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Abstract- Self-similar motion for the flow between a piston and strong shock propagating in a non 
uniform ideal gas at rest has been studied. The solution to the problem is similar to that of 
hypersonic flows past the power law bodies. The gas ahead of the shock is assumed to be 
uniform and at rest. This is considered as a particular case of radiative piston problem. The 
shock is assumed to be very strong and propagating in a medium at rest in which density obeys 
power laws. This problem with spherical symmetry has got importance in astrophysics. To solve 
the gas dynamics problem, Chernyii’s expansion techniques have been used in which flow 
variables are expanded in a series of powers of ε, the density ratio across the strong shock. The 
approximate analytic solution has been obtained in closed form to the zeroth approximation. The 
problem discussed belongs to the self-similar motion of the first kind. The resulting analytic 
solution gives the flow variables distribution for plane, cylindrical, and spherical symmetry for 
different cases which satisfy the similarity conditions with accurate trend and values.
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Abstract-

 

Self-similar

 

motion for the flow between a piston and 
strong shock propagating in a non

 

uniform ideal gas at rest 
has been

 

studied. The solution to the problem is similar to that 
of hypersonic flows past the power law bodies. The gas ahead 
of the shock is assumed to be uniform and at rest. This is 
considered as a particular case of radiative piston problem. 
The shock is assumed to be very strong and propagating in a 
medium at rest in which density obeys power laws. This 
problem with spherical symmetry has got importance in 
astrophysics. To solve the gas dynamics problem, Chernyii’s 
expansion techniques have been used in which flow variables 
are expanded in a series of powers of 𝛆𝛆, the density ratio 
across the strong shock. The approximate analytic solution 
has been obtained in closed form to the zeroth approximation. 
The problem discussed belongs to the self-similar motion of 
the first kind. The resulting analytic solution gives the flow 
variables distribution for plane, cylindrical, and spherical 
symmetry for different

 

cases which satisfy the similarity 
conditions with accurate trend and values.
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  I.

 

Introduction

 he propagation of a blast wave in an 
inhomogeneous medium, with ambient density 
given by

 

ρο

 

αx

 

-α, where x is the distance from the 
center of explosion and α

 

is a positive number, has been
 

analytically studied by Sedov[1]

 

and Rogers[2]. The energy 
of the explosion does not vary with time, and the 
problem is self-similar. The uniform expansion of a 
piston in a homogeneous medium, taking into account 
the counterpressure across the shock, was numerically 
solved by Taylor[3]. Bhatnagar and Lal[4]

 

have also 
considered

 

explosion problem for finite shock strength 
in a non-homogeneous medium, both when the self-
gravitation of the gas is important, and when it is 
negligible. The motion produced by a piston moving 
according to the general law

 

R = C tn+1, where n>-1, for 
strong shocks, has been considered by Kochina and 

Melnikov[5] and Rogers[6], besides others, by solving 
numerically the ordinary differential equations obtained 
through similarity transformations. Wang[7]has obtained 
an approximate solution of a plane radiative piston. 
Sachdev and Ashraf[8]have considered the problems of 
plane, spherical, and, cylindrical pistons moving in an 
inhomogeneous medium and have obtained solutions in 
terms of Incomplete Beta functions. The problem of 
Sedov[1] and Taylor[3] was extended by Krashaninikova[9] 
to the case when the piston expands non-uniformly with 
a velocity U is given by  

                               U = Uοtn, (n > -1).…        ……. (1.1)     

where Uο is a constant. 
In this paper, self-similar solutions for the flow 

between a piston and the strong shock propagating 
non-uniformly in an ideal gas at rest obeying the power-
law density distribution are investigated. Ranga Rao and 
Purohit[10] have studied this problem numerically. The 
solutions of this problem are similar to that of the 
solutions of hypersonic flow past the power-law bodies 
obtained by Lees and Kubota[11]. They have shown that 
the condition for the existence of the solution is- 
𝜈𝜈

𝜈𝜈  + 2
< n ≤ 0, 

where ν = 1, 2, 3 for plane, cylindrical and spherical 
flows respectively. In all these works, the gas ahead of 
the shock is assumed to be uniform and at rest. 
Helliwell[12] studied the piston problem, in which the 
piston velocity is assumed to be of the form (1.1) and 
the density of gas ahead of the shock satisfies the law  

                                    ρο = Ar-w (w > 0) …………….. (1.2) 

where A is a constant. 
This problem has been considered as a 

particular case of a radiative piston problem in which 
there exists, by dimensional considerations, a relation 
between n and w, namely 
n = -w/w+5. 

In this paper, we consider the self-similar piston 
problem in which the piston velocity obeys the law (1.1). 
The shock is assumed to be strong and propagating in 
a medium at rest in which the density obeys equation 
(1.2). The problem with spherical symmetry has got 
importance in astrophysics, Parker[13]. We first observe 
that there are only independent dimensional constants 
Uο and A involved in the problem, and hence self-
similarity exists. Also, there cannot be, in general, any 
explicit relation between n and w as given by Helliwell[12]. 
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On the other hand, it is shown that for all physically 
meaningful flows the ranges for n and w are  

−(𝜈𝜈−𝑤𝑤)
𝜈𝜈+2−𝑤𝑤

< n< −𝑤𝑤(𝛾𝛾−1)
[𝑤𝑤(𝛾𝛾−1)+2]

 and0<w< 𝜈𝜈
γ
          (1.3) 

where γ is the ratio of specific heats. These conditions 
on n ensure the finiteness of density and pressure drag 
on the piston surface. Also, it is shown that when  n  
= 𝑤𝑤(𝛾𝛾−1)

[𝑤𝑤(𝛾𝛾−1)+2]
  , 

the flow becomes homentropic. The problem withγ = 7
5
, 

n = -w/w+5 considered by Helliwell[12] corresponds to 
homentropic flow. Numerical solutions for ν = 3, γ = 7

5
, 

and w = 1.5are given using the Adam Moulton method. 
Chernyii[14] has given an expansion technique to 

solve the gas-dynamics problem. The expansion 

parameter ε =γ– 1
γ +1

 , which occurs in the shock boundary 

conditions where γ is the density ratio across a strong 
shock. For gases when γ generally varies between 1 and 
5/3, this parameter is sufficiently small. He has 
considered the motion of a piston and the big explosion 
problem in a uniform medium, restricting mostly to 
zeroth-order solution. In an earlier paper, Chernyii[15] has 
given a particular solution of the piston problem in a 
homogeneous medium in an integral form to first order 
in ε. Wang[7] has also obtained an approximate analytic 
solution of a plane radiating piston, using Chernyii’s[15] 
technique. In this paper, we have employed Chernyii's[15] 
technique, in which flow variables are expanded in 
power series in ε and have obtained approximate 
analytic solutions in closed form to the zeroth 
approximation. This problem belongs to the class of 
self-similar motion of the first kind in which the similarity 
exponent occurring in the law of shock propagation can 
be determined in advance from physical considerations. 

II. Basic Equations 

The partial differential equations of motion, 
continuity and energy for one-dimensional unsteady flow 
of a perfect gas are transformed into a set of ordinary 
differential equations, 

    λ ( 𝑣𝑣  − δ ) 𝑣𝑣′ + P′
R
   +𝑣𝑣(𝑣𝑣 − 1)  − (w – 2) P

R
 = 0    (2.1) 

            λ [𝑣𝑣′+ ( 𝑣𝑣 − δ ) R ′
R

]  + (𝜐𝜐 − w)  𝑣𝑣= 0    (2.2) 

λ ( 𝑣𝑣 − δ ) [ P
′

P 
γR ′

 R
 ] –2 + [ w (γ – 1) + 2 ] 𝑣𝑣= 0  (2.3) 

by the following transformations  

𝑣𝑣=  𝑟𝑟
t
  V ( λ ) ,    R = A

rw R ( λ ),    p= A
rw−2t2 P(λ) . (2.4) 

                           λ =  (δλ
�

U0
 ) r t - δ ,  δ = 1 + n    (2.5) 

The similarity variable λ is took in the form (2.5) 
by considering Uο and A as the basic dimensional 
constants involved in the problem and, it takes values 

λ� and 1 at the piston surface and behind the shock 
respectively. V, R, and P are non-dimensional reduced 
particle velocity, density and, pressure, respectively.  
The boundary conditions for the strong shock are  

V (1) =  2 δ
γ+1

 ,      R (1) = γ + 1
γ− 1

   ,   P (1) =  2 δ2

γ+1
  (2.6) 

and the kinematic condition on the piston gives  

                                      𝑣𝑣(λ�) = δ                             (2.7) 

For the existence of solutions in the self-similar 
form, certain similarity conditions are to be satisfied. The 
total energy of the flow between the piston surface and 
the shock front, using (2.4) and (2.5), can be written as 

𝐸𝐸 = 𝐴𝐴𝐾𝐾ν�𝑈𝑈0
𝛿𝛿λ��
�ν+2−wt  .δ(ν + 2 −  w) − 2∫ �1

2 RV2 +  P
γ−1� λ

ν+1−w d1
λ λ     

where                                      𝐾𝐾ν =  2ν−1 𝜋𝜋(ν−1)(4−ν)
2 .          

 
(2.9)

 

For the flows driven out by the piston, the 
energy always increases with time. This is possible only 
if 

 

                         𝑛𝑛 > −( ν−w  
ν+2−w), w< ν……    …..     (2.10) 

The second condition of (2.5) is required to 
make sure that for all physically meaningful 
solutions,𝛿𝛿lies between zero and one. These conditions 
ensure that the pressure drag on the piston is finite. 
Further, it is necessary that 𝑑𝑑𝑑𝑑

𝑑𝑑λ<0 in the domain of 
interest. Thus, it follows that the density at the piston 
surface is finite if  

                           2
νγ+2−w < 𝛿𝛿 ≤ 2

𝑤𝑤 (𝛾𝛾−1)+2………..         (2.11) 

For all gases (with 𝛾𝛾 >1) the ranges for n and w 
can be obtained from (2.10) and (2.11) as 

 

          − (ν−w )
ν+2−w < 𝑛𝑛 ≤ − 𝑤𝑤 (𝛾𝛾−1)

𝑤𝑤 (𝛾𝛾−1)+2  , 0 < 𝑤𝑤 < ν
𝛾𝛾…….     (2.12)

 

These are the conditions on n and w for the 
existence of physically meaningful solutions. 

 

Following Chernyii’s[15]
 

technique, we expand 
reduced flow variables as 

 

                        𝑉𝑉 = 𝑉𝑉(0)+𝜀𝜀
 

𝑉𝑉(1) + 𝜀𝜀2𝑉𝑉(2) + ⋯  .      (2.13)
 

              𝑅𝑅 =  𝑅𝑅(0)

𝜀𝜀 +      𝑅𝑅(1)     +   𝜀𝜀𝑅𝑅(2) + ⋯…….     (2.14)
 

                 𝑃𝑃 =  𝑃𝑃(0) + 𝜀𝜀𝑃𝑃(1) + 𝜀𝜀2 𝑃𝑃(2) +  … ……       (2.15)
 

We substitute expansions (2.13) to (2.15) into 
equations (2.1) to (2.3) and obtain the following set of 
differential equations for the zeroth approximation— 

λ�R(0)V(0)  d V(0)

dλ
− δR(0)d V(0)

dλ
�+ R(0)V2(0) − R(0)V(0) = 0… (2.16)

 

λ �R(0)  d V(0)

dλ + V(0)d R (0)

dλ − δ dR(0)

dλ
� + (ν−w)R(0)V(0) = 0.… (2.17)

 

λV(0) �R(0)  dP(0)

dλ
–γP(0)dR(0)

dλ
� − δλ �R(0)  dP(0)

dλ
–γP(0)dR(0)

dλ
�
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(2.8)



− 2𝑃𝑃(0)𝑅𝑅(0) + [𝑤𝑤(𝛾𝛾 − 1) + 2]𝑅𝑅(0)𝑉𝑉(0)𝑃𝑃(0)  =  0… (2.18) 

The differential equations for the first and 
second order approximations were too complicated to 
be amenable to analytic solutions.  
The boundary conditions at the shock become  

          𝑉𝑉(0) =  2𝛿𝛿
𝛾𝛾+1  , 𝑅𝑅(0) = 1 ,𝑃𝑃(0) = 2𝛿𝛿2

ν+1 …………     (2.19) 

Integrating equation (2.16) to (2.18) with 
boundary conditions (2.19), we obtain the solution as  

                      
𝑉𝑉 = 𝑉𝑉(0) =

1−�1−4(1−𝛿𝛿
𝛿𝛿  )𝐴𝐴λ1/𝛿𝛿

2�1−𝛿𝛿
𝛿𝛿 �

………     (2.20) 

                          𝑅𝑅 = 𝑅𝑅(0) = 𝐵𝐵
v−δ𝑒𝑒

𝜔𝜔……….............         …     (2.21) 

                           
𝑃𝑃 = 𝑃𝑃(0) = 𝐶𝐶𝑅𝑅𝛾𝛾𝑒𝑒−𝜖𝜖λ−2/𝛿𝛿 …....……     (2.22) 

 

 

 

 

 

 

 

 

 

III. Results and Discussions 

Equations (2.20) to (2.21) give the solutions for 
the reduced particle velocity, density, and pressure up 
to zeroth approximation. The differential equations for 
the first and second-order terms in ε were not amenable 
to an analytic solution. The error in the solution is of 
order  O(γ), which is small if γis of O(1). Usually, the 
solution is obtained by integrating similarity equations 
(2.1) to (2.3) starting with the known values of flow 
variables at the shock, given by equation (2.6) and 

imposing the condition that the solution curve must pass 
through the appropriate singular point. Ranga Rao and 
Purohit[10]

 
have given numerical solutions for the 

spherical piston for
 
γ = 7

5
, w = 1.5, by integrating the 

ordinary differential equation in terms of a new 
dependent variable, Z = γ  𝑃𝑃

R 

 
and

 
V. They started the 

integration from the known value at the shock and 
continuing until the value𝜆̅𝜆is reached such that 𝑉𝑉( 𝜆̅𝜆)= δ. 
Our analytic solutions give the flow variables 
distributions for plane, cylindrical and spherical 
symmetry for different values of n and w, which satisfy 
the similarity conditions (2.10) and (2.12) with accurate 
trends and values. 

 

Solutions for the flow between the piston and 
shock have been depicted graphically in figures1 to 6, 
for the spherical, cylindrical and plane symmetry for 
different values of n, when γ = 7

5
 ,  which is of importance 

in astrophysics. 
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where, 𝐴𝐴 = 2𝛿𝛿(𝛾𝛾+2𝛿𝛿)
(𝛾𝛾+1)2
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3 � }

−
1
𝛿𝛿 �

𝐴𝐴2
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𝛿𝛿2𝐴𝐴4

4 + 2𝑆𝑆
λ3

3 �

𝑆𝑆 =
1− 𝛿𝛿
𝛿𝛿 , 𝐵𝐵 = [𝑅𝑅(v− δ)𝑒𝑒−𝜔𝜔 ]λ=1

𝐶𝐶 = �𝑃𝑃𝑅𝑅−𝛾𝛾λ2/𝛿𝛿𝑒𝑒𝜔𝜔�
λ=1

𝜖𝜖 = −�𝜂𝜂𝐴𝐴+
𝐴𝐴2

2 �𝜂𝜂𝑆𝑆+
𝜂𝜂𝛿𝛿 − 2
𝛿𝛿2 � + �

𝜂𝜂𝛿𝛿 − 2
𝛿𝛿2 ��

𝐴𝐴4𝑆𝑆2

4 +
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3 ��+

𝜂𝜂𝐴𝐴𝜆𝜆1/𝜆𝜆 −
𝜆𝜆2/𝛿𝛿𝐴𝐴2
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𝜂𝜂𝛿𝛿 − 2
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Velocity Distribution for Spherical Symmetry
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Fig. 2:

 

Density Distribution For Spherical Symmetry
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Fig. 3: Pressure Distribution For Spherical Symmetry 
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  Fig. 4:

 

Velocity Distribution Behind the Shock for Cases with Clyindrical and Plane Symmetry
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Fig. 5: Density Distribution Behind the Shock for Cases with Clyindrical and Plane Symmetry 
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Fig. 6:
 
Pressure Distribution Behind the Shock for Cases with Clyindrical and Plane Symmetry
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