

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES

Volume 20 Issue 7 Version 1.0 Year 2020

Type : Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Composite Multiplication Pre-Frame Operatorson the Space of Vector-Valued Weakly Measurable Functions

By S. Senthil, M. Nithya & D. C. Kumar

Mother Teresa Women's University

Abstract- In this paper, we first characterize the boundedness of the condition under which composite multiplication pre-frame operators on $L^2(\mu)$ -space, namely $M_{u,T,f}$ and its adjoint. Then, we identify the relation between the adjoint of $M_{u,T,f}$ and the composite multiplication frame operators which is denoted by $S_{u,T,f}$ all the results have been obtained in terms of radonnikodymderivative h_T .

Keywords: composite multiplication operator, expectation, composite multiplication preframe operator.

GJSFR-F Classification: MSC 2010: 47B33, 47B20, 46C05

COMPOSITE MULTIPLICATION PRE FRAME OPERATORS ON THE SPACE OF VECTOR VALUED WEAKLY MEASURABLE FUNCTIONS

Strictly as per the compliance and regulations of:

Composite Multiplication Pre-Frame Operators on the Space of Vector-Valued Weakly Measurable Functions

S. Senthil ^a, M. Nithya ^a & D. C. Kumar ^b

Abstract: In this paper, we first characterize the boundedness of the condition under which composite multiplication pre-frame operators on $L^2(\mu)$ -space, namely $M_{u,T,f}$ and its adjoint. Then, we identify the relation between the adjoint of $M_{u,T,f}$ and the composite multiplication frame operators which is denoted by $S_{u,T,f}$ all the results have been obtained in terms of Radon-Nikodym derivative h_T .

Keywords: composite multiplication operator, expectation, composite multiplication preframe operator.

I. INTRODUCTION

Frames were developed as a powerful tool in signal processing. The frame in a Hilbert space was defined by Duffin and Schaeffer [12] for investigating non-harmonic Fourier series. A discrete frame is a countable family of elements in a separable Hilbert space, which allows stable and not necessarily unique decomposition of arbitrary elements in an expansion of frame elements. In this paper, H refers to a Hilbert space over C and the closed unit ball of H is denoted by H_1 .

Let (X, Σ, μ) be a σ -finite measure space. Then a mapping T from X into X is said to be a measurable transformation if $T^{-1}(E) \in \Sigma$ for every $E \in \Sigma$. A measurable transformation T is said to be non-singular if $\mu(T^{-1}(E)) = 0$ whenever $\mu(E) = 0$. If T is non-singular then the measure μT^{-1} defined as $\mu T^{-1}(E) = \mu(T^{-1}(E))$ for every E in Σ , is an absolutely continuous measure on Σ with respect to μ . Since μ is a σ -finite measure, then by the Radon-Nikodym theorem, there exists a non-negative function h_T in $L^1(\mu)$ such that $\mu T^{-1}(E) = \int_E h_T d\mu$ for every $E \in \Sigma$. The function h_T is called the Radon-Nikodym derivative of μT^{-1} with respect to μ .

Every non-singular measurable transformation T from X into itself induces a linear transformation C_T on $L^p(\mu)$ defined as $C_T f = f \circ T$ for every f in $L^p(\mu)$. In case C_T is continuous from $L^p(\mu)$ into itself, then it is called a composition operator on $L^p(\mu)$ induced by T . We restrict our study of the composition operators on $L^2(\mu)$ which has Hilbert space structure. If u is an essentially bounded complex-valued measurable function on X , then the

Author a: Department of Economics and Statistics, Government of Tamilnadu, DRDA, Dindigul, India.

Author a: Department of Mathematics, Vickram College of Engineering, Sivagangai, Enath, Tamilnadu, India.

Author p: Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamilnadu, India.

e-mail: senthilsnc83@gmail.com

mapping M_u on $L^2(\mu)$ defined by $M_u f = u \cdot f$, is a continuous operator with range in $L^2(\mu)$. The operator M_u is known as the multiplication operator induced by u .

A composite multiplication operator is linear transformation acting on a set of complex valued Σ measurable functions f of the form

$$M_{u,T}(f) = C_T M_u(f) = (u \circ T)(f \circ T)$$

where u is a complex valued, Σ measurable function. In case $u = 1$ almost everywhere, $M_{u,T}$ becomes a composition operator, denoted by C_T .

In the study considered is the using conditional expectation of composite multiplication operator on L^2 -spaces. For each $f \in L^p(X, \Sigma, \mu)$, $1 \leq p \leq \infty$, there exists an unique $T^{-1}(\Sigma)$ -measurable function $E(f)$ such that

$$\int_A g f d\mu = \int_A g E(f) d\mu$$

for every $T^{-1}(\Sigma)$ -measurable function g , for which the left integral exists. The function $E(f)$ is called the conditional expectation of f with respect to the subalgebra $T^{-1}(\Sigma)$. As an operator of $L^p(\mu)$, E is the projection onto the closure of range of T and E is the identity on $L^p(\mu)$, $p \geq 1$ if and only if $T^{-1}(\Sigma) = \Sigma$. Detailed discussion of E is found in [1, 2, 3, 4].

The study of weighted composition operators on L^2 spaces was initiated by R.K.Singh and D.C.Kumar [5]. During the last thirty years, several authors have studied the properties of various classes of weighted composition operator. Boundedness of the composition operators in $L^p(\Sigma)$, $(1 \leq p < \infty)$ spaces, where the measure spaces are σ -finite, appeared already in [6]. Also boundedness of weighted operators on $C(X, E)$ has been studied in [7]. Recently S.Senthil, P.Thangaraju and D.C.Kumar have proved several theorems on n -normal, n -quasi-normal, k -paranormal, and (n,k) paranormal of composite multiplication operators on L^2 spaces [8, 9, 10, 11, 17].

The theory of weighted translation pre-frame operators is the generalizations of the theory of c -frames and c -Bessel mappings. The properties of c -frames and c -Bessel mappings have been studied in [13]. The change of variable formula will be frequently used throughout this paper and we remind it here as follows:

$$\int_{T^{-1}(B)} f \circ T d\mu = \int_{T^{-1}(B)} f d\mu \circ T^{-1} = \int_{T^{-1}(B)} f \frac{d\mu \circ T^{-1}}{d\mu} d\mu = \int_B h_T f d\mu, \quad B \in \Sigma, \quad f \in L^1(\Sigma).$$

In this paper we investigate composite multiplication pre-frame operators on $L^2(\mu)$ -spaces.

1.1 Let $L^2(X, H)$ be the class of all measurable mappings $f : X \rightarrow H$ such that

$$\|f\|_2^2 = \int_X \|f(x)\|^2 d\mu < \infty$$

Ref

7. Takagi, H & Yokouchi, K, Multiplication and Composition operators between two L^p -spaces, Contem. Math., vol.232, pp.321-338 (1999).

For any $f, g \in L^2(X, H)$, based on the polar identity, we may conclude that the mapping $x \rightarrow \langle f(x), g(x) \rangle$ of X to C , is measurable and it can be seen that $L^2(X, H)$ is a Hilbert space with the inner product defined by

$$\langle f, g \rangle_{L^2} = \int_X \langle f(x), g(x) \rangle d\mu.$$

We shall write $L^2(X)$ when $H = C$

II. COMPOSITE MULTIPLICATION PRE-FRAME OPERATOR

2.1 Let $f: X \rightarrow H$ be a mapping. We say that f is weakly measurable if for each $h \in H$, the mapping $x \rightarrow \langle h, f(x) \rangle$ of X to C is measurable.

2.2 Let $f: X \rightarrow H$ be weakly measurable. We say that f is a c -frame for H , if there exist $0 < A \leq B < \infty$ such that

$$A \|h\|^2 \leq \int_X |\langle h, f(x) \rangle|^2 d\mu \leq B \|h\|^2, \quad h \in H.$$

If only the right hand inequality is satisfied, then we say that f is a c -Bessel mapping for H . Let $f: X \rightarrow H$ be a c -Bessel for H . Let $M_{u,T,f}: L^2(X) \rightarrow H$ be defined by

$$\langle M_{u,T,f}(g), h \rangle = \int_X (u \circ T)(x) (g \circ T)(x) \langle f(x), h \rangle d\mu(x), \quad h \in H, \quad g \in L^2(X).$$

It is obvious that $M_{u,T,f}$ is well-defined and linear. For each $g \in L^2(X)$ and $h \in H$, we have

$$\begin{aligned} \|M_{u,T,f}(g)\| &= \sup_{h \in H} |\langle M_{u,T,f}(g), h \rangle| \\ &= \sup_{h \in H} \left| \int_X (u \circ T)(x) (g \circ T)(x) \langle f(x), h \rangle d\mu \right| \\ &= \sup_{h \in H} \left| \int_X ((ug) \circ T)(x) \langle f(x), h \rangle d\mu \right| \\ &\leq \left(\int_X |((ug) \circ T)|^2 d\mu \right)^{\frac{1}{2}} \sup_{h \in H} \left(\int_X |\langle f(x), h \rangle|^2 d\mu \right)^{\frac{1}{2}} \\ &= \left(\int_X E |((ug) \circ T)|^2 d\mu \right)^{\frac{1}{2}} \sup_{h \in H} \left(\int_X |\langle f(x), h \rangle|^2 d\mu \right)^{\frac{1}{2}} \\ &= \left(\int_X h_T |u|^2 |g|^2 d\mu \right)^{\frac{1}{2}} \sup_{h \in H} \left(\int_X |\langle f(x), h \rangle|^2 d\mu \right)^{\frac{1}{2}} \\ &\leq B^{\frac{1}{2}} \|g\|_2 \|J\|_{\infty}^{\frac{1}{2}} \end{aligned}$$

Consequently, $M_{u,T,f}$ is bounded. We shall denoted

$M_{u,T,f} : L^2(X) \rightarrow H$, by $M_{u,T,f}(g) = \int_X (u \circ T)(g \circ T) f d\mu$, $g \in L^2(X)$ is called the composite multiplication pre-frame operator of f .

For each $g \in L^2(X)$ and $h \in H$ by an application of the conditional expectation properties and the change of variable formula,

$$\begin{aligned}
 \langle g, M_{u,T,f}^*(h) \rangle &= \langle M_{u,T,f}(g), h \rangle \\
 &= \int_X (u \circ T)(x) (g \circ T)(x) \langle f(x), h \rangle d\mu \\
 &= \int_X ((ug) \circ T)(x) \langle f(x), h \rangle d\mu \\
 &= \int_X E((ug) \circ T)(x) \langle f(x), h \rangle d\mu \\
 &= \int_X h_T u(x) g(x) E(\langle f(x), h \rangle) \circ T^{-1} d\mu \\
 &= \left\langle g, h_T u E\left(\overline{\langle f, h \rangle}\right) \circ T^{-1} \right\rangle
 \end{aligned}$$

Notes

Thus, $M_{u,T,f}^*(h) = h_T u E\left(\overline{\langle f, h \rangle}\right) \circ T^{-1}$

Also, for each $h \in H$, we have

$$\begin{aligned}
 \|M_{u,T,f}^*(h)\|^2 &= \left\langle M_{u,T,f}^*(h), M_{u,T,f}^*(h) \right\rangle \\
 &= \int_X \left\langle M_{u,T,f} M_{u,T,f}^*(h), h \right\rangle d\mu \\
 &= \int_X \left| u h_T E\left(\overline{\langle f, h \rangle}\right) \circ T^{-1} \right|^2 d\mu
 \end{aligned}$$

The mapping $M_{u,T,f}^* : H \rightarrow L^2(X)$ is called the composite multiplication analysis operator of f . We define, $S_{u,T,f} : H \rightarrow H$ by $S_{u,T,f}(h) = M_{u,T,f} M_{u,T,f}^*(h)$

$$\begin{aligned}
 &= M_{u,T,f} \left(h_T u E\left(\overline{\langle f, h \rangle}\right) \circ T^{-1} \right) \\
 &= \int_X u^2 \circ T h_T \circ T E\left(\overline{\langle f, h \rangle}\right) f d\mu
 \end{aligned}$$

and it is called the composite multiplication frame operator of f .

Theorem 2.1. Let $S_{u,T,f}$ is composite multiplication frame operator of f . The mapping $S_{u,T,f} : H \rightarrow H$ and For each c -Bessel mapping $f : X \rightarrow H$, Then $S_{u,T,f}$ is invertible if and only if $M_{u,T,f}$ is surjective.

Proof. Since $S_{u,T,f}$ is a self-adjoint operator on H then by [14, Theorem 9.2.1], we have

$$\inf_{h \in H_1} \langle S_{u,T,f} h, h \rangle = \inf_{h \in H_1} \|M_{u,T,f}^*(h)\|^2 \in \text{Sepc } S_{u,T,f}, \text{ the spectrum of } S_{u,T,f}.$$

By hypothesis $0 \notin \text{Spec } S_{u,T,f}$, Hence, $\inf_{h \in H_1} \|M_{u,T,f}^*(h)\| > 0$. It follows that

$$\inf_{h \in H_1} \|M_{u,T,f}^*(h)\| \|h\| \leq \|M_{u,T,f}^*\| \text{ and so } M_{u,T,f} \text{ is surjective.}$$

Notes

Conversely, Let $M_{u,T,f}$ is surjective. Then there exists $K > 0$ such that for each $h \in H$

$$\|M_{u,T,f}^*\|^2 \geq K \|h\|^2$$

$$\text{So, } \langle S_{u,T,f}(h), h \rangle = \langle M_{u,T,f} M_{u,T,f}^*(h), h \rangle = \|M_{u,T,f}^*\|^2 \geq K \|h\|^2$$

For each $h \in H$, we have

$$\begin{aligned} \langle S_{u,T,f}(h), h \rangle &= \langle M_{u,T,f} M_{u,T,f}^*(h), h \rangle \\ &= \int_X \langle f, h \rangle (u M_{u,T,f}^*) \circ T \, d\mu \\ &= \int_X u^2 \circ T \, h_T \circ T \, E\left(\overline{\langle f, h \rangle}\right) \langle f, h \rangle \, d\mu \\ &= \int_X E(u^2 \circ T \, h_T \circ T \, E\left(\overline{\langle f, h \rangle}\right)) \langle f, h \rangle \, d\mu \\ &= \int_X u^2 \circ T \, h_T \circ T \, E\left(\overline{\langle f, h \rangle}\right) E(\langle f, h \rangle) \, d\mu \\ &\leq \int_X u^2 \circ T \, h_T \circ T \, E(|\langle f, h \rangle|^2) \, d\mu \\ &= \int_X (u^2 h_T) \circ T \, |\langle f, h \rangle|^2 \, d\mu \leq 1 \\ &\leq \|(u^2 h_T) \circ T\|_\infty B \|h\|^2 \text{ for some } B > 0 \end{aligned}$$

Therefore $K \leq S_{u,T,f} \leq \|(u^2 h_T) \circ T\|_\infty B$, $S_{u,T,f}$ is invertible.

Theorem 2.2. Let $M_{u,T,f}$ is composite multiplication pre-frame operator of f . For each $x \in X$, the map $x \rightarrow \langle f(x), h \rangle$ is $T^{-1}(\Sigma)$ measurable. Then $f : X \rightarrow H$, is a c -frame for H if and only if the operator $M_{u,T,f}$ is a bounded and onto operator.

Proof. Let f be c -frame by definition 2.2, it is clear that $M_{u,T,f}$ is bounded. We have to prove only that $M_{u,T,f}$ is onto.

Since $(u^2 h_T) \circ T > 0$ almost everywhere, Now we assume that $(u^2 h_T) \circ T > \delta$ for some $\delta > 0$. Then, by using the change of variable formula, we get

$$\begin{aligned}
\|M_{u,T,f}^*(h)\|^2 &= \int_X |u h_T E\left(\frac{f}{\langle f, h \rangle}\right) \circ T^{-1}|^2 d\mu \\
&= \int_X |u|^2 |h_T|^2 \left| E\left(\frac{f}{\langle f, h \rangle}\right) \circ T^{-1} \right|^2 d\mu \\
&= \int_X |u|^2 |h_T| \left| E\left(\frac{f}{\langle f, h \rangle}\right) \circ T^{-1} \right|^2 d\mu \circ T^{-1} \\
&= \int_X |u|^2 \circ T |h_T| \circ T \left| E\left(\frac{f}{\langle f, h \rangle}\right) \right|^2 d\mu \\
&= \int_X |u^2 h_T| \circ T \left| E\left(\frac{f}{\langle f, h \rangle}\right) \right|^2 d\mu \\
&\geq \delta \int_X \left| E\left(\frac{f}{\langle f, h \rangle}\right) \right|^2 d\mu = \delta \int_X \left| \frac{f}{\langle f, h \rangle} \right|^2 d\mu = \delta \int_X |\langle h, f \rangle|^2 d\mu \\
&\geq \delta A \|h\|^2
\end{aligned}$$

Notes

Therefore, by [15, lemma 2.4.1], $M_{u,T,f}$ is onto.

Conversely, let $M_{u,T,f}$ is bounded and onto operator, by [15, Lemma 2.4.1], there exists a constant $c > 0$ such that for each $h \in H$, $c \|h\|^2 \leq \|M_{u,T,f}^*(h)\|^2$.

On the other hand, by the change of variable formula, we get

$$\begin{aligned}
c \|h\|^2 &\leq \|M_{u,T,f}^*(h)\|^2 = \int_X |u h_T E\left(\frac{f}{\langle f, h \rangle}\right) \circ T^{-1}|^2 d\mu \\
&= \int_X |u^2 h_T| \circ T \left| E\left(\frac{f}{\langle f, h \rangle}\right) \right|^2 d\mu \\
&\leq \|(u^2 h_T) \circ T\|_\infty \int_X |\langle h, f \rangle|^2 d\mu
\end{aligned}$$

Since $\|(u^2 h_T) \circ T\|_\infty > 0$, we get $A \|h\|^2 \leq \int_X |\langle h, f \rangle|^2 d\mu$ for some constant $A > 0$.

To proved is that f is c -Bessel, For this the change of variable formula and the properties of the conditional expectation are essentially used to obtain by

$$\begin{aligned}
\delta \int_X |\langle h, f \rangle|^2 d\mu &\leq \delta \int_X E|\langle h, f \rangle|^2 d\mu \\
&\leq \int_X (u^2 h_T) \circ T E|\langle h, f \rangle|^2 d\mu \\
&= \int_X (u^2 h_T) E|\langle h, f \rangle \circ T^{-1}|^2 d\mu \circ T^{-1} \\
&= \int_X (u^2 h_T) E|\langle h, f \rangle \circ T^{-1}|^2 h_T d\mu
\end{aligned}$$

$$= \int_X \left| u \circ T \circ E(h, f) \circ T^{-1} \right|^2 d\mu$$

$$= \| M_{u,T,f}^*(h) \|^2 \leq \| M_{u,T,f}^* \|^2 \| h \|^2$$

Hence $\int_X |\langle h, f \rangle|^2 d\mu \leq B \| h \|^2$ for some $B > 0$

Notes

Theorem 2.3. Let K be a Hilbert space, $f: X \rightarrow H$ be a c -Bessel mapping for H and $v: H \rightarrow K$ be a bounded linear mapping. Then

- (i) The mapping $v \circ f: X \rightarrow K$ is a c -Bessel mapping for K and $v \circ M_{u,T,f} = M_{u,T,vf}$
- (ii) For each $x \in X$ the map, $x \rightarrow \langle h, f(x) \rangle$ is $T^{-1}(\Sigma)$ -measurable. Let f be a c -frame for H . Then $v \circ f$ is

Proof. (i). Since $\sup_{h \in H} \int_X |\langle h, v(f(x)) \rangle|^2 d\mu \leq \| v \|^2 \sup_{h \in H} \int_X |\langle h, f(x) \rangle|^2 d\mu$, $v \circ f$ is a c -Bessel mapping for K .

$$\begin{aligned} \text{For each } g \in L^2(X), \text{ we have } & \langle M_{u,T,vf}(g), k \rangle = \int_X u \circ T(x) g \circ T(x) \langle v(f(x)), k \rangle d\mu \\ &= \int_X (ug) \circ T(x) \langle f(x), v^*(k) \rangle d\mu \\ &= \langle M_{u,T,f}(g), v^*(k) \rangle = \langle v \circ M_{u,T,f}(g), k \rangle \end{aligned}$$

Hence $M_{u,T,vf} = v \circ M_{u,T,f}$.

(ii). Suppose that v is surjective, by (i) it is clear that $M_{u,T,vf}$ is also surjective.

Hence by Theorem 2.2, $v \circ f$ is a c -frame for K .

Conversely, suppose that $v \circ f$ is a c -frame for K , then by Theorem 2.2, $M_{u,T,vf}$ is surjective and again by (i) v is clearly surjective.

III. DUAL OF C-BESSEL MAPPING

3.1 Let f, g be c -Bessel mappings for $h \in H$ we say that f equals weakly to g whenever $M_{u,T,f}^* = M_{u,T,g}^*$, which is equivalent with $\langle h, f \rangle = \langle h, g \rangle$ almost everywhere, for all $h \in H$.

Theorem 3.1. Let f, g be c -Bessel mappings for H . Then the following assertions are equivalent,

- (1). For each $h \in H$, $h = M_{u,T,f}(\langle h, g \circ T^{-1} \rangle)$
- (2). For each $k \in H$, $k = M_{\overline{u \circ T}, T, g}(\langle k, f \circ T^{-1} \rangle)$
- (3). For each $h, k \in H$, $\langle h, k \rangle = \int_X u \circ T(x) \langle h, g(x) \rangle \langle f(x), k \rangle d\mu$
- (4). For each $h \in H$, $\| h \|^2 = \int_X u \circ T(x) \langle h, g(x) \rangle \langle f(x), h \rangle d\mu$

(5). For each orthonormal bases $\{e_i\}_{i \in I}$ for H

$$\langle e_i, \gamma_j \rangle = \int_X u \circ T(x) \langle e_i, g(x) \rangle \langle f(x), \gamma_j \rangle d\mu, \quad i \in I, \quad j \in J$$

(6). For each orthonormal bases $\{\gamma_j\}_{j \in J}$ and $\{e_i\}_{i \in I}$ for H

$$\langle e_i, e_j \rangle = \int_X u \circ T(x) \langle e_i, g(x) \rangle \langle f(x), e_j \rangle d\mu, \quad i \in I, \quad j \in J$$

Proof. (1) \rightarrow (2), choose $h, k \in H$ arbitrarily then

$$\begin{aligned} \langle h, k \rangle &= \left\langle M_{u, T, f} \left(\langle h, g \circ T^{-1} \rangle \right), k \right\rangle \\ &= \int_X u \circ T(x) \left(\langle h, g \circ T^{-1} \rangle \right) \circ T(x) \langle f(x), k \rangle d\mu \\ &= \int_X u \circ T(x) \langle h, g(x) \rangle \langle f(x), k \rangle d\mu \\ &= \int_X \overline{u \circ T(x)} \langle k, f(x) \rangle \langle g(x), h \rangle d\mu \\ &= \left\langle M_{\overline{u \circ T}, T, g} \left(\langle k, f \circ T^{-1} \rangle \right), h \right\rangle \\ &= \left\langle h, M_{\overline{u \circ T}, T, g} \left(\langle k, f \circ T^{-1} \rangle \right) \right\rangle \end{aligned}$$

Hence $k = M_{\overline{u \circ T}, T, g} \left(\langle k, f \circ T^{-1} \rangle \right)$

(2) \rightarrow (3) is proved in a similar way and proof of the other implications refer [16, Theorem 3.4].

3.2 Let f, g be c -Bessel mappings for H . we say that f, g is a dual pair if one of the assertions of Theorem 3.1 is satisfied.

Note that:

$$\begin{aligned} \|h\|^2 &= \int_X u \circ T(x) \langle h, g(x) \rangle \langle f(x), h \rangle d\mu \\ &\leq \int_X \left| u \circ T(x) \langle h, g(x) \rangle \langle f(x), h \rangle \right| d\mu \\ &\leq \left(\int_X \left| \langle h, g(x) \rangle \right|^2 d\mu \right)^{\frac{1}{2}} \left(\int_X \left| u \circ T(x) \langle f(x), h \rangle \right|^2 d\mu \right)^{\frac{1}{2}} \\ &\leq \left(\int_X \left| \langle h, g(x) \rangle \right|^2 d\mu \right)^{\frac{1}{2}} \|u \circ T\|_{\infty} B^{\frac{1}{2}} \|h\| \end{aligned}$$

Notes

Hence g is a c -frame for H .

Theorem 3.2. For each $x \in X$ and $h \in H$, the map $x \rightarrow \langle h, f(x) \rangle$ is $T^{-1}(\Sigma)$ -measurable. Let f be a c -frame for H . Then the following arguments hold.

(1). For each $h \in H$, we find the following formulas $h = M_{u,T,S_{u,T,f}^{-1}}(u h_T E(\langle h, f \rangle) \circ T^{-1})$

and $h = M_{u,T,f}(u h_T E(\langle S_{u,T,f}^{-1}(h), f \rangle) \circ T^{-1})$

(2). In the formula $h = M_{u,T,f}(u h_T E(\langle S_{u,T,f}^{-1}(h), f \rangle) \circ T^{-1})$,

$h = M_{u,T,f}(u h_T E(\langle h, S_{u,T,f}^{-1}(f) \rangle) \circ T^{-1})$ has the least norm among all of the retrieval formulas.

(3). For each $h \in H$, $h = M_{u,T,f}(h, g \circ T^{-1})$ if and only if there exists a c -Bessel mapping $l \in H$

Such that $g \circ T^{-1} = S_{u,T,f}^{-1} f + l$, where for each $k \in H$, $\langle k, l \rangle \in \text{Ker}(M_{u,T,f})$.

(4). The map f has just one dual if and only if $R(M_{u,T,f}^*) = L^2(X)$.

Proof.(1). Since f is c -frame, then by Theorem 2.2, $M_{u,T,f}$ is onto and hence $S_{u,T,f}$ is an invertible operator. Consequently, for each $h \in H$, we obtain that

$$h = S_{u,T,f}^{-1} S_{u,T,f}(h) = S_{u,T,f}^{-1} M_{u,T,f} M_{u,T,f}^*(h)$$

$$= M_{u,T,S_{u,T,f}^{-1}}(u h_T E(\langle h, f \rangle) \circ T^{-1})$$

Now, we have $h = S_{u,T,f}^{-1} S_{u,T,f}(h) = M_{u,T,f} M_{u,T,f}^*(h) (S_{u,T,f}^{-1})$

$$= M_{u,T,f}(u h_T E(\langle S_{u,T,f}^{-1}(h), f \rangle) \circ T^{-1}).$$

(2). Choose $\phi \in L^2(X)$ and $h = M_{u,T,f}(\phi)$. Then for each $g \in H$, we have

$$\langle h, g \rangle = \left\langle M_{u,T,f}(u h_T E(\langle S_{u,T,f}^{-1}(h), f \rangle) \circ T^{-1}), g \right\rangle$$

$$= \int_X u \circ T(x) \left(u h_T E(\langle S_{u,T,f}^{-1}(h), f \rangle) \circ T^{-1} \right) \langle f, g \rangle d\mu$$

$$= \int_X u^2 \circ T(x) h_T \circ T(x) E(\langle S_{u,T,f}^{-1}(h), f \rangle) \langle f(x), g \rangle d\mu$$

Similarly, we have

$$\langle h, g \rangle = \left\langle M_{u,T,f}(\phi), g \right\rangle = \int_X u \circ T(x) \phi \circ T(x) \langle f(x), g \rangle d\mu$$

$$\begin{aligned}
\text{Therefore } \langle h, g \rangle - \langle h, g \rangle &= \left\langle M_{u,T,f} \left[\left(u h_T E \left(\langle S_{u,T,f}^{-1}(h), f \rangle \right) \circ T^{-1} \right) - \phi \right], g \right\rangle \\
&= \int_X u \circ T(x) \left(\left(u h_T E \left(\langle S_{u,T,f}^{-1}(h), f \rangle \right) \circ T^{-1} \right) - \phi(x) \right) \circ T(x) \langle f(x), g \rangle d\mu = 0 \\
M_{u,T,f} \left(\left(u h_T E \left(\langle S_{u,T,f}^{-1}(h), f \rangle \right) \circ T^{-1} \right) - \phi \right) &= 0
\end{aligned}$$

Implies that $\left(u h_T E \left(\langle S_{u,T,f}^{-1}(h), f \rangle \right) \circ T^{-1} \right) - \phi \in \text{Ker}(M_{u,T,f})$

Since f is a c -Bessel mapping for H , we obtain that $\left(u h_T E \left(\langle S_{u,T,f}^{-1}(h), f \rangle \right) \circ T^{-1} \right) \in R(M_{u,T,f}^*)$

But $L^2(X) = \text{ker}(M_{u,T,f}) \oplus R(M_{u,T,f}^*)$

Consequently,

$$\| \phi \|^2 = \left\| \left(u h_T E \left(\langle S_{u,T,f}^{-1}(h), f \rangle \right) \circ T^{-1} \right) - \phi \right\|^2 + \left\| \left(u h_T E \left(\langle S_{u,T,f}^{-1}(h), f \rangle \right) \circ T^{-1} \right) \right\|^2$$

and (2) is proved.

(3). Let g be a c -Bessel mapping for H . For each $h \in H$, assume that $h = M_{u,T,f} \langle h, g \circ T^{-1} \rangle$

Let $g \circ T^{-1} - S_{u,T,f}^{-1}f = l$ by Theorem 3.1, for each $h, k \in H$ we have

$$\begin{aligned}
\langle M_{u,T,f} \langle k, l \rangle, h \rangle &= \left\langle M_{u,T,f} \langle k, g \circ T^{-1} \rangle, h \right\rangle - \left\langle M_{u,T,f} \langle k, S_{u,T,f}^{-1}f \rangle, h \right\rangle \\
&= \int_X u \circ T \langle k, g \circ T^{-1} \rangle \circ T \langle f, h \rangle d\mu - \int_X u \circ T \langle k, S_{u,T,f}^{-1}f \rangle \circ T \langle f, h \rangle d\mu \\
&= \int_X u \circ T \langle k, g \rangle \langle f, h \rangle d\mu - \int_X u \circ T \langle k, S_{u,T,f}^{-1}f \circ T \rangle \langle f, h \rangle d\mu \\
&= \langle k, h \rangle - \langle k, h \rangle = 0
\end{aligned}$$

Hence, for each $k \in H$, $\langle k, l \rangle \in R(M_{u,T,f}^*)^\perp = \text{ker}(M_{u,T,f})$.

Now, let $g \circ T^{-1} = S_{u,T,f}^{-1}f + l$, Then for each $h \in H$, we have

$$\begin{aligned}
\int_X u \circ T \langle f, h \rangle \langle k, g \rangle d\mu &= \int_X u \circ T \langle f, h \rangle \left\langle k, (S_{u,T,f}^{-1}f + l) \circ T \right\rangle d\mu \\
&= \int_X u \circ T(x) \langle f(x), h \rangle \left\langle k, (S_{u,T,f}^{-1}f) \circ T \right\rangle d\mu + \int_X u \circ T(x) \langle f(x), h \rangle \langle k, l \circ T \rangle d\mu \\
&= \langle k, h \rangle + \left\langle M_{u,T,f} \langle k, l \rangle, h \right\rangle = \langle k, h \rangle.
\end{aligned}$$

By Theorem 3.1, $h = M_{u,T,f} \langle h, g \circ T^{-1} \rangle$.

(4). Let $R(M_{u,T,f}^*) \neq L^2(X)$ and Let $l \in R(M_{u,T,f}^*)^\perp$ with $\|l\| = 1$

Notes

Consider the map $k: X \rightarrow L^2(X)$ defined by $k(x) = l \circ T(x)l$. For each $t \in L^2(X)$, the map $X \rightarrow C$, defined by $x \rightarrow \langle t, k(x) \rangle$ is Σ -measurable and $\int_X |\langle t, k(x) \rangle|^2 d\mu = \int_X |\langle t, l \circ T(x)l \rangle|^2 d\mu$
 $= \int_X |\langle t, l \rangle|^2 |l \circ T(x)|^2 d\mu = |\langle t, l \rangle|^2 \leq \|t\|^2$

Notes

Thus, k is a c -Bessel mapping for $L^2(X)$. let $v: L^2(X) \rightarrow H$ be a mapping such that $v(l) \neq 0$. Then vk is c -Bessel mapping for H and $S_{u,T,f}^{-1}f + vk$ is a c -Bessel mapping for H .

$$\begin{aligned} \text{Let } h \in H, \int_X u \circ T(x) \left\langle h, S_{u,T,f}^{-1}f(x) + vk(x) \right\rangle \langle f(x), h \rangle d\mu \\ = \int_X u \circ T(x) \left\langle h, S_{u,T,f}^{-1}f(x) \right\rangle \langle f(x), h \rangle d\mu + \int_X u \circ T(x) \left\langle h, vk(x) \right\rangle \langle f(x), h \rangle d\mu \\ = \|h\|^2 + \left\langle v^*(h), l \right\rangle \int_X u \circ T(x) \overline{l \circ T(x)} \langle f(x), h \rangle d\mu \\ = \|h\|^2 + \left\langle v^*(h), l \right\rangle \left\langle M_{u,T,f}(l), h \right\rangle = \|h\|^2 \end{aligned}$$

Therefore $S_{u,T,f}^{-1}f + vk$ is the dual of f .

The equation $\langle v(l), vk(x) \rangle = \langle v(l), l \circ T(x) v(l) \rangle = \overline{l \circ T(x)} \langle v(l), v(l) \rangle$

This implies that, $S_{u,T,f}^{-1}f + vk$ is not weakly equal to $S_{u,T,f}^{-1}f$

Conversely, Assume that $L^2(X) = R(M_{u,T,f}^*)$, Now, $g \circ T^{-1} = S_{u,T,f}^{-1}f + l$ where for each $k \in H$
 $\langle k, l \rangle \in \text{ker}(M_{u,T,f}^*) = R(M_{u,T,f}^*)^\perp = \{0\}$, $l = 0$ weakly, so f has a dual.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for carefully reading manuscript and for their constructive comments. I want to thank **Ms.K.Kavitha, Project Director**, District Rural Development Agency (DRDA),Collectorate,Dindigul for his support and encouragement during preparation of the paper.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Campbell, J & Jamison, J, On some classes of weighted composition operators, Glasgow Math.J.vol.32, pp.82-94, (1990).
2. Embry Wardrop, M & Lambert, A, Measurable transformations and centred composition operators, Proc. Royal Irish Acad, vol.2(1), pp.23-25 (2009).
3. Herron, J, Weighted conditional expectation operators on L^p -spaces, UNC charlotte doctoral dissertation.
4. Thomas Hoover, Alan Lambert and Joseph Quinn, The Markov process determined by a weighted composition operator, Studia Mathematica, vol. XXII (1982).
5. Singh, RK & Kumar, DC, Weighted composition operators, Ph.D.thesis, Univ. of Jammu (1985).

6. Singh, RK Composition operators induced by rational functions, Proc. Amer. Math. Soc., vol.59, pp.329-333(1976).
7. Takagi, H & Yokouchi, K, Multiplication and Composition operators between two pL - spaces, Contem. Math., vol.232, pp.321-338 (1999).
8. Panaiyappan, S & Senthilkumar, D, Parahyponormal and M^* -parahyponormal composition operators, Acta CienciaIndica, Vol. XXVIII (4) (2002).
9. Senthil, S, Thangaraju, P & Kumar, DC, n-normal and n-quasi-normal composite multiplication operator on L^2 -spaces, Journal of Scientific Research & Reports,8(4),1-9 (2015).
10. Senthil, S, Thangaraju, P & Kumar, DC, k-*paranormal, k-quasi-*paranormal and (n,k)-quasi-*paranormal composite multiplication operator on 2 L -spaces, British Journal of mathematics and computer science, BJMCS20166 (2015).
11. Senthil, S, Thangaraju, P & Kumar, DC, Composite multiplication operator on L^2 -spaces of vector valued functions, International research Journal of Mathematical Sciences, vol.4 (2), pp.1 (2015).
12. Duffin RJ & Shaeffer AC, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc, vol.72, pp.341-366 (1952).
13. Faroughi MH & Osgooei E, c-frame and c-Bessel mappings, Bull. Iranian Math. Soc, vol. 38(1), pp.203-222 (2012).
14. Harrington D & Whitley R, Seminormal composition operators, J.Operator theory, vol.38(1), pp.125-135 (1984).
15. Christensen O, Frames and Bases, An Introductory Course, Kegs. Lyngby, Denmark November (2007).
16. Moayyerizadeh Z & Emamalipour H, Weighted composition operator valued integral, Mathematiche(Catania), vol 71(2), pp.161-172 (2016).
17. Senthil & DC kumar et al,), (α, β) -normal and skew normal composite multiplication operators on Hilbert Spaces, In. journal of Discrete Mathematics, doi: 10.11648/ XXXX2019XXXX.XX.

Notes