

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS AND SPACE SCIENCE
Volume 19 Issue 10 Version 1.0 Year 2019
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Why are the Earth's Magnetic Poles Flipping Irregularly?

By Prof. Maria Kuman
Holistic Research Institute

Abstract- The spinning of sun and earth induces their magnetism and determines their magnetic poles. The magnetic poles of the sun are periodically flipping like a clock, which means the direction of spinning of the sun changes periodically from clockwise spinning when the sun is active (warm periods on Earth) to counterclockwise spinning when it is not active (Ice Ages on Earth). Simulating theoretical mathematical models predicted periodic reversal of the magnetic polarity of both the sun and earth. However, the magnetic poles of the earth flip rarely and irregularly, which means the direction of spinning of the earth change rarely and irregularly. Earth satellites found that our Earth is cleft and its center of mass is not in the center. This is probably what causes the direction of spinning of the Earth to change rarely and irregularly. Based on ancient texts, explanation is offered of why our earth is cleft.

Keywords: solar dynamo; earth dynamo; geodynamo; periodic flipping of sun's magnetic poles; periodic reversal of sun's spinning; aperiodic reversal of earth's spinning; cleft earth; simulating mathematical models.

GJSFR-A Classification: FOR Code: 049999

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Why are the Earth's Magnetic Poles Flipping Irregularly?

Prof. Maria Kuman

Abstract The spinning of sun and earth induces their magnetism and determines their magnetic poles. The magnetic poles of the sun are periodically flipping like a clock, which means the direction of spinning of the sun changes periodically from clockwise spinning when the sun is active (warm periods on Earth) to counterclockwise spinning when it is not active (Ice Ages on Earth). Simulating theoretical mathematical models predicted periodic reversal of the magnetic polarity of both the sun and earth. However, the magnetic poles of the earth flip rarely and irregularly, which means the direction of spinning of the earth change rarely and irregularly. Earth satellites found that our Earth is cleft and its center of mass is not in the center. This is probably what causes the direction of spinning of the Earth to change rarely and irregularly. Based on ancient texts, explanation is offered of why our earth is cleft.

Keywords: solar dynamo; earth dynamo; geodynamo; periodic flipping of sun's magnetic poles; periodic reversal of sun's spinning; aperiodic reversal of earth's spinning; cleft earth; simulating mathematical models.

I. REVERSAL OF THE SOLAR AND EARTH MAGNETISM PREDICTED BY SIMULATING MATHEMATICAL MODELS

Gary Glatzmeier of the University of California in Santa Cruz developed global three-dimensional time-dependent models to study the structure and dynamic of the interiors of stars and planets. The first of these models was written in 1980s to study the solar dynamo.¹ A modified version of this model was later created to study the earth dynamo called geodynamo.² Both models predicted periodic reversal of magnetic polarity.

In the geodynamic model, Glatzmeier simulated the processes in the Earth's core to explain how the Earth's spinning cranks its magnetic field. Dozens of equations were used (some of them nonlinear) to describe the Earth's molten core – its dimension, temperature, viscosity, etc.²

The most interesting result of this mathematical modeling was that the geomagnetic field must reverse its polarity spontaneously and periodically. Therefore, through certain intervals of time, the magnetic poles of the Earth flip - the northern magnetic pole becomes southern, the southern northern². Since the earth's

spinning induces its magnetic field, this means that the earth's spinning changes to the opposite periodically.

It was an exciting and unexpected result. The mathematical model showed that before the poles would flip, the intensity of the magnetic field dropped dramatically by 80%. After the flipping, the field strength gradually recovered. In the last 300 years the magnetic field of Earth has been steadily decreasing and had already decreased by 30%. It is continuing to decrease. Are we facing flipping of the poles?

Another interesting result of this simulating mathematical modeling was the prediction that when the magnetic field of the Earth starts decreasing patches with reversed magnetic polarity must appear on the Earth's surface.²

II. POSSIBLE ONCOMING REVERSAL OF THE EARTH'S MAGNETIC POLARITY?

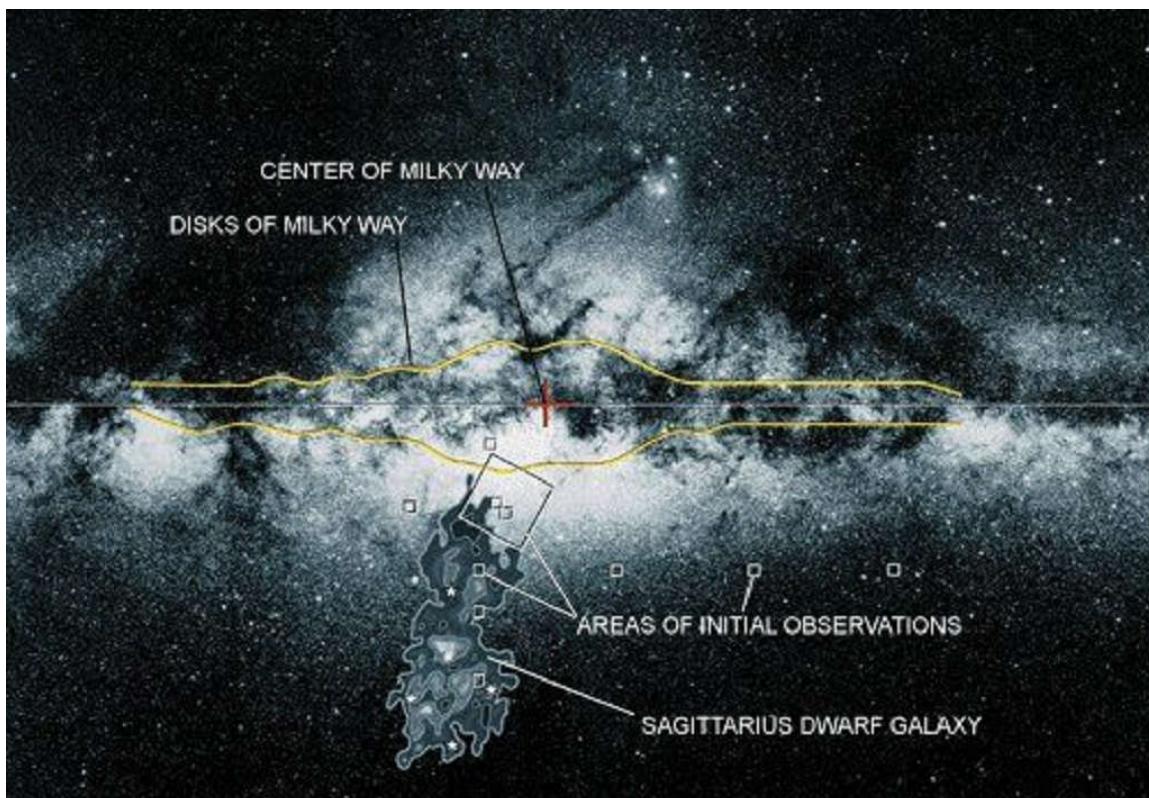
Patches with reversed polarity already exist on Earth and they are called South Atlantic Anomaly and South Pole anomaly.² These areas in the Southern Hemisphere have already northern magnetic polarity instead of southern. Glatzmeier's model predicts that with time the size and number of the areas with reverse magnetic polarity will gradually increase.² When the reversed magnetic polarity becomes dominant, the poles would flip – the southern magnetic pole will become northern.

Presently, there are huge ozone holes over the places with reverse magnetic polarity in the Southern Hemisphere - the South Pole and the South Atlantic. This allows huge amount of ultraviolet light to reach these areas, which melts not only the glaciers of the Antarctic in the South Pole, but also the glaciers of the Kilimanjaro in Africa and the Andes Mountain in Chile. Such ozone holes could be expected over all places with reverse magnetic polarity that would appear in the future. Why?

If the magnetic field of the Earth, by trapping ions of the solar wind, created the ionosphere, changes in the magnetic field of Earth could be expected to bring changes in the ionosphere. Indeed, over the South Atlantic Magnetic Anomaly the ionosphere was first found to be much closer to the earth's surface and now it is torn – there is an ozone hole on the top of it.³

However, I started writing as early as the year 2000 that ozone holes must always be expected over

Author: Ph.D, Holistic Research Institute, 1414 Barcelona Dr., Knoxville, TN 37923, USA. e-mail: holisticare@mariakuman.com


zones of reverse magnetic polarity on Earth. (See my book *New Apocalypse? What the Ancient Knew that We Don't Know*, 2000).⁴

III. THE REAL GEOMAGNETIC DYNAMO

Peter Olson⁵, in his article *The Geodynamo's Unique Longevity* published in Physics Today, volume 66, of November 2013, on p. 33, said: "Polarity reversals of the solar dynamo occur every 11 years almost like a clockwork. In contrast, the reversal of the geodynamo are more widely spaced in time and occur far less regularly". Reason for this lack of regularity is the anisotropy of the earth core – the earth is cleft and its

center of mass is not in the center. Satellites registered this in recent years and some scientists think it "may record past events in geodynamo history" (Olson, p.35),⁵ (see also Buffet).⁶

Interestingly, the ancient Hindu astronomy Surya Siddhanta claims that in the past (about two million years ago) when the Sagittarius Dwarf Galaxy, while merging to our galaxy, was drifting through our solar system, our Earth was swallowed by the Black Hole of this galaxy. We can still see the Sagittarius Dwarf Galaxy in our telescopes – its Black Hole and the remaining stars are still orbiting around the center of our galaxy (Fig. 1).

Fig. 1: The Sagittarius Dwarf Galaxy orbiting around the center of our galaxy

The Earth was sucked in, spun around, overheated (at which most of the Earth's crust melted), and spat out because it somehow went to the center of the Black Hole. This left our Earth cleft and this makes the Earth reverse its magnetic polarity rarely and irregularly. What was left of the old crust was called 'Asa', which means 'old' in Sanskrit. From here came the name 'Asia'. Maybe we should believe this Surya Siddhanta's story because:

- 1) Our satellites found strong anisotropy of the earth's mass distribution, which Olson thinks probably "record past events in geodynamo history"⁵, and
- 2) We can still see in our telescopes the Black Hole of the Sagittarius Dwarf Galaxy with the leftover stars orbiting around the Black Hole of our galaxy.

IV. RUSSIANS FINDING ABOUT UNEVEN DEPOSITS ON EARTH

Russian scientists found that the diameter of earth has increased 1.5 times in the last 300 million years.⁷ This requires revision of our present belief that the size of earth grows from the deposit of cosmic dust because every year about 40 tons of cosmic dust is deposited on Earth.⁷ The observed growth of earth's diameter is way beyond what the deposit of cosmic dust could explain.

Beside this, the Russian scientists found that the cosmic dust is deposited on earth very unevenly. They found bulging at the northern pole from cosmic dust deposits and denting at the southern pole.⁷ They

offered no explanation why it is so. Here is our simple explanation to it based on nonlinear physics.

If the cosmic dust is deposited on the northern pole, the northern pole must be a vortex spinning clockwise and sucking energy in. Following the rule of the folded fingers of the right hand, when our folded fingers show the direction of electric currents (or direction of spinning), our thumb shows the direction of the induced magnetic field. Let us apply this to vortex spinning clockwise. When our folded fingers are in the clockwise direction of the vortex spinning, the thumb shows inward direction of the magnetic field.

Thus, if the cosmic dust is deposited at the northern pole, the northern pole must be a vortex spinning clockwise and sucking energy and dust. If the earth is dented at the southern pole, this means that the southern pole is an anti-vortex spinning counterclockwise and loosing energy (and matter). Only counterclockwise spinning anti-vortex could induce magnetic force off the southern pole, which would explain the denting.

From the fact that the cosmic dust is mostly deposited on the northern pole, while the southern pole is losing dust, it follows that our earth is vortex on top of anti-vortex. From the fact that the diameter of earth has evenly grown 1.5 times in the last 300 million years, it follows that our earth is continuing to grow as it spins by continuing to turn the environmental space matrix into matter.

When the earth reverses its direction of spinning and the magnetic poles of the earth change to opposite, the dented southern pole will become northern pole and start accumulating cosmic dust. Thus, periodic flipping of the magnetic poles of the earth or periodic reversal of the direction of earth's spinning would take care the cosmic dust to be evenly distributed. If the magnetic poles of the cleft earth are not flipping periodically, the uneven deposit (growth) could make our earth even more cleft.

V. CONCLUSION

Simulating mathematical models predict periodic reversal of magnetic polarity of our sun and earth. Unfortunately, the simulating models didn't consider the cleft shape of our earth. Since the earth is cleft (earth satellite found this), the reversal of the magnetic polarity of the earth is rare and irregular. Ancient texts were cited in the article, which explain why the earth is cleft.

The observed uneven distribution of cosmic dust was explained. The substantial increase of the earth diameter in the last 300 million years could be explain only if environmental space matrix exists and is continuously transferred into matter as the earth spins (just as the energy of the Sun increases as the Sun spins).⁸

REFERENCES RÉFÉRENCES REFERENCIAS

1. G. A. Glatzmeier, Numerical Simulation of Stellar Convective Dynamos, *J. Comp. Phys.*, **55**, 461 (1984).
2. G. A. Glatzmeier and P.H. Roberts, Simulating the Geodynamo, *Nature*, **377**, 203 (1995).
3. M. Barttos, Has the Magnetic Pole Reversal Already Begun? *Internet* (2005).
4. M. Kuman, *New Apocalypse? What the Ancient Knew that We Don't Know*, Health and Happiness Books, 2000.
5. P. Olson, The Geodynamo Unique Longevity, *Physics Today*, **66** (11) 30 (2013).
6. B. Buffett, Earth's Enigmatic Inner Core, *Physics Today*, **66** (11) 37 (2013).
7. V. Tohoplav, T. Tihoplav, The Conscious of the Universe, Krilov, 2007 (Russ.).
8. M. Kuman, Solar Energy and Dynamic, *Open Access Journal of Mathematics and Theoretical Physics*, 2 (2) 2019.