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Abstract-

 

Earlier [0] analyzed the behavior of the “dynamic 
point” - the harmonic oscillator. But there are phenomena for 
which even the damped harmonic oscillator is not elementary, 
but primitive. ELEMENTARY is an oscillator, which was 
previously called simply parametric, but, as shown in this 
work, strictly speaking, should be called parametrically excited 
anharmonic oscillator. As the analysis showed, this oscillator 
has stationary solutions for a harmonic oscillator at a doubled 
resonant frequency and for only one strictly defined level of 
attenuation, the deviation from which leads to a catastrophic 
increase, or to full cancellation of the oscillations. As shown in 
the elementary model, the doubled resonant frequency of the 
excitation occurs with orthogonal (transverse) oscillation at the 
frequency of the longitudinal resonance. This analysis was 
done to describe the anomalous non-transmission band in 
boron nitride.

 Ordin, S.V., Chaos – Imaginary Ostensibility  – 
Orthogonality, GJSFR 2019 Vol.19

 I.

 
Mate-Solutions for the Natural

 Oscillations of a Parametric 
Oscillator
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The Hill equation does not have a common 

analytical solution and even its approximate solutions 
are practically not used. In practice, its particular case is 
used with the harmonic dependence of the oscillator 
resonant frequency deviation, which is expressed by the 
Mathieu formula

 

( )( )
2

2 2
002 1 cos 0tyd y

dt
γ ωω ω+ + ⋅ ⋅ ⋅ = ,   (2)

 

where 0
2γ ω - the relative modulation depth of the 

resonant frequency.
 The Mathieu formula has a common analytical 

solution, expressed through the above and named 
Mathieu functions, but because of its cumbersomeness, 
and it is not strictly rigorously analyzed purely 

mathematically, which resulted in the lack of rigor of the 
physical models built on it. 

Both equations cited correspond to an ideal, 
non-damping harmonic oscillator. Although some kind 
of confusion brought the index used in the Mathieu 
formula to denote the depth of modulation and, thereby, 
unconsciously, tied it to the attenuation. Therefore, for 
the “harmonic” parametric oscillations, the base 
models, which are beautiful but inadequate to the actual 
physical processes (Figure 1 from [1, 2]), are rarely 
used in practice and in quantitative calculations. And 
during the initial analysis of the stopband in boron 
nitride, they gave us nothing but the obvious in Figure 1 
— orthogonal, transverse oscillations parametrically 
“feel” the longitudinal resonance. 

 

Fig. 1: The basic “picture of excitation” of parametric 
oscillations — the gray areas and its “refinement” —the 
red lines (above the 0.1 level, the Mathieu model does 
not work) 

In depicted in Figure 1.the model as the 
statement of the analysis problem is precisely the 
practical need to detect “parasitic” vibrations. But the 
analysis of the oscillations of the actually modified, 
anharmonic oscillator (which actually gives Mathieu 
functions) was not carried out, but the set of modulating 
frequencies shown in Fig. 1 was taken for the OWN 
frequencies of this oscillator. 

So the model shown in Figure 1 and we needed 
only as a seed in the direction of the search - what is the 
result we are looking for? And the analysis of the 
oscillator frequencies themselves had to start from 
“zero” - with Mathieu, with its functions, namely with 
OWN transverse (in the figure) modified vibrations, and 
not longitudinal (in the figure), excited by a tuning fork in 
Fig.1. 
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he general dependence of the resonant frequency 
of a harmonic oscillator 0ω on changes in its 
parameters: mass or stiffness, is described by the 

Hill equation:
T



To bring it into conformity with reality, we 
immediately introduce the damping into the Mathieu 
equation, which we will need later on and without which 
in describing the harmonic oscillator we cannot do 
without invoking an abstract singularity in the form of the 
Dirac delta function. And in order to avoid confusion, let 
us return the attenuation designation γ , and denote the 
modulation coefficient k .

 
We

 
also assume, without loss 

of generality, as in the analysis of a simple harmonic 
oscillator, its own resonant frequency . Then 
equation (2) takes the following form:

 

( )( )
2

2 1 cos 0d d k t y
dt dt
y yγ ω+ ⋅ + + ⋅ ⋅ = ,   (3)

 

Both in form and in fact, equation (3) 
corresponds to a harmonic oscillator with a single 
Eigenfrequency and with a driving force of an arbitrary 
frequency: 

( )
2

2 cosy yd d y k t y
dt dt

γ ω+ ⋅ + = − ⋅ ⋅ ,  (4) 

This elementary rewriting (4) indicates a 
fundamental point, without regard to which the analysis 
is not connected with reality and is meaningless: the 
Mathieu equation describes such a parameter change 
that is not just a parameter change for OWN (transverse 
in Figure 1) vibrations, but let but a real driving bias / 
force, parallel to the amplitude of the bias of OWN 
oscillations. But this compelling force is specific - it is 
itself proportional to the magnitude of the resulting 
displacement it initiates. This leads to the nonlinearity of 
its solutions, which gives grounds to call expression (4) 
the Mathieu equation of the anharmonic oscillator. 
We will analyze its decisions: ,( )tY ω = (5) 

2 2
2 2

2 2 2 2
4 2 4 2=e 1 , , e 2 , ,

2 2
t tk t k tC MathieuC C MathieuS
γ γγ ω γ ω

ω ω ω ω
− −   

         
      

− + − +− − + − −

 
where the constants C [1], C [2] are given by two initial 
conditions precisely for Y. It is they that give the initial 
impulse for Y, which determines the starting amplitude 
and phase, but the OWN fluctuation in Y, subject to, 
according to formula (3) amplitude and phase 
deviations. 

And so, as a consequence of what has been 
said, the real OWN, described by the Mathieu functions, 
the oscillations of the anharmonic oscillator, in contrast 
to the purely sinusoidal oscillations of the harmonic 
oscillator, also have a similar sinusoidal mode of 

oscillations at OWN frequency , BUT! their 

amplitude and phase are not constant (as with harmonic 
oscillations), but change in time, which is described by 
Mathieu functions. By setting the maximum parameters: 
an unrealistically large modulation factor of 10% and an 
unrealistically small zero attenuation and using the 
boundary conditions: y (0) = 0, y '(0) = 1, for a 
parametric modulation frequency equal to twice  we 
get its function of time and its sinusoidal approximation 
in the initial section (Fig.2). 

Fig. 2: Solution of the Mathieu equation for doubled modulation frequency and its approximation in the initial section 
by sine at single frequency 
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The time dependence of the amplitude and 
phase of OWN oscillations at a frequency  shown in 
Fig. 2 makes the frequency pattern shown in Fig. 1 
ambiguous and incomplete. First, in Fig. 1, the 
modulation frequencies are indicated, and not the 
frequencies of OWN SPECIES. Secondly, on the 
asymptotics, with time tending to infinity, there is no exit 
to saturation and a third, time coordinate is required, the 

change along which is specific for each frequency of 
parameter change. At the same time, the picture shown 
is conditional, since it is not determined from which area 
of the three-dimensional space, at what point in time, 
each projection onto the drawing plane shown in the 
figure. So conditional that from the “received” in the 
classical works [1, 2] and the series of “own” parametric 
oscillations used in Fig. 1 *ω  

          

2 2 1 2 1 2 1* , 1,2,3..., 2, 1, , , , , , ,.
3 2 5 3 7 4

n
n

ωω = = = ⇒
            

(6)

even with zero attenuation conditionally threshold, in the sense that capable of leading to an increase in oscillations 
over time, only two modulation frequencies can be considered: 

* 2, 1ω = . 

Those. the doubled modulation frequency shown in Fig. 2, and a single modulation frequency with a smaller 
amplitude rise rate of about 300 times (Fig. 3). 

Fig. 3: Solving the Mathieu equation for a single modulation frequency and the original sine

At the next “threshold” frequency 02 3ω , even with zero attenuation, we have only weak pre-excitation (Fig. 4). 
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Fig. 4: Solution of the Mathieu equation for the modulation frequency of 2/3 and the original sine

And at lower modulation frequencies (at higher, 
shown in Fig. 1, inverse modulation frequencies), the 
excitation of OWNEED FUNCTIONS can only be 
achieved formally by increasing the modulation factor 
beyond the applicability limit of the Mathieu model. 

And so, at any modulation frequencies, the 
OWN oscillator oscillations occur at the same OWN 
frequency (with some phase deviation), but either with a 
sharp increase and with almost no threshold (at zero 
attenuation), with a double modulation frequency, or 
with a weak increment at a single modulation frequency, 
or do not occur at all. T. h. To guess that when building 
a picture in Fig. 1, the author meant and I see no point in 

correcting it strictly, but qualitatively, conditionally, I 
showed her corrections with red lines. But the main 
feature is the unlimited increase of OWN on the marked 
two frequencies of parametric excitation with zero 
attenuation the same as that of the elementary harmonic 
oscillator BUT! without attenuation strictly at the 
resonant frequency. 

A more attentive analysis of the dependence on 
the attenuation of OWN oscillations of a parametrically 
excited oscillator at the most sensitive, twice the 
modulation frequency will be carried out with a 
reasonable 1% modulation: 
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Under the same conditions, it is possible to calculate the dependences for attenuation close to the threshold 
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(8)
 

The dependence of the amplitude of these OWN oscillations on time for different attenuations corresponds 
to the upper limit of the corresponding (superimposed in color) absolute values (Fig. 5, 6)

 

Fig. 5: The module of 0ω oscillation is parametrically excited by a double frequency

Рис.6: The module of 0ω oscillation is parametrically excited by a double frequency near the threshold of 
excitement
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A characteristic feature of the obtained 
dependences of the Mathieu amplitude on time is a 
small decrease in the initial segment that is independent 
of attenuation due to de-phasing of the initial conditions 
followed by a catastrophic increase or decrease in 
amplitude over time dependent on damping.

 
At the same time, the attenuation threshold for 

double frequency with 1% modulation, as shown in Fig.6 
and Fig.7, is 0.005 with great accuracy.

 

Рис.7:

 

The module of 0ω oscillation is parametrically excited by a double frequencynear the threshold of excitement  

© 2019   Global Journals

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IX

  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

III
Y
ea

r
20

19

138

  
 

( A
)

Parametrically Excited Anharmonic Oscillator



Fig. 8: A slight “instantaneous” drop in the amplitude of oscillations of the anharmonic oscillator to the saturation 
level with time at the threshold attenuation 

The numerical value of the attenuation threshold 
is shown in the figure. In this damping, the oscillation 
amplitude weakly depends on the change in the initial 
conditions for the magnitude of the displacement and its 
derivative in a large time interval (Fig. 8). 

However, the threshold amplitude increases by 
a factor of 200 if the unit acceleration is set to zero. But 
the characteristic asymptotic form of the time 
dependence of the amplitude is preserved. Thus, for the 
anharmonic oscillator, only for the threshold attenuation 
only, it is possible to construct, as for the harmonic 
oscillator, the frequency "resonance" characteristic. 
Whereas even an insignificant difference between 
attenuation and threshold leads to the time trend of the 
oscillation amplitude either to zero or to infinity. 

And so, the numerical analysis of simple, but 
rigorous calculations of solutions to the Mathieu 
equation allows us to make qualitative conclusions and! 
allows them to be associated with an elementary 
physical model, which for a harmonic oscillator is in 
good agreement with many optical experiments and 
models. 

II. Elementary Dynamicmodels 

Elementary dynamic models of mechanics are 
used as basic in optics, in electricity, and in aero- and 
hydrodynamics, and static mechanical models are used 
as their asymptotics at zero frequency. But the 

development and refinement of dynamic models is often 
carried out at the expense of their complication and the 
introduction of additional, not rarely redundant dynamic 
parameters, which leads to their incorrectness - violation 
of the conditions of applicability of the original, basic 
static model. Therefore, we first consider the basic static 
model of a harmonic oscillator, the dynamic 
characteristics, which, describing well the normal lattice 
vibrations in Fedor's crystals, were previously presented 
in Chaos-Imagination-Orthogonality. In anisotropic 
crystals,

 

it is necessary to consider not one oscillator, 
but at least two, corresponding to the orthogonal 
crystallographic directions of oscillators in a simple 
uniaxial crystal. Within the framework of this model, the 
frequencies of normal mechanical (excluding the 
Coulomb additive) lattice modes of an anisotropic 
crystal are associated (as shown in Fig. 9) only with the 
bond stiffness of ions in the lattice along the main 
crystallographic directions, for a uniaxial crystal: 
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Fig. 9:  Anelementary model of normal vibrations in an an isotropic medium, allowed and forbidden for light 
incidental on g the C axis

However, as shown for a separate chain of ions along the C axis (Fig. 9c and 10), the displacement of the 
central (positively conditional) along x increases the actual tension of the spring of the C axis along y, i.e. increases 
the resonant frequency of longitudinal oscillations propagating along C. So, the orthogonal spring stiffness

, CCξ ξ⊥ used in dynamics are some given values. 

When the central ion is displaced along the C axis by an amount (Fig. 10a), an imbalance of forces 1
yF and 

2
yF

 
arises without an increase in the rigidity of the ion bonds:

 

            
         (9)

where the effective length 0l determines the equilibrium tension of the “springs” along y. 

Fig. 10: Forces arising in a chain of atoms along the C axis with disregard of orthogonal C bonds of ions
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And the total doubled stiffness Cξ determines the resonant frequency (fig.10c): 

                                              
                                              (10) 

But in the highly ordered rhombohedral phase of boron nitride, with the detection of an optical anomaly in 
which the analysis presented itself began, the ions form pairs along the C axis, i.e. For the formation of the resonant 
frequency for oscillations along the C axis in boron nitride, the single stiffness is responsible: 

                                                                
                                                     (11)                                                     

When the central (positive, conditionally) ion perpendicular to the C axis is displaced by the amount 
(Fig.10b), the balance of the initially balanced forces

1
yF and 2

yF  is maintained, and due to the additional 
lengthening of the “springs” they increase in magnitude by the amount *F  (Fig.10b). At the same time, given the 
elementary geometric relations 

       

(12)

You can get the dependence on x∆  - the magnitude of the displacement perpendicular to the C axis of the 
orthogonal forces - equivalent increments of the forces 1

yF and 2
yF  

(13)

Given the smallness of the displacement, it is possible to obtain simplified expressions for these forces. 

                                                        
(14)

Thus, when the ion is displaced strictly perpendicular to the C axis, an additional, but balanced component 

of the force along the C axis arises, which leads to a change in stiffness (length of the initial tension 0l ) of the spring 

along C, both at linear and harmonic displacements. For, again, boron nitride, where the ions form a pair, we have 

           

 (15) 

If we set the frequency of harmonic displacements equal to the resonance 0ω , then decomposing the 
change of the parameter in a Fourier series, and, taking into account the first coefficients, we get 

             (16) 

Neglecting in the resulting expression (16) for the dependence of the longitudinal stiffness on the transverse 
oscillations of a small constant additive to the resonant frequency due to the zero term, we obtain the parametric 
Mathieu excitation at twice the most sensitive frequency 

                                                     

                                      (17) 
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The excitations of the third and the following small Fourier coefficients in Φ.16 can be safely neglected, 
since it was shown above that the sensitivity of the excitation decreases sharply. 

And so, if the ion displaced in x additionally begins to displace in y, then the returning force and the 
resonant frequency of oscillations along the C axis will be determined by the increased rigidity, in accordance with 
ф.16. But the main excitation at the doubled resonant frequency for longitudinal oscillations is a direct consequence 
of independence from the direction of displacement of the transverse oscillation strictly at the frequency of the 
longitudinal resonance. 

For shear force of f. (14), since Since the transverse oscillations (at the longitudinal resonant frequency) are 
alternating, then there is, of course, no constant displacement. If we take into account the transverse stiffness

Cξ ⊥  that was thrown out of this consideration, we obtain a small quadratic additive related to nonlinearity 

                                           
                                                 (18) 

and with harmonic excitation at the longitudinal resonant frequency we have a set of its odd harmonics falling down 
with the number 

(19)
 

Those the oscillation stiffness perpendicular to the C axis has a small additive that increases linearly with the 
oscillation amplitude due to the stiffness along the C axis.

 

The above calculations can also be used to examine the ion chain in a plane perpendicular to the C axis. To 

do this, it is enough to swap formally , CCξ ξ⊥ , not formally, to take into account the features of each chain, 

specifically in boron nitride, it is necessary to take into account that in its hexagonal atomic layers each ion is 
surrounded symmetrically located three ions (Fig. 11)

 

Fig.

 

11:

 

Geometric construction demonstrating the ratio of displacements and forces
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By displacing the central ion along x and reducing the parallel x bond, elementary geometric relations allow 
us to determine additionally the extension of two other bonds 

                          

( ) ( ) ( ) ( )

( )

2 2 22 2 2

2
22

12 2

1 1 2

*l l l x l x l l x l x

x x xl l x l x l l l l

 
   ≈   
  

 

= +∆ = ∆ + + ⋅∆ ⋅ = +∆ ⋅ + ∆

∆ ∆ ∆∆ = +∆ ⋅ + ∆ − = ⋅ + + −
                  (20) 

And the same to define additional restoring forces due to these connections and their algebraic sum 

                 

2 11 11

12 22

C C
C

C C

x
x

x

F l l lF l ll l l l ll
x x xF l

ξ ξ
ξ

ξ ξ

Σ ⊥ ⊥
Σ⊥

⊥ ⊥
Σ

  
        

 
  
 

+ ∆ ∆= → = ⋅∆ ⋅ + ≅ ⋅∆ ⋅ ++∆ + ∆⋅∆

∆ ∆ ∆≅ ⋅ ⋅ + ≈ ⋅

        (21) 

So instead of the unbalance shown in f.9 we get
 

                                                 
3

2 2
C C CxF x x xξ ξ ξ⊥ ⊥ ⊥+
∆∆ ≈ ⋅ ⋅∆ = ⋅∆                                 (22)

 

And, thus, for the frequencies of orthogonal phonons in boron nitride (Fig. 12):
 

 

Fig.

 

12:

 

The spectrum of "absorption" of radiation along the C axis in rhombohedral boron nitride  
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remembering f.11, we get the ratio

 
2

3 2
32

2.2
c

c
T T

T T

c

c

c c

c c
ξ
ξ

ξ
ξ

ω ω
ω ω

⊥  
 
 
 
 

⊥ ⊥⊥
⇒

 

(23)

 
The spectrum shown in Figure 12 can be strictly 

(without any quotation marks) called the absorption 
spectrum in the entire range shown, except for the 
anomalous in shape and forbidden by symmetry band 
between the low-frequency phonons propagating along 
the C axis. Identified additionally in the experiments 
described below, its anomalous nature and the feat of 
strictly conducting the presented theoretical analysis. 
And along the way, as follows from f.21, it was shown 
that stiffnesses inside the layer and interlayer bonds 
differ only two times, which does not correspond to the 
standard concepts of the Van der Waals interaction 
between polyatomic layers.

 
III.

 

Conclusion

 
Giant anisotropy of the electrical conductivity of 

graphite samples has pushed theorists to Van der Waals 
idealization of both graphite and boron nitride (C & BN). 
But, as was shown earlier, it was determined not by the 
properties of the graphite crystal itself, but by the texture 
of the samples. Both the erroneous discovery of 
“graphene” and the hype around it simply prompted the 
publication of experimental results and theoretical 
calculations of the real structure and real properties of C 
& BN. The real anisotropy of C & BN has nothing to do 
with theoretical “bad infinities”, but it is large, moreover, 
it is extremely possible in crystals. And this makes it 
possible to use C & BN as a model material, in 
particular for the analysis of lattice vibrations.

 

On the one hand, the difference in the 
frequencies of their orthogonal normal lattice modes 
(parallel and perpendicular to the C axis) almost 2 times 
makes them weakly coupled in frequency. And this 
leads practically to the independence of the 
corresponding spectra of the lattice reflection and! to 
the rigorous description of each spectrum by its 
classical, with low attenuation, harmonic oscillator 
(which, in fact, was analyzed in previous work).

 

On the other hand, this large difference made it 
possible to experimentally reliably register at the 
longitudinal resonant frequency a “forbidden” spectral 
feature with anomalous properties of the stopband. The 
theory of parametric interaction developed earlier, 
although it was consistent with the observed effect, as 
such, but led to contradictions and questions, but which 
could not be answered. The analysis carried out in this 
work showed that there was simply no qualitative idea 
about the properties of parametric Mathieu solutions, 
and, therefore, there were not even correct quantitative 
estimates. And most importantly, this analysis showed 
that it is at the frequency of orthogonal oscillations equal 

to the frequency of the longitudinal resonance that this 
resonance leads to an unlimited (until we go beyond the 
scope of the model itself) increasing the amplitude of 
the associated longitudinal-transverse oscillations, 
which leads to skipping-scattering. A detailed 
experimental analysis of this “anomaly” will be 
presented in the next article “Parametric interaction of 
normal modes in C & BN.
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