a topological space (X,τ) and subset H of X, we define the following families of maps:

 $(i) \ \beta ch(X, \, X \setminus H; \, \tau) {=} \{ a | \ a {\in} \ \beta ch(X; \tau) \ and \ a(X \setminus H) {=} \ X \setminus H \}.$

Author: Lecturer, N.K.Bagrodias, Sec 9, Rohini, Delhi, Postal code 110085. e-mail: sanjaytahiliani@yahoo.com

(ii) $\beta ch_0(X, X \setminus H; \tau) = \{a | a \in \beta ch(X, X \setminus H; \tau) \text{ and } a(x) = x \text{ for every } x \in X \setminus H\}.$

Theorem 2.2 Let H be a subset of a topological space (X,τ) . Then

- (i) The family $\beta ch(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, \tau)$.
- (ii) The family $\beta ch_0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, X \setminus H; \tau)$ and hence $\beta ch_0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, \tau)$.

Proof.(i) It is shown obviously that βch(X, X \ H; τ) is a non empty subset of βch(X,τ), because 1_X ∈ βch(X, X \ H; τ). Moreover, we have that $ω_X(a,b^{-1})=b^{-1}o a ∈ βch(X, X \ H; τ)$ for any elements a, b ∈ βch(X, X " H; τ), where $ω_X = ω|(βch(X, X \setminus H; τ) × βch(X, X \setminus H; τ))$ as ω is the binary operation of the group βch(X,τ). Evidently, the identity map 1_X is the identity element of $βch(X, X \setminus H; τ)$.

(ii) It is shown that $\beta ch_0(X, X \setminus H; \tau)$ is a non empty subset of $\beta ch(X, X \setminus H; \tau)$ because $1_X \in \beta ch_0(X, X \setminus H; \tau)$. We have that $\omega_{X,0}(a,b^{-1})=b^{-1}o \ a \in \beta ch_0(X, X \setminus H; \tau)$ for any elements $a, b \in \beta ch_0(X, X \setminus H; \tau)$, where $\omega_{X,0} = \omega_X | (-(\beta ch_0(X, X \setminus H; \tau) \times \beta ch_0(X, X \setminus H; \tau)))(\omega_X \text{ is the binary operation of the group <math>\beta ch(X, X \setminus H; \tau)$). Thus $\beta ch_0(X, X \setminus H; \tau)$ is a subgroup of $\beta ch(X, X \setminus H; \tau)$ and the identity map 1_X is the identity element of $\beta ch_0(X, X \setminus H; \tau)$. By using (i), $\beta ch_0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, \tau)$.

Let H and K be the subsets of X and Y respectively. For a map $f:X\to Y$ satisfying a property K=f(H), we define the following map $r_{H,K}(f):H\to K$ by $r_{H,K}(f)(x)=f(x)$ for every $x\in H$. Then, we have that $j_K \circ r_{H,K}(f)=f|H:H\to Y$, where $j_K:K\to Y$ be an inclusion defined by $j_K(y)=y$ for every $y\in K$ and $f|H:H\to Y$ is a restriction of f to H defined by (f|H)(x)=f(x) for every $x\in H$. Especially, we consider the following case that $X=Y, H=K\subseteq X$ and a(H)=H, b(H)=H for any maps $a,b: X\to X$. Thus $r_{H,H}(boa)=r_{H,H}(b)$ o $r_{H,H}(a)$ holds. Moreover, if a map $a:X\to X$ is a bijection such that a(H)=H, then $r_{H,H}:H\to H$ is bijective and $r_{H,H}(a^{-1})=(r_{H,H}(a))^{-1}$.

We recall well known properties on β -open sets of subspace topological spaces.

Theorem 2.3. For a topological space (X,τ) and subsets H and U of X and A \subseteq H,V \subseteq H and B \subseteq H, the following properties hold:

(i) Arbitrary union of β -open sets of (X,τ) is β -open in (X,τ) . The intersection of an open set of (X,τ) and a β -open set in (X,τ) is β -open in (X,τ) .

(ii) (ii-1). If A is β -open in (X,τ) and $A \subseteq H$, then A is β -open in a subspace $(H,\tau|H)$.

(ii-2). If $H \subseteq X$ is open or α -open in (X,τ) and a subset $U \subseteq X$ is β -open in (X,τ) , then $H \cap U$ is β -open in a subspace $(H,\tau|H)$.

(iii). Let $V \subseteq H \subseteq X$.

(iii-1). If H is β -open in (X,τ) , then $Int_H(V) \subseteq \beta Int(V)$ holds.

(iii-2). If H is β -open in (X,τ) and V is β -open in a subspace $(H,\tau|H)$ then V is β -open in (X,τ) .

(iv). Let $B \subseteq H \subseteq X$. If H is β -closed in (X, τ) and B is β -closed in a subspace $(H, \tau | H)$, then B is β -closed in (X, τ) .

(v). (v-1). Assume that H is a open subset of (X,τ) . Then,

Notes

 $\beta O(X,\tau)|H \subset \beta O(H,\tau|H)$ holds, where $\beta O(X,\tau)|H = \{W \cap H | W \in \beta O(X,\tau)\}$. (v-2). Assume that H is a β -open subset of (X,τ) . Then, $\beta O(H,\tau|H) \subset \beta O(X,\tau)|H$ holds. (v-3). Assume that H is a β -open subset of (X,τ) . Then, $\beta O(H,\tau|H) = \beta O(X,\tau)|H$ holds. *Proof.* (i). Clear from Remark 1.1 of [1] and Theorem 2.7 of [3]. (ii).(ii-1). Clear.(ii-2).Its Lemma 2.5 of [1]. (iii-1). Let $x \in Int_H(V)$. There exists a subset $W(x) \in \tau$ such that $W(x) \cap H \subseteq V$. By (i), $W(x) \cap H \in \beta O(X,\tau)$. This shows that $x \in \beta Int(V)$ and so $Int_H(V) \subseteq \beta Int(V)$. (iii-2) and (iv). Its clear from Lemma 2.7 of [1]. (v). (v-1). Let $V \in \beta O(X,\tau)|H$. For some set $W \in \beta O(X,\tau), V = W \cap H$ and so we have $W \cap H \in \beta O(H,\tau|H)$ (from ii-2). Hence $V \in \beta O(H,\tau|H)$ holds. (v-2). Let $V \in \beta O(H,\tau|H)$. Since $H \in \beta O(X,\tau)$, we have $V \in \beta O(X,\tau)$ by (iii-2). Thus $V = V \cap H \in \beta O(X, \tau) | H.$ (v-3). It follows from (v-1) and (v-2). Lemma 2.4. (i). If $f:(X,\tau) \to (Y,\sigma)$ is β -irresolute and a subset H is α -open in (X,τ) , then f|H:(H, τ |H) \rightarrow (Y, σ) is β -irresolute. (ii). Let (1) and (2) be properties of two maps $k:(X,\tau) \to (K,\sigma|K)$, where $K \subseteq Y$, and $j_K \circ k$: $(X,\tau) \rightarrow (Y,\sigma)$ as follows: (1). $k:(X,\tau) \to (K,\sigma|K)$ is β -irresolute. (2). j_{K} ok: $(X,\tau) \rightarrow (Y,\sigma)$ is β -irresolute.

Then, the following implication and equivalence hold:

- (ii-1). Under the assumption that K is α -open in (Y, σ), (1) \Rightarrow (2).
- (ii-2). Conversely, under the assumption that K is β -open in (Y,σ) , $(2) \Rightarrow (1)$.
- (ii-3). Under the assumption that K is β -open in (Y, σ), (1) \Leftrightarrow (2).
- (iii) If $f:(X,\tau) \to (Y,\sigma)$ is β -irresolute and a subset H is α -open in (X,τ) and f(H) is β open in (Y,σ) , then r $_{H,f(H)}(f): (H,\tau|H) \to (f(H), \sigma|f(H))$ is β -irresolute.

Proof.(i). Let V∈βO(Y,σ). Then, we have $(f | H)^{-1}(V) = f^{-1}(V) \cap H$ and $(f | H)^{-1}(V) \in \beta O(H,τ|H)$.(Theorem 2.3 (ii-2)).

- (ii) (ii-1) (1) \Rightarrow (2).Let $V \in \beta O(Y,\sigma)$.Since $(j_K ok)^{-1}(V) = k^{-1}(V \cap K)$ and $V \cap K \in \beta O(K,\sigma|K)$ (Theorem 2.3 (ii-2)),we have that $(j_K ok)^{-1}(V) \in \beta O(X,\tau)$ and hence $j_K ok$ is β -irresolute.
- (ii-2) (2) \Rightarrow (1).Let $U \in \beta O(K,\sigma|K)$.Since $U \in \beta O(Y,\sigma)$ (Theorem 2.3 (iii-2)),we have k $^{1}(U) = (j_{K}ok)^{-1}(U) \in \beta O(X,\tau)$.Thus k is β -irresolute.
- (ii-3). Obvious in the view of fact that every α -open set is β -open, it is obtained by (ii-1) and (ii-2).
- (iii) By (i), $f|H:(H,\tau|H) \rightarrow (Y,\sigma)$ is β -irresolute. The map r $_{H,f(H)}(f)$ is β -irresolute, because $f|H=j_{f(H)}o$ r $_{H,f(H)}(f)$ holds.

 \mathbf{R}_{ef}

Definition 2.5. For an α -open subset H of (X,τ) , the following maps $(r_H)^*$: $\beta ch(X, X " H; \tau) \rightarrow \beta ch(H;\tau|H)$ and $(r_H)^*,_0$: $\beta ch_0(X, X " H; \tau) \rightarrow \beta ch(H;\tau|H)$ are well defined as follows(Lemma 2.4 (iii)),respectively:

 $(r_{\scriptscriptstyle H})^*(f) = r_{\scriptscriptstyle H,H}(f) \ for \ every \ f \in \ \beta ch(X, \ X \ `` \ H; \ \tau);$

 $(r_H)^*,_0(g) = r_{H,H}(g)$ for every $g \in \beta ch_0(X, X \text{ "}H; \tau)$.Indeed ,in Lemma 2.4 (iii),we assume that X=Y, $\tau = \sigma$ and H=f(H).

Then, under the assumption that H is α -open hence β -open in (X,τ) , it is obtained that $r_{H,H}(f) \in \beta ch(H;\tau|H)$ holds for any $f \in \beta ch(X, X " H; \tau)$ (resp. $f \in \beta ch_0(X, X " H; \tau)$).

Notes

We need the following lemma and then we prove that $(r_H)^*$ and $(r_H)^*_{,0}$ are onto homomorphisms under the assumptions that H is α -open and α -closed in (X, τ) .

Let $X=U_1\cup U_2$ for some subsets U_1 and U_2 and $f_1:(U_1,\tau|U_1) \rightarrow (Y,\sigma)$ and $f_2:(U_2,\tau|U_2) \rightarrow (Y,\sigma)$ be the two maps satisfying a property $f_1(x)=f_2(x)$ for every $x \in U_1 \cap U_2$. Then, a map $f_1 \nabla f_2$ is well defined as follows:

 $(f_1 \nabla f_2)(x) = f_1(x)$ for every $x \in U_1$ and $(f_1 \nabla f_2)(x) = f_2(x)$ for every $x \in U_2$.

We call this map a combination of f_1 and f_2 .

Lemma 2.6. For a topological space (X,τ) , we assume that $X = U_1 \cup U_2$, where U_1 and U_2 are subsets of X and $f_1:(U_1,\tau|U_1) \rightarrow (Y,\sigma)$ and $f_2:(U_2,\tau|U_2) \rightarrow (Y,\sigma)$ be the two maps satisfying a property $f_1(x)=f_2(x)$ for every $x \in U_1 \cap U_2$. Then if $U_i \in \beta O(X,\tau)$ for each $i \in \{1,2\}$ and f_1 and f_2 are β -irresolute, then its combination $f_1 \nabla f_2: (X,\tau) \rightarrow (Y,\sigma)$ is β -irresolute.

Proof. Its on similar lines in ([1], Theorem 2.8).

Theorem 2.7. Let H be a subset of a topological space (X,τ) .

- (i) (i-1).If H is α -open in (X,τ) ,then the maps $(r_H)^*$: $\beta ch(X, X^{``}H;\tau) \rightarrow \beta ch(H;\tau|H)$ and $(r_H)^*,_0$: $\beta ch_0(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$ are homomorphism of groups. Morever $(r_H)^* \mid \beta ch_0(X, X \setminus H; \tau) = (r_H)^*,_0$ holds(Definition 2.5).
- (i-2). If H is α -open and α -closed in (X,τ) , then the maps $(r_H)^*$: $\beta ch(X, X^{"}H; \tau) \rightarrow \beta ch(H;\tau|H)$ and $(r_H)^*_0$: $\beta ch_0(X, X^{"}H; \tau) \rightarrow \beta ch(H;\tau|H)$ are onto homomorphism of groups.
- (ii) For an α -open subset H of (X,τ) , we have the following isomorphisms of groups:
- (ii-1). $\beta ch(X, X \setminus H; \tau) |Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$;
- (ii-2). $\beta ch_0(X, X \setminus H; \tau)$ is isomorphic to $Im(r_H)^*$, holds.

where $\operatorname{Ker}(r_{H})^{*} = \{a \in \beta ch(X, X \setminus H; \tau) \mid (r_{H})^{*}(a) = 1_{X}$ is a normal subgroup of $\beta ch(X, X \setminus H; \tau)$; $\operatorname{Im}(r_{H})^{*} = -(r_{H})^{*}(a) \mid a \in \beta ch(X, X \setminus H; \tau)$ and $\operatorname{Im}(r_{H})^{*}, 0 = -(r_{H})^{*}, 0$ (b) $\mid b \in \beta ch_{0}(X, X \setminus H; \tau)$ } are subgroups of $\beta ch(X, \tau)$.

- (iii) For an α -open and α -closed subset H of (X, τ) , we have the following isomorphisms of groups:
- (iii-1). $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch(X, X \setminus H; \tau) |Ker(r_H)^*$.
- (iii-2). $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch_0(X, X \setminus H; \tau)$.

Proof. (i).(i-1). Let a,b∈ βch(X, X \ H; τ). Since H is α-open in (X,τ),the maps (r_H)* and (r_H)*,₀ are well defined(Definition 2.5). Then we have that (r_H)*(ω_X(a,b))= (r_H)*(boa)= r_{H,H}(boa)= r_{H,H}(b) o r_{H,H}(a)= ω_X((r_H)*(a), (r_H)*(b)) hold, where ω_H is a binary operation of βch(H;τ|H) ([5] Theorem 4.4 (iv)).Thus (r_H)* is a homomorphism of groups. For the map (r_H)*₀: βch₀(X, X \ H; τ) → βch(H;τ|H),we have that (r_H)*, 0 (ω_{X,0}(a,b))= (r_H)* 0 (boa)= r_{H,H}(boa)= r_{H,H}(b) o r_{H,H}(a)= ω_X((r_H)*(a), (r_H)*(b)) hold, where ω_X is a binary operation of βch(H;τ|H)(Theorem 2.3 (ii)). Thus (r_H)* 0 is also a homomorphism of groups. It is obviously shown that (r_H)* | βch₀(X, X " H; τ)= (r_H)*, holds.(Definitions 2.1 and 2.5).

(i-2). In order to prove that $(r_H)^*$ and $(r_H)^*_0$ are onto, let $h \in \beta ch(H;\tau|H)$. Let $j_H: (H;\tau|H) \rightarrow (X,\tau)$ and $J_{X^*H}: (X \setminus H, \tau| X \setminus H) \rightarrow (X,\tau)$ be the inclusions defined $j_H(x)=x$ for every $x \in H$ and $J_{X^*H}(x)=x$ for every $x \in X$ " H. We consider the combination $h_1=(j_Hoh) \nabla(j_{X^*H}o 1_{X^*H}): (X,\tau) \rightarrow (X,\tau)$. By Lemma 2.4 (ii-1),under the assumption of α -openness on H, it is shown that two maps j_H oh : $(H;\tau|H) \rightarrow (X,\tau)$ and j_H oh⁻¹ : $(H;\tau|H) \rightarrow (X,\tau)$ are β -irresolute; moreover under the assumption of α -openness on X \ H, J_{X^*H} o $1_{X^*H}: (X \setminus H,\tau \mid X \setminus H) \rightarrow (X,\tau)$ is β -irresolute. Using lemma 2.6, for a β -open cover $\{H, X \setminus H\}$ of X, the combination above $h_1: (X,\tau) \rightarrow (X,\tau)$ is β -irresolute. Since h_1 is bijective, its inverse map $h_1 \xrightarrow{-1}=(j_Hoh \xrightarrow{-1}) \nabla(j_{X^*H} o 1_{X^*H})$ is also β -irresolute. Thus under the assumption that both H and X " H are β -open in (X,τ) , we have $h_1 \in \beta ch(X,\tau)$. Since $h_1(x)=x$ for every point $x \in X \setminus H$, we conclude that $h_1 \in \beta ch_0(X, X \setminus H; \tau)$ and so $h_1 \in \beta ch(X, X \setminus H; \tau)$. Moreover, $(r_H)^*,_0 (h_1)= (r_H)^*(h_1)=r_{H,H}((h_1)=h$, hence $(r_H)^*$ and $(r_H)^*,_0$ are onto, under the assumption that H is α -open and α -closed subset of (X,τ) .

there are group isomorphism below, under the assumption that H is α -open in (X,τ) :

(*). $\beta ch(X, X " H; \tau) |Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$; and

(**). $\beta ch_0(X,\,X$ " H; $\tau)$ $|Ker(r_{\scriptscriptstyle H})*_{_0}$ is isomorphic to $Im(r_{\scriptscriptstyle H})*_{,_0}$

where $\operatorname{Ker}(r_{H})^{*}{}_{0} = -a \in \beta ch_{0}(X, X \setminus H; \tau) |(r_{H})^{*}{}_{0}(a) = 1_{X}$. Moreover, under the assumption of α -openness on H, it is shown that $\operatorname{Ker}(r_{H})^{*}{}_{0} = \{1_{H}\}$. Therefore, using (**) above, we have the isomorphism (ii-2).

(iii).By (i-2) above, it is shown that $(r_H)^*$ and $(r_H)^*$, are onto homomorphism of groups, under the assumption that H is α -open and α -closed in (X,τ) . Therefore, by (ii) above, the isomorphisms (iii-1) and (iii-2) are obtained.

Remark 2.8. Under the assumption that H is α -open and α -closed in (X, τ) , Theorem 2.7 (iii) is proved. Let (X,τ) be a topological space where $X=\{a,b,c\}$ and $\tau=-\phi$, X, $\{a\},\{b,c\}\}$, and $(H;\tau|H)$ is a subspace of (X,τ) ,where $H=\{a\}$. Then $\beta O(X,\tau)=P(X)$ (the power set of X) and H is α -open and α -closed in (X,τ) . We apply Theorem 2.7 (iii) to the present case, we have the group isomorphisms. Directly, we obtain the following date on groups: $\beta ch(X,\tau)$ is isomorphic to S_3 , the symmetric group of degree 3, $\beta ch(X, X \setminus H; \tau)=\{1_X, h_a\}, Ker(r_H)^*=\{1_X, h_a\}, \beta ch(H; \tau \setminus H)=-1_H\}$ and so $\beta ch_0(X, X \setminus H; \tau)=-1_X\}$, where $h_a:(X,\tau) \to (X,\tau)$ is a map defined by $h_a(a)=a, h_a(b)=c$ and $h_a(c)=b$. Therefore in this example, we have $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch(X, X \setminus H; \tau)$

2019

Year

113

Science Frontier Research (F) Volume XIX Issue I Version

of

Journal

Global

 $|\text{Ker}(r_{H})^{*}|$ and $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch_0(X, X \setminus H; \tau)$. Moreover we have $h(X,\tau) = \{1_X, h_a\}.$

(iii). Even if a subset H of a topological space (X,τ) is not α -closed and it is α -open, we have the possibilities to investigate isomorphisms of groups corresponding to a subspace (H, $\tau|H$) and $(r_{H})^{*}$ using Theorem 5.7(ii). For example, Let (X,τ) be a topological space where $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a, b\}\}$, and $(H; \tau | H)$ is a subspace of (X,τ) , where $H = \{a,b\}$. Then $\beta O(X,\tau) = P(X)$ (the power set of X) and H is α -open but not α -closed in (X, τ). By theorem 2.7(i)(i-1), the maps $(r_H)^*: \beta ch(X, X " H; \tau) \rightarrow \beta ch(H; \tau | H)$ and $(r_H)^*,_0: \beta ch_0(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$ are homomorphism of groups and by theorem 5.7(ii) two isomorphisms of groups are obtained:

(*-1). $\beta ch(X, X " H; \tau)/Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$. (*-2). $\beta ch_0(X, X \setminus H;$ τ)/Ker(r_H)* is isomorphic to Im(r_H)*,₀.

We need notation on maps as follows: let $h_c: (X,\tau) \rightarrow (X,\tau)$ and $t_{a,b}: (H,\tau|H) \rightarrow$ $(H,\!\tau|H) ~{\rm are~the~maps~defined~by} ~~h_{\!_{c}}~(a)\!=\!b,~h_{\!_{c}}(a)\!=\!b,~h_{\!_{c}}(c)\!=\!c~{\rm and}~t_{\!_{a,b}}(a)\!=\!b,~t_{\!_{a,b}}~(b)\!=\!a,$ respectively. Then it is directly shown that $\beta ch(X, X \setminus H; \tau) = -1_X$, h_c }which is isomorphic to Z_2 , $(h_c)^2 = 1_X$, and $Ker(r_H)^* = -a \in \beta ch(X, X \setminus H; \tau) - (r_H)^*(a) = -a \in \beta ch(X, X \setminus H; \tau) - (r_H)^*(a)$ $1_{\rm H} = \{a \in -1_{\rm X}, h_c\} - (r_{\rm H})^*(a) = 1_{\rm H} \} = \{1_{\rm X}\}$ because $(r_{\rm H})^*(1_{\rm X}) = 1_{\rm H}$ and $(r_{\rm H})^*(h_c) = t_{a,b}$ not equal to $1_{\rm H}$. By using (*-1) above, ${\rm Im}(r_{\rm H})^*$ is isomorphic to $\beta ch(X, X \setminus H; \tau) = \{1_X,$ h_{c} and so $Im(r_{H})^{*} = \{ 1_{H}, r_{H,H}(h_{c}) \} = -1_{H}, t_{a,b} \}$. Since $Im(r_{H})^{*} \subseteq \beta ch(H;\tau|H) \subseteq \{1_{H}, t_{a,b} \}$, we have that $Im(r_H)^* = \beta ch(H,\tau|H) = -1_H$, $t_{a,b}$ and hence $(r_H)^*$ is onto. Namely, we have an isomorphism $(r_H)^*$: $\beta ch(X, X " H; \tau)$ is isomorphic to $\beta ch(H; \tau|H)$ which is isomorphic to Z₂. Morever it is shown that $\beta ch_0(X, X \setminus H; \tau) = -a \in \beta ch(X, X \setminus H; \tau) = -a(x) = x$ for any $x \in -c\}\} = -1_X, \ h_c\} = \beta ch(X, \ X \setminus H; \ \tau) \ hold \ and \ so \ (r_H)^* = (r_H)^*,_0 \ holds.$

References Références Referencias

- 1. M. E. Abd El-Monsef, S.N.El-Deeb and R. A. Mahmoud, β -open sets and βcontinuous mappings, Bull.Fac. Sci. Assint Univ., 12 (1983), 77-90.
- 2. M. E. Abd El-Monsef, R. A. Mahmoud and E. R. Lashin, β -closure and β -interior, J.Fac.Edu. Ain shams Univ.,10 (1986), 235-245.
- 3. D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38 (1) (1986), 24-32.
- 4. S. C. Arora, Sanjay Tahiliani and H.Maki, On π generalized β -closed sets in topological spaces II, Scientiae Mathematica Japonice, 71 (1) (2010),43-54.
- 5. R. A. Mahmoud and Abd-El-Monsef, β -irresolute and β -topological invariant, Proc. Pakistan. Acad.Sci., 27 (1990), 285-296.
- 6. O.Njastad, On some class of nearly open sets, Pacific. Jour. Math., 15 (1965), 961-970.

Notes

GLOBAL JOURNALS GUIDELINES HANDBOOK 2019

WWW.GLOBALJOURNALS.ORG