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Alcohol Producton of Wine Yeast Strains
Isolated in Tokaj Region

Zoltan Kallai %, Zsuzsa Antunovics ° & Gyula Oros °

Absract- The dynamics of ethanol production of wine yeasts
were examined in model experiments as well as in the winery.
The ethanol concentration in young wines fermented by local
strains of Saccharomyces cerevisiae, S. uvarum or Starmerella
bacillaris (21, 2 and 2, respectively) did not vary considerably
(c.v. 1.9 %). All of them produced significantly higher amount
of ethanol than the type strain [ATCC 26108] of S. cerevisiae.
However, their performance during the fermentation process
diverged significantly. Thus the lag phase varied between 33
and 123 hours, while the time requested to produce half of the
final ethanol concentration varied between 67 and 294 hours.

The dynamics of ethanol production differed at high
degree between S. cerevisiae strains isolated of several
vintages of local wines (c.v. 25 %), where the intensity of
specific ethanol production (ISEP) varied between 0.81-4.56 %
ethanol per day. Reverse relationship was revealed between
the Lag phase and the ISEP (*=0.858, p>0.01), and the
circumstances of fermentation did affect this trend. Based on
their properties, S. wvarum and St bacillaris strains applied
nowadays in wine making have been positioned in the ranges
of S. cerevisiae strains.

Baule-Mitherlich, Gompertz, hyperbolic, logistic,
logarithmic, polynomial, and probit functions were applied to
analyze the dynamics of fermentation. All functions fitted well
to experimentally measured values at the range of 2 to 9 % of
ethanol, that means, the half time could be approached by any
of them at p<0.05 level. However, the predictive power of
these functions differed significantly; both Lag phase and End
point of fermentation could be calculated with requested
precision (p<0.001) only with a polynomial function. The
constant and secondary coefficients of this function
counteracted to the primary one strictly in strain dependent
manner, and the role of these three factors groups also varied
in strain-dependent manners during the vinification process.
Keywords:  yeast, wine, fermentation  dynamics,
saccharomyces, starmerella, tokaj.
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. INTRODUCTION

he wine is an alcoholic drink usually fermented
Tfrom grape juice by yeasts, and it is the result of

the transformation of sugars into ethanol and
carbon dioxide. This process has been well studied
since the pioneer works of Pasteur, and numerous
papers have focused on the dynamics of yeasts during
the wine fermentation elucidating the role of
Saccharomyces species. Among them, S. cerevisiae is
considered to be primarily responsible for ethanol
production metabolizing sugars via the fermentative
pathway when the sugar concentration is high, and this
species is widely preferred for initiating fermentation.

More than 40 of the 1500 known yeast species
were isolated from grape must [1]. Nevertheless, some
species of diverse microbiota presented in the vineyards
[2, 3] and musts [4, 5] are also involved into the
fermentation during the first stages of winemaking [6-9].
Still, studies comparing yeast ecologies in vineyards
and cellars clearly showed that the yeasts present on
grapes are subject to natural phenomenons as grape
maturity and weather, as well as to human interventions
and the phytosanitary treatments carried out [10, 11].
Thus, in ocenological conditions, these species due to
their low capacity to multiply and their particular needs
for micronutrients and oxygen [12, 13] have limited
fermentation capacities compared to Saccharomyces
yeasts, which are adaptable to hostile conditions[14].
Consequently, the populations of residual indigenous
yeasts quickly decrease [15], and most of them
disappear when the ethanol concentration increases
over 4-5% (v/v) [16].

Nowadays, S. cerevisiae and S. uvarum are the
leading species of alcohol fermentation. Still, St.
bacillaris and Torulaspora delbrueckii also able to
complete the alcohol fermentation [17], and these yeast
species became a concern of interest in modern
winemaking. Moreover, due to the consumer oriented
wine markets, there is an ever-growing quest for
specialized wine yeast strains possessing a wide range
of optimized, improved or novel oenological properties
[18], and winemakers have started to believe in the
synergetic effect of some non-Saccharomyces species
in matters such as aroma intensity and complexity [19]
(Table 1), as the incidences of non-selected
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Saccharomyces or non-Saccharomyces opportunistic
yeasts during fermentations were usually related to off
flavors improving the overall quality of the wines [20,
21]. Nevertheless, their secreted enzymes could be
detected throughout the fermentation process [22, 23],
impacting the wine fruitiness and complexity [24].

In present times, due to fears towards GMO
technologies and legal regulations, researchers have
turned their attention to the Saccharomyces sensu
stricto group. It is well known that members of this group
can hybridize with each other in the nature. Under
laboratory conditions any of the Saccharomyces species
can form hybrids with any other species of the genus
[25-43]. Hybridization brings all alleles of all relevant
genes of different strains together and recombines them
during segregation/chimerization of the hybrid
genomes. The hybrids and their chimeric derivatives can
outperform the parental strains in technologically
relevant properties including stress response [41]. There
are countless possibilities in this mechanism that can be
exploited to design and create strains optimized for
industrial tasks. For instance, comparative genomic
analyses revealed that the thiol-releasing wine yeast,
VIN7, has an allotriploid hybrid genome with S.
cerevisiae and S. kudriavzevii origins [44] that explained
the genetic basis of this VIN7’s unique capacity to
produce wines with a distinctive guava-like aroma [18].

By adopting and  authorizihg  GMO
technologies, the creation of engineered industrial
strains can be accelerated, and strains optimized for a
given task, expected aroma production, or even specific
vintage conditions can be created. With the confluence
of modern-day biomolecular sciences, information
technology, and engineering, the DNA of yeasts can
now be redesigned, reinvented, rewritten, and edited
with astounding precision [45-48]. Engineering the
biology of a model and non-model yeast strains
(including clonal variants of natural isolates, mutants,
hybrids, and genetically-engineered GM strains) with
laser-sharp accuracy can stretch the realms of
possibility in yeast research and wine yeast innovation
[49]. Some attempts have already come to light; for
example, the haploid wine strain (AWRI1631) of S.
cerevisiae was equipped with a biosynthetic pathway,
which consists of four separate enzymatic activities
required for the production of the raspberry ketone [50].

Over a thousand papers have been published
on the use of sequential yeast mixtures in wine
fermentation. The aim of these efforts was to regulate
the vinification process as well as to direct the ethanol
production from organic acids [14, 51-53]. Moreover,
much interest has been developed to the low alcohol
content and in the use of different wine yeast species to
improve sensory impacts of vine grape varieties for wine
utilizing the aromatic potential of some non-
Saccharomyces yeasts [54]. The population dynamics
of various strains alone or in mixtures as well as the
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kinetics of sugar consumption and carbon dioxide
production have been examined in details with diverse
methods, and selection of appropriate parameters of
kinetics for comparative studies has been discussed
[55-60]. We focused our attention on the kinetics of
alcohol production with regard to varietal differences in
the time course of the process. In the present study, we
performed fermentations in laboratory models and semi-
industrial scale to compare St. bacillaris and S. uvarum
strains to S. cerevisiae, all isolated from the Tokaj
(Hungary) region. The experimental data were analyzed
with Baule-Mithrelich, Gompertz, hyperboloid, logistic,
logarithmic, polynomial, and probit functions, and
manual fitting in Descartes plots to reveal the usefulness
of kinetic parameters of alcohol production in
comparative studies.

[1. MATERIALS AND METHODS

Data on maintenance, origin, and methods of
authentication of wine yeast strains used in model
experiments (Table 2) were reported in detail by Kallai et
al. [61].

Microvinification: 50 mL autoclaved Yellow Muscat must
(204.3 gL' sugar, pH 3.38) prepared from grapes
harvested in Tarcal was inoculated with cells of an
overnight culture to obtain 5x10° cell mL™" concentration
and it was incubated at 12°C without shaking for 30
days. The tests were carried out in two series.

Semi-industrial fermentation in the winery: The Furmint
grape must (204.3 gL' sugar, pH 3.2) was cleaned with
a vacuum drum filter and equalized. The inoculation
concentration was 5x10° cells/ml of the must. The
fermentations were carried out in 100 L steel tanks for 30
days. Samples were taken by time course given in
Figure 1 to observe the dynamics of the fermentation.

Analytics: The alcohol, glucose, fructose, total sugar,
and acetic acid concentration was measured with a
Bruker Alpha FTIR spectrometer (Bruker Optic GmbH,
Germany) and the results were processed with the
Bruker OPUS software.

Data analysis: Fisher’s test was applied to evaluate the
significance of differences between variants at p = 0.05
level. The average values of ethanol concentrations
determined in samples were used to construct two data
matrices; the first comprised data of S. cerevisiae strains
fermenting Yellow Muscat juice (20x12; strainxtime),
while data of strains of three species (S. cerevisiae, S.
uvarum and St. bacillaris) fermenting Furmint juice
(8x2x12; speciesxstrainxtime) were put into the
second one.

Both data matrices comprising time-dependent
percentage values were subsequently analyzed by
percent of ethanol versus log time regression applying
Baule-Mitherlich,  Gompertz,  hyperbolic, logistic,



logarithmic, polynomial and probit functions to elucidate
the character of dynamic changes in ethanol production
during the fermentation following models described by
Svab [62]. The kinetic parameters (Lag phase, Half time
of alcohol production, and End point) were also
extrapolated by manual fitting on Descartes’s plot, and
the values calculated by the above functions were
correlated to these values by linear regression. Box &
Whiskers plots were used to demonstrate differences
both in the fitness of regression and predictive power of
equations to evaluate the applicability of the examined
regression models.

Statistical functions of Microsoft Office Excel
2003 (Microsoft, Redmondton, USA) and Statisticab
programs (StatSoft, Tusla, USA) were used for
multivariate analysis of data. Graphical presentations of
the results of data analysis were edited uniformly in MS
Office PowerPoint 2003.

III.  RESULTS AND DISCUSSION

The levels of ethanol in the medium were
determined with high accuracy (Fq,=1.37 > F;,=2.88).
The ethanol production of strains was different and
varied between 11.65 and 12.95 % v/v (Fgpin=2.281 >
Foos=2.11; p<0.05). All strains isolated in the Tokaj
region [61] performed better than the type strain (ATCC
26108) of S. cerevisiae (Table 2).

Plotting the actual ethanol concentrations
determined analytically versus time of sampling (Fig. 1)
revealed significant strain-dependent dynamics of
ethanol accumulation (Fg,,=18.2 > F; 4, =15.38) during
the vinification process, where four periods could be
significantly distinguished (Fyme=1532.9, p<0.001) in
each case. Thus, the detectable amount of ethanol got
out after lag phase (P,) succeeded first with rapid then
descending increase (P, and P;), and the process
terminated with slow changes (P,) up to the ethanol level
characteristic to the strain concemed. The length of
these stages can be determined manually, plotting the
experimental data. This easy to handle method allows
the assessment of the character of changes of alcohol
concentration versus time as well as the crude approach
of several kinetic parameters (Lag phase, Half time, the
Specific rate of alcohol production). However, the fitness
of correlation can not be precisely evaluated. The high
variations in measured values both in parallel batches
and performance of strains during the process (Fig. 2)
indicate changes in the roles of influencing factors in
vinification process of grape juice, first of all in the start
of ethanol production (period P,), but parallel to the
increase of ethanol concentration (over 5 % v/v) this
variation decreases. Its varietal difference rapidly
diminishes (c.v. < 1%). Analyzing the time-dependent
changes in ethanol concentrations on manually fitted
scatterplot (Fig. 1) the use of sigmoid (logistic and
Gompertz functions) and saturation (Baule-Mitscherlich,

hyperbolic and logarithmic functions) models seemed to
be plausible. Moreover, the applicability of the square
approach (polynomial function) and linearization via
probit transformation were also tested.

Comparing the fitness of various approaches,
the sigmoid type models proved to be applicable to our
set of data with limitations, because of the strong
asymmetry of the fermentation dynamics (Figs. 1 and 2).
Although, both logistic [63, 64] and Gompertz [56, 65,
66] functions were proposed for the analysis of
dynamics of must fermentation, in our case these seem
to be useful with care, because of the lack of data at the
start of the process (stages P, and P, in Fig. 1). Thus
some related results of calculations have been omitted
of the comparative analysis of models. The
determination coefficients showed high and strain-
dependent variability of the fitness of regressions (Fig.
3) in the case of both logistic (symmetric sigmoid,
r’=0.74-0.99) and Gompertz (asymmetric sigmoid,
r’=0.70-0.99) functions. Due to extremely high variation
after inoculation of grape juice, - as it was mentioned
above, - we assume that the more frequent sampling in
this period could not improve the exactitude of the
extrapolations based on the sigmoid functions.

The analysis of a manually fitted scatter plot
(Fig. 1) corroborates the suggestion of the use of
saturation models as well. Meanwhile, both logarithmic
and hyperbolic functions can be directly applied using
experimental data, the Baule-Mitscherlich (BM) model,
like the sigmoid one, requests a limit that can be
determined by either iteration or giving a fixed value. In
our case the iterated limit of BM function resulted in
irrationally high ethanol concentrations (14-17 viv %
depending on the strain concerned). Thus we fixed the
limit of this model in maximum ethanol concentration
measured analytically in new wine produced by the
actual strain. The determination coefficients in the case
of BM model varied in strain-dependent manner
(r’=0.85-0.98) but to a lesser extent than in the case of
sigmoid functions (see Fig. 3). The fitness of logarithmic
regression varied in strain-dependent manner (r*=0.87-
0.99) at a lesser extent than BM one. The hyperbolic
function proved to be much better (r*=0.94-0.99).
However, the median was less than r*=0.98 in each
saturation model.

The linear relationship was also used for studies
the kinetics of fermentation [67]. Still, in our case the
linearization of experimental data with probit function did
not improve the fitness of time-dependent regression as
compared to other models (Fig. 3), the variation of

determination coefficient varied within wide limits
(r’=0.84-0.99) in this case too.
The  second-order  polynomial  function

proposed by several authors [68, 69] was applied to test
the square approach. This model surpassed all others
involved; the determination coefficients were over 0.95 in
each case, and the median was over 0.99, which means
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this function showed less strain-dependent variation in
fitting the regression than other models tested (Fig. 3).
The result of calculations based on the square approach
was demonstrated in Figure 4 using strains of S.
cerevisiae and St. bacillaris. The calculated curves fit
excellently to analytically determined values of alcohol
concentration of the start to the endpoint of
fermentation. The expected alcohol content of new
wines extrapolated applying polynomial function fitted
well to the analytically measured values, contrary to the
other models, where the extrapolations resulted in high
and strain-dependent alterations (Fig. 5). Thus, this
model was applied for calculation of specific ethanol
production (Table 2), which intensity varied between
0.81-4.56 % EtOH per day (0.797-1.396 mM per hour).
All local strains surpassed the type strain [ATCC 26108],
which produced 0.81% ethanol per day (0.517 mM per
hour). Reverse relationship was revealed between the
Lag phase and the ISEP (*=0.81, p>0.01), and the
circumstances of fermentation did not affect this trend.
No relationship could be elucidated among other known
properties of strains and intensity of their specific
ethanol production rate. As it was demonstrated in
Figure 6, the ISEP is not connected to oenological
properties of strains, and can not be linked to their
taxonomic position either (Fig. 7). The other kinetic
parameters, calculated applying various functions,
showed large variation in strain-dependent manner as
well (Fig. 8). The continuance of both lag phase and half
time extrapolated using polynomial function were more
similar to experimental values than those computed by
any other functions (Table 3).

The polynomial function permits to weigh the
role of constant, primary, and secondary effects as well
as to analyze their relationships in strain-dependent
manner (Table 4). The actual ethanol concentration (Y)
is a product of working cell factories and might be
extrapolated applying polynomial function
(Y=A+Db,x[X]+b,x[X?]), where [X] is the actual time
counted of the start of fermentation. At the same time,
we can conceptualize the coefficients [A], [by] and [b,]
as vectors, i.e., sums of various factors influencing the
ethanol-producing capacity of yeast cells in the
vinification process. The [A] is a time-independent
constant, which might be related to a group of
properties of yeast strains that take part in ethanol
production in a time-independent manners as well as
not related to responses of cells to the changing
environment in the fermentation tank. The influence of
both [b,] and [b,] manifests in time-dependent mode,
and can be considered to be vectors of primary and
secondary factor groups, respectively, and these factors
most probably take part in the regulation of the
responses of cells to changes in environmental
conditions. Our set of data allowed us to weigh their role
in the regulation of dynamics of alcohol production.
Their relationships in regulating the strain-dependent
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ethanol production during the time course of the
vinification process shown in Figure 9. Surprisingly, strict
trends (p<0.01) were elucidated in the manifestation of
the simultaneous regulatory effect of these groups of
factors. The [b;] group of factors counteracted to both
constant [A] and [b,] groups. Moreover, the influence of
factors [b;] and [b,] counteracting synchronously in time
dependent manner was about two times stronger than
the constant ones, meanwhile, the strength of [b;] group
surpasses that of the [b,] one about five times. The
yeast strains fit precisely to trend lines independently on
their taxonomic position or other known properties. The
weight of these factor groups changes during the
vinification in a strain-dependent manner (Table 4).
None of them dominated either P, or P, stages. The
constant and secondary factors [A and b,] counteracted
to EtOH production in the second phase (P,) contrary to
primary one [by], and the strain-dependent ISEP
negatively correlated to the effect of the primary factor
group.

The changes of sugar and acid levels in
vinification batches of our strains were checked over
during fermentation earlier [61], and these data were
used for the multiple regression analysis (Table 5). The
strain-dependent glucose utilization was connected to
strain-dependent dynamics of alcohol production only in
the start (period P,) then the differences between strains
in this respect became negligible. Meanwhile, the strain-
dependent intensity of fructose utilization took place
after the half time of EtOH production (period P;) then
the variation ceased. Contrarily, the acidity remained
strain-dependent and connected to variations of alcohol
production during the whole process.

The coefficients of polynomial  function
(Y=A+[b;xX]+[b,xX?], where Y is the actual alcohol
concentration measured at X hours after initiation of the
fermentation) describing the dynamics of ethanol
formation during vinification process can be connected
to both extracellular and intracellular factors regulating
the performance of proper strains, as these coefficients
are most probably vector sums of a group of factors.
Thus the Constant [A] is a time-independent variable [or
group of factors influencing in time-independent
manner], and the Primary [b;] and Secondary [b,]
coefficients [or] and their role in the regulation of alcohol
formations can be weighed correlating the strain-
dependent coefficients with actual concentration of the
components of fermented grape juice as well as the
connection between actual concentration of the
components and the produced ethanol can be revealed
(Table 6). The Constant [A], acting in time-independent
manner was not related significantly to strain dependent
changes of components of fermented grape juice during
the time course of vinification but fructose level (first
block of determination coefficients in Table 6). The
factors determining the strength of the Primary
coefficient [b,] strongly influenced the utilization of



fructose at the start of ethanol production. In contrast,
while these factors took a role in the regulation of actual
levels of acetic acid up to the end of fermentation.
Altering the formers, the factor group determining the
weight of the Secondary coefficient [b,] strongly
influenced the level of all components in the first period
(P;) of fermentation (see Fig. 1). It remained
determinative in regulation of the strain-dependent
acidity up to the end. We suspect that this group of
factors [b,] was responsible for highly expressed strain-
dependent variation in the start of the vinification
process.

The identification of these factor groups is a
task of the future, and particular experiments should be
designed to clarify their nature.

a) Prospects

The wine producers are facing more and more
challenges due to the market demands and also the
climate change. Recently, there has been an increased
demand for wines with a more complex aroma
composition spontaneously fermented by natural wild
yeast populations. In order to meet this need safely and
cost-effectively by wineries, the research of starter
cultures has started to focus on the development of
non-Saccharomyces starter cultures. Today, a number
of non-Saccharomyces starter cultures are available to
allow wineries to model the positive effects of
spontaneous fermentation on aroma composition with a
safe and controlled method. However, we have little
knowledge of how the different species and their mixture
affect the process of fermentation, its dynamics.
Especially more data requested on their interactions
when applied via co- and sequential inoculation. The
extreme, unpredictable weather in the last few years has
significantly changed the date of harvest compared to
the usual times and made it difficult to predict it
accurately. These anomalies caused by climate change
are new challenges that request appropriate
developments in vine cultivation.

In the future, we have to expect the rapid
development of synthetic biology. Since cracking the
genetic code of the first wine yeast strain (AWRI1631) in
2008, the genomes of several other widely used
commercial wine yeast strains — including AWRI1796,
EC1118, QA23, VIN7, VIN13, and VL3 — were
sequenced and compared with the genomes of
laboratory strains of S. cerevisiae (5288c and Sigma
1278b) as well as genomes of commercial
Saccharomyces strains. [49, 70, 71]. The functions of
several genes have already been elucidated. With these
results, we can equip the yeasts with advantageous and
valuable properties for industrial use. For example, the
FSY1 and MPR1/2 genes are thought to convey
fermentation robustness and performance; the /RC7
gene might be associated with aroma enhancement in
wine. IRC7-expressing strains seem to release more

volatile thiols during fermentation, thereby increasing the
fruitiness of the wine. [49, 72].

We would facilitate the planned scheduling of
the grape processing and winemaking with our ongoing
work. If we know the analytical parameters of our raw
material and we know the fermentation ability of the
starter culture we want to apply well, we can predict the
duration of fermentation as accurately as possible. After
further experiments, it is necessary to develop new
models to be able to predict the dynamics of
fermentation more and more accurately, calculated with
the effect of more sophisticated winemaking methods.
The different inoculation methods, the interaction of
different yeast species and their mixtures, the supply of
nutrients, and the regulation of fermentation cycles at
different temperatures affect the whole fermentation,
including the time of its duration.

IV.  CONCLUSIONS

The strain-dependent variations of the dynamics
of ethanol production during the vinification process can
be reliably characterized with second-order polynomial
function (Table 3) that has significant predictive power
(p<0.05) for calculation of parameters such as Lag-
phase, Half time, Endpoint and Specific Intensity of
ethanol production. A further advantage of this function
is the possibility to weigh the role of constant, primary
and secondary effects as well as to analyze their
relationships in a strain-dependent manner (Table 4).

Although  some  quantitative  differences
manifested between Saccharomyces and Starmerella
bacillaris strains, more non-Saccharomyces strains
should be involved in studies to make satisfying
conclusions in this respect.

Most probably, the toxic effect of ethanol
produced also affects the strain-dependent dynamics of
fermentation, primarily in the last phase nearing the End
point (P, on Fig. 1), and this sensitivity response may
influence the interaction of factors regulating both the
ethanol production and the composition of the new
wine; however, this assumption needs further studies.
Nevertheless, the strain-dependent counteractions of
constant [A] and time-dependent factors ([b;] and [b,])
play a seemingly more intensive role in the regulation of
ethanol production in the first half of the vinification
process (P, and P, stages, see Fig 1). In this period, the
alcohol concentration is lower than 6 percent, and we
can assume that the possible autocidal effect is not
playing a role yet contrary to later phases (P; and P,
stages, see Fig 1).

Near linear trend was manifested as well as the
position of strains fits well independently on their age
and taxonomic position when interactions of regulating
factor groups ([A], [b;] and [b,]) were compared (Fig 9).
Further studies are requested for an explanation of this
finding.
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Today we are not living in a time when we can
be satisfied with routinely applied technologies if we
want to run our winery successfully and economically on
a market with a constant oversupply. We need to equip
ourselves with the latest and most in-depth knowledge
to gain an advantage. With the development of gene
technologies, the range of possibiliies can only be
limited by our imagination.
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Table 1: Potential of non-Saccharomyces yeast strains to improve wine quality

Sequential yeast used Reference Sequential yeast used Reference
Candida cantarellii [73] Lachancea lanzarotensis® [74]
Candida stellata [75] Lachancea thermotolerans [74]
Candida zeylanoides 76] Metschnikowia pulcherrima [77,76]
Candida zemplinina® [17] Pichia fermentans [78]
Debaryomyces vanriji®9 [79, 80] Pichia guilliermondii [81]
Hanseniaspora guilliermondii [82] Pichia membranifaciens [81]
Hanseniaspora osmophila [83] Schizosaccharomyces pombe [52, 53]
Hanseniaspora uvarum [82] Torulaspora delbrueckii® [17,76]
Hanseniaspora vineae® [84] Wickerhamomyces anomalus | [85]
Kloeckera apiculata [86, 87] Williopsis pratensis [76]
Kluyveromyces marxianus [81] Williopsis saturnus [88, 89, 90]
Lachancea fermentati® [91] Zygosaccharomyces bailii [76]

Strains of listed species have been involved in experiments in the past two decades and their effects on wine
quality have been elucidated in cited publications.

aAppropriate for carrying out the alcoholic fermentation [17]; ° p-glucosidase activity; concurrent; 9H,S production;
°malic acid conversion to ethanol; ‘cider fermentation; 9syn: Candida famata.

Table 2: Kinetic parameters of the fermentation dynamics of wine yeast strains

Strains® Oenological parameters P
Code | Source Type' | LP. | HT. | H-L® | SEP" DC EtOH/
Saccharomyces cerevisiae (Desm.) Meyen
10-157 type strain of S. c. B 142 301 160 0.517 0.998 11.65%
10-1390 com. starter culture E 115 200 85 0.911 0.995 12.25°
10-1343 | Young wine A 151 276 125 0.797 0.974 12.60%"
10-1346 | Young wine A 100 187 87 0.965 0.997 12.85"
10-1352 Young wine D 74 191 116 0.686 0.989 12.25°
10-1345 | Young wine A 115 234 119 1.396 0.987 12.45%
10-1347 | Young wine A 105 204 98 1.022 0.971 12.85"
10-1350 | Young wine C 96 191 95 0.941 0.978 12.75"
10-1357 Muscat Lunel wine D 85 169 85 0.799 0.995 12,559
10-1358 | Young Furmint wine B 114 261 147 0.662 0.989 12.20"
10-1348 | Wine sediment A 174 282 108 0.777 0.950 12.15°
10-1349 | Wine sediment A 151 258 107 0.971 0.971 12.70"
10-1355 Wine sediment A 120 259 139 0.897 0.990 12.90"™
10-1351 Wine sediment A 110 226 116 0.902 0.987 12.65"
10-1354 | Furmint sediment C 104 182 78 1.059 0.997 12.85¢
10-1344 Furmint sediment D 95 166 71 0.975 0.996 12.45%
10-1353 Furmint sediment A 101 198 97 0.939 0.995 12.45%
10-1356 5-year old aszl wine B 98 199 101 0.875 0.994 12.95™
10-1359 5-year old aszU wine C 102 187 85 0.805 0.968 12.609"
10-489 sweet botrytized must® n.d. 79 108 29 2.001 0.993 12.69!
10-493. sweet botrytized must® n.d. 57 107 49 1.305 0.999 12.89""
Saccharomyces uvarum Beij
10-486 sweet botrytized must® n.d. 49 78 29 1.610 0.974 12.52¢
10-499 sweet botrytized must® n.d. 65 98 32 1.898 0.992 12.66"
Starmerella bacillaris (Kroemer & Krumbholz) F.L. Duarte & A. Fonseca
10-374 sweet botrytized must® n.d. 104 148 44 1.649 98 12.68!
10-5-11 Botrytized grape® n.d. 99 104 6 1.708 89 12.44¢
2All strains but 10-157 [ATCC 26108] and 10-1390 [Uvaferm 43; Lallemand Inc., Montreal, Canada] were
isolated in Tokaj Wine region and deposited in the collection of Department of Genetics and Applied
Microbiology of University of Debrecen. Data on the origin and oenological properties of 10-1343 to 10-1358
were delineated by Kallai et al. [61]. PAbbreviations: L.P. and H.T. = lag phase and half time (hours). °Strains
isolated of botrytized grape must by Antunovics et al. [30]. “Strain was isolated identified by Sipiczki [92]
eStrain was isolated and identified by Csoma and Sipiczki [93]. Type of strains according similarities in
oneological properties (see Fig. 7). 9Time (hours) requested to produce half of the final ethanol concentration
since the end of lag phase. "Specific ethanol production (SEP) produced at half time (mM h™'). 'Determination
coefficients of regression curves used for calculation of parameters (see Fig. 1). 'Ethanol concentrations in
new wines, the percentage values (v/v) labelled by the same letter are not different at p<0.05 level
(LSD,0s=0.075, F=18.2).
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Table 3: Similarity of kinetic parameters calculated by various functions

, Matrix B Limits (h)
Matrix A AN T SIG | GOM | PRO | SAT | LOG | HYP | POL | min | max
Manual 0.38 0.380 0.414 0.327 0.596 0.462 0.494 0.768 57 174
Sigmoid 0.287 0.63 0.565 0.676 0.250 0.838 0.824 0.859 0 126
Gompertz 0.005 0.026 0.01 0.527 0.083 0.668 0.719 0.762 2 97
Probit 0.003 0.012 0.210 0.01 0.242 0.803 0.795 0.856 15 70

Saturation | 0.633 0.208 0.002 0.023 0.47 0.323 0.370 0.620 88 287

Logarithmic| 0.717 0.390 0.017 0.057 0.602 0.95 0.970 0.954 16 120
Hyperbolic | 0.693 0.330 0.004 0.085 0.559 0.936 0.98 0.968 23 126
Polynomial | 0.925 0.290 0.001 0.328 0.315 0.756 0.904 0.70 55 121
Limits (hours)
minimum 102 71 130 129 107 66 59 67
maximum 296 394 301 297 330 296 275 294

Determination coefficients of regression between values of lag phases (time requested for start of detectable
production of ethanol, etap P, on Fig 1) and half times (etap P, on Fig 1) of fermenting S. cerevisiae strains (N=21)
calculated by log/probit, Baule Mitcherlich (saturation), logarithmic, hyperbolic and polynomial functions or obtained
by manual fitting. The variations in fithess of named approaches were demonstrated in Figure 3.

Matrix A — lag phases (the limits are shown in vertical columns), Matric B — half times (the limits are in last lines), while
determination coefficients related to the similarities between lag phases and half times calculated by the same
function (two digits) are in diagonal cells (P=0.179, p<0.05, *=0.288, p<0.01, *=0.426, p<0.001).

Table 4: Connection between etaps of fermentation® and strain dependent factors of
polynomial functions describing dynamics of the ethanol production

, Importance of factor groups® Parameters of the equation®
Variable (D) , ,
Bc Be Bs Chi-sgr. | R-sqr. p A Prime
EtOH conc.® 0.2217 -0.2762 0.3048 11.75 0.4210 0.0083 0.5790

Lag phase® 0.0044 0.1517 -0.2633 26.54 0.7090 7.4E-06 0.2910
Half time' -0.2875 0.4331 -0.5323 62.51 0.9454 1.8E-13 0.0546
H-L° -0.5188 0.6451 -0.7267 58.18 0.9332 1.5E-12 0.0668
ISEP" 0.4147 -0.5527 0.6448 28.26 0.7314 3.2E-06 0.2686

a=See Fig. 1. °= Coefficients (B, B~ Ps Of the functions (D, ,s={[CSQ];.o5+[PSQ]:.55+[SSQ];.5}),
where D, ;= dependent variable; CSQ,.s=Constant; PSQ,.s=Primary; SSQ,.,s=secondary
coefficients of the polynomial functions of 25 strains describing the dynamics of their ethanol
production, respectively;

°= Parameters of the multiple linear regression function: D=f(X,X,,Xs), where D is a dependent variable
of the first column.

d=Fthanol concentrations in new wines fermented by proper strains listed in Table 1. Data imported of
Kallai et al. [61]; °= Strain dependent Lag phases (hours) of EtOH production. "= Strain dependent time
(hours) requested to reach the 50% of the final EtOH concentration produced by proper strains as
measured of the start of fermentation.

9= Time (hours) requested to reach the 50% of EtOH by proper strains of the start production.
Specific rate of alcohol production (mol EtOH/hour);

h
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Table 5: Time dependent influence of strain characters on dynamic changes in composition of the
fermented grape juice

Time course (days)
Parameters Frepl
5 10 15 20 25 30

Glucose 0.9216*** 0.5680+ 0.0704- 0.0005- 0.0002- 0.0189- 0.53
Fructose 0.9742*** 0.9047*** 0.6837+ 0.1304- 0.0031- 0.0084- 0.04

TS-TF-TG 0.8520** 0.0535- 0.0046- 0.0606- 0.4820- 0.3654-
Acetic acid 0.8179** 0.7715* 0.9105*** 0.8591* 0.8545** 0.8866** 1.88

TA-AA 0.9920*** 0.9913*** 0.9823*** 0.9808*** 0.9769*** 0.9894***

pH 0.9961*** 0.9974*** 0.9959*** 0.9948*** 0.9985*** 0.9972*** | 0.03

The concentrations of components measured (parameter) by the given time course were imported from Kallai et al. [61],
and used for calculations applying multiple regression analysis to reveal the connection between dynamics of ethanol
production and changes in composition of the fermented grape juice. TS-TF-TG=total sugar]-[glucose]-[fructose], TA-
AA=total acids]-[acetic acid].

The R 2 is the determination coefficient of the function P ,y=[C/.+b7 1.0 +b22,] Where Py is the parameter
measured at the time of sampling and the [C ;. +b7.0+b24.0,] are coefficients of proper functions describing the
dynamics of alcohol production of each strain [n=21] EtOH ;3,=C+b,X+bX"2 describing the dynamics of ethanol
production (Figure 3). We call the cases strain dependent where the coefficients were labelled with symbols + (p=0.05-
0.1), *(p=0.01-0.05), **(p=0.001-0.01), ***(p<0.001) and strain independent with - (p>0.1). The F values show the
exactitud of the measurement of the parameter concerned F,,=3.18).

The values of DCs are proportional to dependence of strain properties related to dynamics of ethanol production, and
values lower than 0.5 might be considered as low importance of proper strain characters in this respect. For example,
changes in glucose level were strain dependent only in first etaps of vinification (P, and P, in Fig. 1), and the number of
stars marks the strength of effect.

Table 6: The influence of factors regulating strain dependent dynamics of ethanol
production on the actual level of components in fermented grape juice.

Time course (days)
Factors | Components
5 10 15 20 25 30

- Glucose 0.181 0.018 0.014 >0.001 >0.001 >0.001
§ = Fructose 0.682 0.172 0.016 0.003 0.001 0.003
g) = TS-TF-TG 0.029 0.038 0.019 0.005 0.050 0.076
Acetic acid 0.459 0.332 0.395 0.312 0.274 0.447

Glucose 0.416 0.001 0.005 >.0.001 | >0.001 >0.001

% = Fructose 0.813 0.427 0.094 0.017 0.002 0.004
§ < TS-TF-TG 0.175 0.065 0.027 0.000 0.131 0.123
Acetic acid 0.548 0.402 0.545 0.444 0.438 0.575

- Glucose 0.610 0.049 >0.001 0.001 0.002 0.001
g 5 Fructose 0.880 0.639 0.237 0.049 0.002 0.004
§ = TS-TF-TG 0.388 0.101 0.034 0.014 0.254 0.171
@ Acetic acid 0.603 0.428 0.645 0.541 0.575 0.661

Determination coefficient (DC) of multiple regression (time changes in the level of component given
versus proper coefficient) higher than 0.5 mark selective and significant effect (p<0.05) of the strain
dependent factor group (underlined). The values of DCs are proportional to dependence of strain
properties related to dynamics of ethanol production, and values lower than 0.5 might be considered
as low importance of proper strain characters in this respect. For example, changes in glucose level
were strain dependent only in first etaps of vinification (P, an P, in Fig. 1).
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Figure 1: Time dependent changes of ethanol concentration during the fermentation of grape juice

The amounts of ethanol produced by reference strain [ATTC 26108] were marked with opened circles, while
those of S. cerevisiae strains described by Kallai et al. [61] were marked with short lines. Full lines drawn manually
show kinetics of changes in ethanol production (AC) of less and most potent strains (48 and 52), respectively, while
the stripped curve was fitted to plotted experimental data of reference strain with function AC(%)= -0.0167[Time]? +
1.0361[Time] — 4.57 (R2 = 0.9964).

The process of alcoholic fermentation can be divided into four periods; P, — no measurable amount in the
medium (lag phase), P, — accelerating growth of concentration, P, — near monotonous growth, P, — retarding growth.
The arrow L marks the interval between lag phases of less to most rapid strains, while the arrow H marks the interval
of the time requested to rich the half of produced ethanol concentration of less to most potent producers in the set of
strains examined, and correspondingly; max is the range between lowest and highest ethanol concentrations in new
wines, meanwhile T, is the half of former values.
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Figure 2: Changes of varietal differences in production of ethanol during fermentation
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The broken line markes time dependent average values of actual ethanol concentration in the medium
(coordinate at right side). The time dependent variation of ethanol production (diamonds, coordinate at left side)
relates to dissimilarity of fermentation capacity of S. cerevisiae strains (n=19) at the given sampling time.
Abbreviation: P, P,, P, and P, at the top of graph are intervales distinguished in Figure 1.

Arrows L, H and EP imported from Figure 1 show the strain dependent variation (minimum to maximum) of
lag phase, half time and end point. T, = The average half time of the set of S. cerevisiae strains isolated in Tokaj
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Figure 3: Box & whiskers plot of determination coefficients of functions applied for extrapolation of kinetic
parameters of the alcohol fermentation by S. cerevisiae strains

Box and whiskers plots were constructed of the determination coefficient values of the curve fittings based
on experimentally measured ethanol concentration in samples taken during the fermentation in the medium of 21 S.
cerevisiae strains, applying logistic (SIG), Gompertz (GOM), Baule-Mitcherlich (SAT), probit (PRO), logarithmic
(LOG), hyperbolic (HYP) and polynomial (SQU) functions.

The higher coefficients show the higher significance of similarity between calculated and experimentally
determined ethanol concentrations in the medium. Numbers at the right side of boxes in vertical arrows show cases
that could be fitted at p>0.1, 0.1>p>0.05 and p<0.05 probability levels.

Abbreviations: maximum (max) and minimum (min) values, lower (LQ) and upper (UQ) quartiles, the white
line is the median in the black box that shows the size of the middle two quartiles.
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Figure 4: Dynamics of ethanol accumulation during vinification

The curves were calculated of experimentally determined ethanol concentrations (AC) in the medium
(measured values at subsequent samplings of S. cerevisiae [10-486] and St. bacillaris [10-374] are marked with full
circles and squares, respectively):

S. cerevisiae; AC(%)= -0,0167[Time]* + 1,0361[Time] - 4,57 (R2 = 0,9964)
St. bacillaris; AC(%)= -0,0167[Time]* + 1,0361[Time] - 4,57 (R2 = 0,9964)

Abbreviations: LP=Lag phase, HT=Half time, E.P.= End point, D= time requested to produce half of the
final ethanol content by strains, C,=the maximum ethanol concentration calculated, S.C.,,, and S.b..,,=ethanol
concentration measured at the end (E.P.) of fermentation, S.c. ., and S.b..,= ethanol concentration measured at the
end (E.P.) of fermentation, S.b..,,'= time requested to produce ethanol concentration measured at the end point (this
value for S. cerevisiae equal with calculated one).

The bold arrows indicate points of the end of lag phase (LP) and the half time (HT) of S. cerevisiae (full line)
and St. bacillaris (stretched line); the values were compiled in Table 1.
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Figure 5: Box & whiskers plot of either measured or extrapolated ethanol concentrations of new wines

fermented by S. cerevisiae strains of Yellow Muscat must

The concentration of ethanol measured in new wine (EXP) was taken as a standard for comparison of
concentration values extrapolated applying logistic (SIG), Gompertz (GOM), Baule-Mitscherlich (SAT), probit (PRO),
logarithmic (LOG), hyperbolic (HYP) and polynomial (SQU) funcions. Box and whiskers plots were constructed of the
measured values (EXP) or extrapolated ethanol concentration at the end of fermentation in the medium of 21 S.
cerevisiae strains. The dotted line shows the median of analytically measured values.

Abbreviations: maximum (max) and minimum (min) values, lower (LQ) and upper (UQ) quartiles, the white
line is the median in the black box that shows the size of the middle two quatrtiles.
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Figure 6: Relationships between specific rate of ethanol production and similarities of oenol
properties of S. cerevisiae strains

The number of strains correspond to that in Table 2. The specific rate of ethanol production (mM h™') was

calculated in half time applying polynomial function (see Table 2).

The clustergram was computed of data published by Kallai et al. [61]. The strains comprised in

subcluesters differ in their oenological properties at p<0.05.
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Figure 7: Relationships between specific ethanol production rates of strains and their genetic variability
established on the base of molecular diagnostics

The clusterograms have been imported of our earlier work Kallai et al. [61], either interdelta (left side) or RAPD
(right side) method was applied for elucidating the molecular diversity of strains.The number of strains corresponds to
the last two numerals in codes of strains given in Table 1. Columns assigned to the left graph indicate time intervals of
the inoculation to the evolution of detectable ethanol concentration (Lag phase, white prism) and subsequent period to
produce 50 % of the final alcohol content in new wine fermented by the given strain (black prism), while the others at the
right side are proportional to specific rate of ethanol production calculated at T,, of the strain concerned, with polynomial
function (p<0.05).

Abbreviations: AT=type stain [ATCC 26105] and UV=commercial starter strain [UVA43]; L = Lag phase,
T, = half time; Source: YW = young wine, WS = wine sediment, FS = Furmint sediment, MLW = Muscat Lunel wine,
YFW = young Furmint wine, 5YAW = 5 years old aszu wine; Types: A — D = Subclusters (See Fig. 7); Bars: the
genetic distances according to Kallai et al. [61].
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The lag phase (white box) and half time (black box) of ethanol production extrapolated either manually (EXP)
or applying logistic (SIG), Gompertz (GOM), saturation (SAT), probit (PRO), logarithmic (LOG). hyperbolic (HYP) and
polynomial (SQU) funcions. Abbreviations: maximum (max) and minimum (min) values, lower (LQ) and upper (UQ)
quartiles, black or white lines are the median in white or black boxes, respectively. The boxes show the size of the
middle two quartiles.
The horizontal dotted lines indicate either the median of manually fitted values of lag phases or half times.

Figure 8: Turn points in alcohol production
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Figure 9: Relationships between constant and time dependent factors influencing the strain specific ethanol

The regression lines P (Pi = -0.8585Ci - 9.7445, r’=0.98) and S (Si = 0.1795Ci + 5.0738, r’=0.94) mark relationship
between time dependent primary and secondary factors versus time independent constant factors influencing intensity of actual

The labels correspond to the last two numerals of strains in codes given in Table 2. Abbreviations: T=type stain [ATCC
26105] and C=commercial starter strain (opened circles) of S. cerevisiae (closed circles) fermented Yellow Muscat must in
laboratory models, while S. cerevisiae and S. uvarum strains (opened squares and triangles, respectively), and Z1[93] and Z2
[30] strains of St. bacillaris (full squares) fermented Furmint grape must in a winery.
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