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We exhibit a polynomial time algorithm for the NP complete problem SBQR, size-
bounded quadratic residues. This establishes the equality of the complexity classes P
and NP. Proof of NP completeness was given in [3]. SBQR is the set of triples of the bi-
nary representations of the positive integers a, b, c such that there exists a positive integer
x satisfying x2 ≡ a (mod b) and x ≤ c. W.L.O.G. we impose a, c < b. Polynomial time
means determinisic Turing machine time logO(1) b. We follow standard complexity class
terminology [1].

We reserve some notation.

• Unless otherwise indicated O() notation indicates an absolute constant.

• (x, y), [x, y], etc. denote real intervals, with a rounded bracket indicating the end-
point is not included.

• [x..y] is the set of integers z satisfying x ≤ z ≤ y.

• ` is the least integer satisfying b2 < 2`.

• c∗ = b(c2 − a)/bc. Note: 0 ≤ c∗ < b.

II. A Sieve for SBQR

• ι is the positive branch of
√
−1.

• τ = ι/2` + t, where t ∈ [0, 1] is a real variable. Note that any function of τ is
obviously a function of t.

• e(z) = exp(πιz). We regard π as represented by a rational but do not carry out the
associated error analysis.

• =(z) and <(z) are the imaginary and real parts of complex z. Where brackets are
unnecessary we will write <z and =z.
• T(m:f)(z) is the sum of the first m terms of the Taylor series for f(z).

Abstract- We exhibit a polynomial time algorithm for the NP complete problem SBQR, size-bounded
quadratic residues. This establishes the equality of the complexity classes P and NP. Proof of NP 
completeness was given in [3]. SBQR is the set of triples of the binary representations of the positive integers 

such that there exists a positive integer satisfying (mod ) and . W.L.O.G. we impose 
< . Polynomial time means determinisic Turing machine time logO(1)     .

x2≡ ax a, cca, b,
b b

b x≤c
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P = NP

We will frequently work with an integral of the form

g(t) =

∫ v

u
f(t, x)dx ,

where t ∈ [0, 1] and always g(t) is continuous. This means that maxt∈[0,1] |g(t)| exists.
Since |g(t)| ≤

∫ v
u |f(t, x)|dx an upper bound O(µ) on

∫ v
u |f(t, x)|dx is an upper bound on

maxt∈[0,1] |g(t)|. We will write |g(t)| = O(µ) rather than maxt∈[0,1] |g(t)| = O(µ).

We define Ω to be ∫ 1

0

∞∑
n=1

e(n2τ) ·
c∗∑
j=1

e(−(a+ bj)t)dt . (1)

The infinite summation exists because =(τ) > 0.

The next lemma justifies calling Ω a sieve for SBQR.

If there exists a positive integer n satisfying n ≤ c and n2 ≡ a (mod b), then
Ω > exp(−π), else Ω = 0.

For integer k, ∫ 1

0
e(kt)dt =

{
0 if k 6= 0
1 if k = 0

(2)

Eq. 1 can be written as

c∗∑
j=1

∞∑
n=1

exp(−πn2/2`) ·
∫ 1

0
e((n2 − a− bj)t)dt . (3)

All summands of Eq. 3 are nonnegative. The SBQR condition is equivalent to the existence
of positive integers n ≤ c and j ≤ c∗ such that n2 = a+ bj. The lemma follows from this
equivalence, the value of `, Eq. 2 and Eq. 3.

Our polynomial time algorithm for SBQR amounts to computing
ˆ
Ω in polynomial time

such that

|Ω− Ω̂| < exp(−π)/2 . (4)

By Lemma 1 this solves SBQR in polynomial time.

Define the Theta function ϑ(τ) to be

1 + 2

∞∑
n=1

(−1)ne(n2τ) . (5)

From Eq. 5 we get

∞∑
n=1

(−1)ne(n2τ) =
ϑ(τ)− 1

2
. (6)

Lemma 1 

Proof: 

III. Ω in Terms of a Theta Function

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

P = NP

The expression for Ω matches Eq. 1 term by term except that each term of
the infinite sum in Eq. 1 is multiplied by (−1)n(−1)a+bj . If n2 = a + bj, then since
n ≡ n2 (mod 2), (−1)n(−1)a+bj = 1. Terms with n2 6= a+bj contribute 0 under integration
so the sign of (−1)n(−1)a+bj does not matter.

Lemma 2 suggests that the key to producing Ω̂ is a suitable polynomial time approxi-
mation of ϑ(τ). Our approximation of ϑ(τ) is based on

ϑ(τ) = −ι
∫ ι+∞

ι−∞
e(u2τ)

1

sin(πu)
du . (7)

A derivation of Eq. 7 due to R. Puzio [4] is included in section ?.

Before proceeding to approximate ϑ(τ) we make an observation about a related Theta
function, namely

θ(τ) = 1 + 2

∞∑
n=1

e(n2τ) ,

which is defined for =τ > 0. Clearly, θ(τ) is very similar to ϑ(τ). Let γ be the matrix(
x y
z w

)
,

where x, y, z, w are integers and xw − yz = 1. The action γ · τ of γ on τ is defined by

γ · τ =
xτ + y

zτ + w
.

For given t ∈ [1, 3] and corresponding τ there exists γ such that

=(γ · τ) ≥
√

3/2 .

Theorem 4.3 in Chap. III.4 [2] shows that if z ≡ 0 (mod 4), then θ(τ) can be expressed
directly in terms of θ(γ · τ). Now, if =(γ · τ) ≥

√
3/2, then the series for θ(γ · τ) converges

very rapidly and series truncation leads to very good approximation of θ(τ). However,
we do not know of an analogue of Eq. 7 for θ(τ) and in our situation τ depends on t
which ranges over [0, 2]. The choice of γ for which =(γ · τ) ≥

√
3/2 depends on the order

of approximation of each value of t by rationals. The constraint z ≡ 0 (mod 4) further
complicates matters. These observations and Eq. 7 led us to work with ϑ(τ).

Ω equals

c∗∑
j=1

∫ 1

0
(−1)a+bj

ϑ(τ)− 1

2
e(−(a+ bj)t)dt .

The approximation of ϑ(τ) will be carried out in three large steps. At some points in
these steps additional results will be used: the recovery method and technical auxiliary
lemmas. Proofs of the recovery method and auxiliary lemmas are in sections 5 and 6,
respectively. Before proceeding we introduce some new parameters. For the rest of the
paper the index j has range [0..3] and the index i has range [1..3]. We introduce four roots
of unity: ω0, . . . , ω3 as 1, e(9/16), e(2/3), e(4/3), respectively.

© 2020 Global Journals

Lemma 2 

Proof: 

IV. Approximating ϑ(τ)
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Initial approximations will be carried out in Step 1. Much more detailed approximations
are presented in Step 2. The final approximation of ϑ(τ) is derived in Step 3 using the
recovery method.

Let κ(t) = −ι exp(π/2`) exp(−t). Making the change of variable x = u − ι and noting
τ = ι/2` + t, Eq. 7 becomes

κ(t)

∫ ∞
−∞

exp(−πx2/2`)e(x2t) exp(−2πxt)e(x/2`−1)

sin(π(x+ ι))
dx . (8)

Define B(t) to be

κ(t)

∫ 2`+4

−2`+4

exp(−πx2/2`)e(x2t) exp(−2πxt)e(x/2`−1)

sin(π(x+ ι))
dx . (9)

|ϑ(τ)−B(t)| = O(exp(−2`)).

We will show that the sum of the absolute values of the integral of Eq. 8 over
(−∞,−2`+4] and [2`+4,∞) is bounded above by O(exp(−2`)). We do this by bounding
the absolute values of the integrand of Eq. 8 over these two half infinite ranges.

Now,

|e(u2τ)| = | exp(π/2`) exp(−πx2/2`) exp(−2πxt)| .

Since | exp(π/2`)| = O(1) it suffices to examine

| exp(−πx2/2`) exp(−2πxt)| . (10)

The behavior of Eq. 10 depends on the behavior of −πx2/2` − 2πxt. By calculation, if
|x| ≥ 2`+4, then −πx2/2` − 2πxt ≤ −|x|. From this we see that if |x| ≥ 2`+4, then

|e(u2τ)| = O(exp(−|x|)) . (11)

The lemma follows from Eq. 9, Eq. 11 and Eq. 64 of Lemma 8, section 6.

Define B+(t) to be

κ(t)

∫ 2`+4

0
exp(−πx2/2`)e(x2t) exp(−2πxt)e(x/2`−1)

1

sin(π(ι+ x))
dx

and B−(t) to be

κ(t)

∫ 2`+4

0
exp(−πx2/2`)e(x2t) exp(2πxt)e(−x/2`−1) 1

sin(π(ι− x))
dx

Clearly, B(t) = B+(t) +B−(t).

Lemma 3 

Proof: 

a) Step 1

Notes
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By Eq. 65 of Lemma 8 of section 6 we can express B+(t) as

−2ικ(t)

∫ 2`+4

0
exp(−πx2/2`)e(x2t) exp(−2πxt)e(x/2`−1)

∞∑
k=0

exp(−2πk)e(2(k + 1)x)dx

(12)

and B−(t) as

−2ικ(t)

∫ 2`+4

0
exp(−πx2/2`)e(x2t) exp(2πxt)e(−x/2`−1)

∞∑
k=0

exp(−2πk)e(−2(k + 1)x)dx .

(13)

B−(ωit) is defined from Eq. 13 under the substitution t→ ωit. Absorbing the −2ι factor
redefine κ(t) = −2 exp(π/2`e(−t).

Now we truncate the infinite sums in Eq. 12 and Eq. 13 to the first `+ 1 terms. Noting
Eq. 12 define B+,k(t) to be

κ(t)

∫ 2`+4

0
exp(−πx2/2`)e(x2t) exp(−2πxt)e(x/2`−1) exp(−2πk)e(2(k + 1)x)dx (14)

and noting Eq. 13 define B−,k(t) to be

κ(t)

∫ 2`+4

0
exp(−πx2/2`)e(x2t) exp(2πxt)e(−x/2`−1) exp(−2πk)e(−2(k + 1)x)dx . (15)

B−,k(ωit) is defined by Eq. 15 in the obvious way.

Now we introduce the truncated versions of B+(t), B−(t) and B−(ωit). Define C+(t) to
be ∑̀

k=0

B+,k(t) (16)

and C−(t) to be

∑̀
k=0

B−,k(t) (17)

and C−(ωit) to be

∑̀
k=0

B−,k(ωit) (18)

A useful upper bound on the absolute value of the integrand of the integral defining B+(t)
can be obtained but this does not apply to the integrand of the integral defining B−(t).
It is possible to get useful bounds on the absolute value of the integrand of the integral
defining B−(ωit). Of course, B−(ωit) is quite different to B−(t). We will use the recovery
method of section 5 to overcome this difficulty.

Notes
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The following definitions are of great importance.

• αj = −π/2` + ιπtωj .

• β0,k = −2πt+ ιπ(1/2`−1 + 2(k + 1)), where k ∈ N.

• βi,k = 2πtωi + ιπ(−1/2`−1 − 2(k + 1)), where k ∈ N.

Using these definitions and Eq. 12 we can express B+,k(t) as

κ(t)

∫ `+4

0
exp(−2πk) exp(α0x

2 + β0,kx)dx (19)

and using Eq. 13 we can express B−,k(ωit) as

κ(t)

∫ `+4

0
exp(−2πk) exp(αix

2 + βi,kx)dx . (20)

| exp(αjx
2 + βj,kx)| = O(1).

It suffices to show for x ≥ 0 that

<(αjx
2 + βj,kx) < 0 .

This follows by inspection since <(αj) < 0 and <(βj,k) = 2πt<(2πtωj) ≤ 0.

Note that

<(βi,k) = 2πt<(2πtωi) ≤ 0

is the reason for introducing ω1, ω2, ω3. No satisfactory upper bound on

| exp(αix
2 + βi,kx)|

exists if we set the ωi to 1.

By Eq. 16, noting the factor exp(−2kπ) in Eq. 19 and Lemma 4 we get

|B+(t)− C+(t)| = O(`2`+4 exp(−2π`)) (21)

and similarly using Eq. 17 and Eq. 20,

|B−(ωit)− C−(ωit)| = O(`2`+4 exp(−2π`)) . (22)

We break up the integration range [0..2`+4] into ’octaves’, Og. Let r be the least integer
satisfying `2 < r.

• O0 = [0, 2r].

• for g ∈ [1..`+ 4− r], Og = [2r+g−1, 2r+g].

Proof: 

Lemma 4

b) Step 2

Notes
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From this point we reserve the symbols g and r. Og,− and Og,+ denote the lower and
upper endpoints of Og. Integration restricted to t ∈ Og is denotes by

∫
Og

. B+,k,g(t) is

defined by Eq. 14 with integration restricted to x ∈ Og and B−,k,g(t) is defined by Eq. 15
with integration restricted to x ∈ Og.

ith x ∈ O0 we have by calculation

|αjx2 + βj,kx| = O(`3) . (23)

Define D+,k,0(t) to be ∫
O0

T(`4:exp)(α0x
2 + β0,kx)dx

and define D−,k,0(ωit) to be ∫
O0

T(`4:exp)(αix
2 + βi,kx)dx

Using O0 = [0..2r], the truncation error for the Taylor series for exp and Eq. 23 we get
for ` > 2 exp(1) that

|D+,k,0(t)−B+,k,0(t| and |D−,k,0(ωit)−B−,k,0(ωit| = O(`2/2`
4
) . (24)

Now, x ∈ Og for g > 0. Define vj,k to be

vj,k = αjx
2 + βj,kx . (25)

Clearly,

|vj,k| = O(22`) . (26)

From Eq. 25 we get

dx =
dvj,k

2αjx+ βj,k
. (27)

We have, using |βj,k| = O(`) (reason for defining octaves):

1 ≤
maxx∈Og |2αjx+ βj,k|
minx∈Og |2αjx+ βj,k|

=
Og,+
Og,−

1±O(1/`)

1±O(1/`)
= 2±O(1/`) < 3 . (28)

Notice that the lower and upper bounds are independent of k. Using Eq. 28 and Lemma 9
of section 6, a polynomial Rj(x) can be computed in polynomial time in m such that

| 1

2αjx+ βj,k
−Rj(x)| < 1/2m . (29)

Next, we want to express Rj(x) by expressing x in terms of vj,k. We do this by solving
Eq. 25 for x. The solutions are

x =
βj,k ±

√
β2j,k − 4αjvj,k

2αj
.

Notes
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By Eq. 25, at x = 0, vj,k = 0 so we take the negative branch,

x =
βj,k −

√
β2j,k − 4αjvj,k

2αj
. (30)

Using Eq. 30 we can write Rj(x) as

Rj(
βj,k −

√
β2j,k − 4αjvj,k

2αj
) . (31)

We can write Eq. 31 as

Rj,1(vj,k) +Rj,2(vj,k

√
β2j,k − 4αjvj,k) , (32)

where R1,j(z) and Rj,2(z) are polynomials.

Next, we approximate
√
β2j,k − 4αjvj,k by a polynomial Rj,3(vj,k). We first examine

β2j,k − 4αjvj,k. Let zj,k = β2j,k − 4αjvj,k. By inspection we get

|
=(ιzj,k)

<(ιzj,k)
| = O(1/`2) (33)

and

max |ιzj,k|
min |ιzj,k|

= 4±O(1/`2) . (34)

From the definition of βj,k one has

<(ιz0,k) < 0 and <(ιzi,k) > 0 . (35)

Let µj = maxx∈Og |zj,k|. Note that

|µj | < 2O(`) . (36)

From Eq. 33, Eq. 34 and Eq. 35 one has

|
µ0 + ιz0,k

µ0
| = 3/4±O(1/`2) < 4/5 and |

µi − ιzi,k
µi

| = 3/4±O(1/`2) < 4/5 . (37)

Now,

√
ιz0,k =

√
µ0

√
1−

µ0 + ιz0,k
µ0

and

√
ιzi,k =

√
µi

√
1−

µi − ιzi,k
µi

From these, Eq. 37 and the Taylor series for
√

1− ζ with

ζ = 1−
µ0 + ιz0,k

µ0

Notes
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and

ζ = 1−
µi − ιzi,k

µi
we get

|√ιz0,k −
√
µ0(T(h:√)(

µ0 + ιz0,k
µ0

))| < √µ0 · (4/5)h (38)

and

|√ιzi,k −
√
µi(T(h:√)(

µi − ιzi,k
µi

))| < √µi · (4/5)h , (39)

respectively.

By Eq. 36 if h = 2`2 for ` sufficiently large the upper bounds in Eq. 38 and Eq. 39
can be replaced by 2−`

2
. Eq. 38 and Eq. 39 extend to approximating

√
zj,k by us-

ing
√
ιzj,k =

√
ι
√
zj,k. Denote the resulting approximation polynomials as P0(v0,k) and

Pi(vi,k). By Eq. 39, a single polynomial works for all i but we retain the index so that we
can write P

j
(v
j,k

) to cover all cases.

Recalling Eq. 32, define R′j,k(vj,k) to be

Rj,2(Pj(vj,k)) .

Using h = 2`2 and the corresponding upper bound 2−`
2

in Eq. 38 and Eq. 39 and standard
error estimations we obtain

|Rj,2(
√
β2j,k − 4αjvj,k)−R′j,k(vj,k)| < 2−`

2/2 . (40)

Recalling Eq. 31 define Qj(vj,k) to be

Rj,1(vj,k) +R′j,k(vj,k) (41)

With j = 0, E+,k,g(t) and with j ∈ [1..3], E−,k,g(ωjt) is defined by∫
Õg

exp(vj,k)Qj(vj,k)dvj,k , (42)

where Õg arises from Og under the change of variable x to vj,k.

Define D+,k,g(t) and D−,k,g(ωit) by restricting the integrations to Og in Eq. 19 and
Eq. 20, respectively. Note that

D+,k(t) =
∑
g

D+,k,g(t) and D−,k(ωit) =
∑
g

D−,k,g(ωit)

and similarly for E+(t) and E−(ωit). From Lemma 4 and Eq. 42 we get

|E+,k,g(t)−D+,k,g(t)|, |E−,k,g(ωit)−D−,k,g(ωit)| < 2−2` . (43)

From the summations
∑

k and
∑

g, the triangle inequality and Eq. 43 we get

|E+(t)−D+(t)| = O(`2−2`) and |E−(ωit)−D−(ωit)| = O(`22−2`) . (44)

Notes
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P = NP
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By Lemma 10 the integration in Eq. 42 can be carried out exactly in polynomial time so
that the evaluation of the integral in Eq. 42 can be expressed as

exp(γj,k,g,+ωjt)Uj,k,g,+(ωjt)− exp(γj,k,g,−ωjt)Uk,g,−(ωjt) , (45)

where γj,k,g,+ and γj,k,g,− are complex constants derived from Õg,+ and Õg,−, respectively
and Uj,k,g,+(ωjt) and Uk,g,−(ωjt) are corresponding complex coefficient polynomials. For
j = 0, Eq. 45 gives E+,k,g(t) explicitly and for j ∈ [1..3] it gives E−,k,g(ωjt) explicitly.

Define
E+(t) =

∑
k

∑
g

E+.k,g(t)

and

E−(ωit) =
∑
k

∑
g

E−.k,g(ωit) .

Via recovery, described in section 5 we will produce E−(t) from the E−(ωit) and ϑ̂(τ) =
E+(t)+E−(t) will be our approximation of ϑ(τ). From Eq. 45, the comments immediately
following, linearity of the recovery operator Υ and Eq. 63 of section 5 we can compute in
polynomial time E−(t) given by

Υ(E−,R(ω1t), E−,R(ω2t), E−,R(ω3t))+ιΥ(E−,I(ω1t), E−,I(ω2t), E−,I(ω3t)) .E−,R(ωit)+ιE−,I(ωit) .

(46)

It is clear that ϑ̂(τ) can be computed in polynomial time since E+(t) can be computed in
polynomial time. Next, we determine an upper bound on |ϑ(τ)− ϑ̂(τ)|.

|ϑ(τ)− ϑ̂(τ)| = O(`22−2`).

By Eq. 44,

|E+(t)−D+(t)| = O(`22−2`) . (47)

By Eq. 21 and repeated triangle inequality using the fact that the summation range for k
is O(`),

|D+(t)− C+(t)| = O(`δ) . (48)

From Eq. 47 and Eq. 48,

|E+(t)− C+(t) = O(`22−2`) . (49)

Again by Eq. 44,

|E−(ωit)−D−(ωit)| = O(`22−2`) . (50)

By Eq. 22 and repeated triangle inequality using the fact that the summation range for k
is O(`),

|D−(ωit)− C−(ωit)| = O(`2−2`) . (51)

From Eq. 50 and Eq. 51,

|E−(ωit)− C−(ωit)| = O(`22−2`) . (52)

Proof: 

Lemma 5 

5

c) Step 3

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

From Eq. 52, linearity of Υ and Lemma 7 of section 5,

|E−(t)− C−(t)| = O(`22−2`) .

Thus, we get, using ϑ̂(τ) = E+(t) + E−(t),

|ϑ̂(τ)− (C+(t) + C−(t)| = O(`22−2`) .

The lemma follows from this, B(t) = C+(t) + C−(t) and Lemma 3.

Using ϑ̂(τ) we are ready to compute Ω̂ and verify Eq. 4. As observed in section 1, Eq. 4
and polynomial time computability of ϑ̂(τ) establishes that SBQR is in P.

|Ω− Ω̂| = O(`22−`) . (53)

Noting Lemma. 2, define Ω̂∗ =
∑c∗

j=1 Ω̂∗,j , where

Ω̂∗,j =

∫ 1

0
(−1)a+bj

ϑ̂(τ)− 1

2
e(−(a+ bj)t)dt . (54)

By Lemma 5 and |e(−(a+ bj)t)| = 1,

|
∫ 1

0
(−1)a+bj

ϑ(τ)− 1

2
e(−(a+ bj)t)dt− Ω̂∗,j | = O(`22−2`) . (55)

By Eq. 45 Ω̂∗,j can be exactly evaluated as an expression given by

(−1)a+bj exp(ζ+(a+ bj))

ζ ′+(a+ bj)2
− (−1)a+bj exp(ζ−(a+ bj))

ζ ′−(a+ bj)2
, (56)

where ζ+, ζ
′
+ and ζ−, ζ

′
− are constants arising from evaluations at the integration endpoints

1 and 0, respectively. Clearly, Eq. 56 can be written as

exp(ζ ′′+(a+ bj))

ζ ′+(a+ bj)2
−

exp(ζ ′′−(a+ bj))

ζ ′−(a+ bj)2
, (57)

where ζ ′′± = ζ± + π.

Define Ω̂ to be
c∗∑
j=1

Ω̂∗,j .

Lemma 11 of section 6 (adjusted for endpoints other than powers of 2), the summation
range c∗, Eq. 55 and Eq. 57 give

|Ω− Ω̂| = O(`22−`) ,

which is Eq. 53

For ` sufficiently large the bound O(`22−`) is less tha exp(−π)/2, which satisfies Eq. 4.

© 2020 Global Journals

Proof: 

Lemma 6

V. Computing Ω̂

P = NP

Notes
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We describe the recovery method. Let f(t) =
∑∞

n=0 fnt
n, where the fn and t are real.

Define
∑

i to be ∑
n≡i (mod 3)

fnt
n .

We have, using the reality of fn,

f(ω1t) =
∑

0 +ω1
∑

1 +ω2
1

∑
2

f(ω2t) =
∑

0 +ω2
∑

1 +ω3
∑

2

f(ω3t) =
∑

0 +ω3
∑

1 +ω2
∑

2

.
(58)

Let µi = <(ωi) and νi = =(ωi) and µ∗ = <(ω2
1). From Eq. 58 we get

<(f(ω1t)) =
∑

0 +µ1
∑

1 +µ∗
∑

2

=(f(ω2t)) = ν2
∑

1 +ν3
∑

2

<(f(ω3t)) =
∑

0 +µ3
∑

1 +µ2
∑

2

. (59)

Define X to be  1 µ1 µ∗
0 ν2 ν3
1 µ3 µ2

 .

It is a calculation that

DET(X) = − sin(π/3)(2 cos(π/3)− cos(9π/16)− cos(9π/8)) 6= 0

so that X−1 exists. From Eq. 59 we get

 ∑
0∑
1∑
2

 = X−1 ·

 <(f(ω1t))
=(f(ω2t))
<(f(ω3t))

 . (60)

We recover f(t) through

f(t) = (1, 1, 1) ·X−1 ·

 <(f(ω1t))
=(f(ω2t))
<(f(ω3t))

 . (61)

For any 3× 1 matrices u, v we have

(1, 1, 1) ·X−1 · (u+ v) = (1, 1, 1) ·X−1 · u+ (1, 1, 1) ·X−1 · v . (62)

We refer to (1, 1, 1) · X−1 as the recovery operator Υ and write its effect on the column
vector of Eq. 61 as Υ(f(ω1t)), (f(ω2t)), (f(ω3t))).

We give an extension to recovery and an error analysis. We need notation here. Let
g(z) =

∑∞
n=0 gnz

n where both the gn and z may be complex. Define

gR(z) =
∞∑
n=0

<(gn)zn and gI(z) =
∞∑
n=0

=(gn)zn .

© 2020 Global Journals

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

20

12

  
 

( F
)

VI. Recovery Method

P = NP

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let t be real and let f(t) have complex coefficients fn. Given fR(ω1t), fR(ω2t), fR(ω3t)
and fI(ω1t), fI(ω2t), fI(ω3t) it is clear that we can recover f(t) as

f(t) = Υ(fR(ω1t), fR(ω2t), fR(ω3t)) + ιΥ(fI(ω1t), fI(ω2t), fI(ω3t)) . (63)

The decomposition f(ωit) = fR(ωit) + ιfI(ωit) is always possible if f(t) is given as a finite
sum where the decomposition can be applied term by term and also holds for absolutely
convergent infinite sums. This observation will apply to recovery applied to functions in
this paper.

Assume t is real. If for ω ∈ {ω1, ω2, ω3}, |f(ωt)| < δ, then |f(t)| = O(δ).

For ω ∈ {ω1, ω2, ω3} assume |f(ωt)| < δ. Since f(ωt) = fR(ωt)+ιfI(ωt) it follows
that

|fR(ωt)| < δ and |fI(ωt)| < δ .

From these inequalities, Eq. 62 and Eq. 63 we get

|f(t)| = |Υ(fR(ω1t), fR(ω2t), fR(ω3t)) + ι ·Υ(fI(ω1t), fI(ω2t), fI(ω3t))| ≤ O(δ) .

Here the O notation reflects the O(1) size of the entries of X−1.

For real x,

1

| sin(π(ι+ x))|
= O(1) (64)

and

1

sin(π(ι+ x))
= −2ι

∞∑
k=0

exp(−2πk)e(2(k + 1)x) . (65)

Let z = π(1− ιx). Note that

ιz = π(ι+ x).

Using

exp(ι · ιz) = cos(ιz) + ι sin(ιz)

and
exp(−ι · ιz) = cos(ιz)− ι sin(ιz)

we get

sin(π(ι+ x)) =
exp(−z)− exp(z)

2ι
.

Item 1 follows from this last equation.

It also follows that

1

sin(π(ι+ x))
=

2ι

exp(−z)− exp(z)
. (66)

© 2020 Global Journals

Proof: 

Proof: 

Lemma 7

Lemma 8

VII. Auxiliary Lemmas

P = NP

Notes
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The RHS of Eq. 66 can be written as

−2ι exp(−z)

1− exp(−2z)
.

Now

exp(−2z) = exp(−2π) exp(2πιx) .

Thus, we can expand the RHS of Eq. 66 in geometric series as

−2ι
∞∑
k=0

exp(−2πk) exp(2(k + 1)πιx) ,

which establishes item 2.

Assume 0 < a < b and a ≤ |z|2 ≤ b, where z ∈ C.

|1
z
− (z̄/b)

h∑
k=0

((b− |z|2)/b)k| ≤ (b/a)((b− α)/b)h+1 ,

1

z
=

z̄

|z|2
=

z̄

b− (b− |z|2)
.

From this we get

1

z
= (z̄/b)

1

1− (b− |z|2)/b
.

Now,

0 ≤ (b− |z|2)/b ≤ (b− α)/b < 1 .

From this and summing a geometric series, we get

|1
z
− (z̄/b)

h∑
k=0

((b− |z|2)/b)k| ≤ (b/a)((b− α)/b)h+1 ,

Lemma 9 assumes a simpler form when z is real.

If γ and ν are real and σ(t) is either cos(νt) or sin(νt), then for h ∈ N,

Uh =

∫ 1

0
th exp(γt)σ(t)dt

can be computed in hO(1) time. If γ = ν = 0 this is trivial, otherwise Uh is a polynomial
with general term

Qd(γ, ν)

(γ2 + ν2)d
,

where d ∈ [0..h+ 1] and Qd(x, y) is a bivariate polynomial.

Proof is by straightforward integration by parts.

© 2020 Global Journals
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Proof: 

Proof: 

Lemma 9 

Lemma  10

P = NP

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Assume σ ≥ 0. Let A =
∑2q

f=2p
1

σ+f2
, where 0 ≤ p < q are integers. A can

be computed in polynomial time in terms of σ and q.

A =

q−p−1∑
j=0

2p+j+1−1∑
f=2p+j

1

σ + f2
.

Next,

1 <
σ + (2p+j+1 − 1)2

σ + (2p+j)2
< 4 .

By Lemma 9,

2p+j+1−1∑
f=2p+j

1

σ + f2

can be computed in polynomial time in terms of σ and q. The lemma follows since
j ∈ [0..q − p− 1].

The following derivation of Eq. 7 is for a function denoted by ϑ4(z|τ). Our ϑ(τ) is a special
case of ϑ(z|τ) with z = 0 and τ = 2t + ι/2`. The identity is only needed in a compact
domain of τ for our purpose.

The derivation begins by rearranging the Fourier series of cos(ux), one obtains the series

π cos(ux)

2u sin(πu)
=

1

2u2
+

∞∑
n=1

(−1)n
cos(nx)

u2 − n2

This equation which is valid for all real values of x such that −π ≤ x ≤ π and all non-
integral complex values of u. By comparison with the convergent series

∑∞
n=0 1/n2, it

follows that this series is absolutely convergent. Note that this series may be viewed as a
Mittag-Leffler partial fraction expansion.

Let y be a positive real number. Multiply both sides by 2ue−yu
2

and integrate.∫ i+∞

i−∞

π cos(ux)e−yu
2

sin(πu)
dv = 2

∫ i+∞

i−∞
e−yu

2

[
1

2u2
+

∞∑
n=0

(−1)n
cos(nx)

u2 − n2

]
u du

Because of the exponential, the integrand decays rapidly as u → i ± ∞ provided that
<u > 0, and hence the integral converges absolutely. Make a change of variables v = u2

=

∫
P
e−yv

[
1

2v
+
∞∑
n=1

(−1)n
cos(nx)

v − n2

]
dv

The contour of integration P is a parabola in the complex v-plane, symmetric about the
real axis with vertex at v = −1, which encloses the real axis. Its equation is <v+1 = 2(=v)2

Let Sm (m is an integer) be the straight line segment joining the points v = (i+m+1/2)2

and v = (i−m− 1/2)2. Along this line segment, we may bound the integrand in absolute
value as follows:

© 2020 Global Journals

Proof: 

Lemma 11

VIII. Derivation of Eq. 7

P = NP

Notes
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∣∣∣∣∣
∞∑
n=1

(−1)n
cos(nx)

v − n2

∣∣∣∣∣ ≤
∞∑
n=1

(−1)n

|v − n2|
≤
∞∑
n=1

(−1)n

|vm − n2|

where vm = m2 +m−3/4 is the point of intersection of Sm with the real axis. To proceed
further, we break up the last summation into two parts.

Since the squares closest in absolute value to vm are m2 and (m+ 1)2 = m2 + 2m+ 1, it
follows that |vm − n2| ≥ |m− 3/4| for all m,n. Hence, we have

2m∑
i=1

1

|vm − n2|
≤ 2m

m− 3/4
≤ 8

When n > 2m, we have n2 ≥ (2m+ 1)2 = 4m2 + 4m+ 1 > 4m2 + 4m− 3 = 4vm. Hence,
|n2 − vm| > 3n2/4 and

∞∑
n=2m+1

1

|vm − n2|
<

4

3

∞∑
n=2m+1

1

n2
<

4

3

∞∑
n=1

1

n2
=

2π

9

Finally 1/(2vm) < 1/2 since vm > 1 when m ≥ 1. Also, |e−yv| = e−y<v− e−yvm < e−ym
2
.

From these observations, we conclude that∣∣∣∣∣
∫
Sm

e−yv

[
1

2v
+
∞∑
n=1

(−1)n
cos(nx)

v − n2

]
dv

∣∣∣∣∣< e−ym
2

(
1 + 8 +

2π

9

)∫
Sm

dv = (4m+2)

(
9 +

2π

9

)
e−ym

2

Note that this quantity approaches 0 in the limit m→∞.

Let Pm be the arc of the parabola P bounded by the endpoints of Sm. Together, Sm and
Pm form a closed contour which encloses poles of the integrand. Hence, by the residue
theorem , we have∫

Pm

e−yv

[
1

2v
+

∞∑
n=1

(−1)n
cos(nx)

v − n2

]
dv +

∫
Sm

e−yv

[
1

2v
+

∞∑
n=1

(−1)n
cos(nx)

v − n2

]
dv =

2πi
m∑
n=1

(−1)n cos(nx)e−n
2y

Taking the limit m→∞ we obtain∫
P
e−yv

[
1

2v
+

∞∑
n=1

(−1)n
cos(nx)

v − n2

]
dv = 2πi

1

2
+

∞∑
n=1

(−1)n cos(nx)e−n
2y

)

Going back to the beginning of the proof, where the integral on the left hand side was
expressed as an integral with respect to u, we obtain∫ i+∞

i−∞

π cos(ux)e−yu
2

sin(πu)
dv = 2πi

1

2
+

∞∑
n=1

(−1)n cos(nx)e−n
2y

)
Making a change of variables x = 2z, y = −iπτ and tidying up some, we obtain∫ i+∞

i−∞

cos(2uz)eiπτu
2

sin(πu)
dv = i 1 + 2

∞∑
n=1

(−1)neiπn
2τ cos(2nz)

)
= iϑ4(z|τ)

© 2020 Global Journals
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P = NP

)

)

)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Because of the initial assumption about the Fourier series, we only know that this formula
is valid when τ is purely imaginary with strictly positive imaginary part and z is real and
π/2 < z < π/2. However, we can use analytic continuation to extend the domain of its
validity. On the one hand, the theta function on the right-hand side is analytic for all z
and all τ such that =τ > 0.

On the other hand, I claim that the integral on the left hand side is also an analytic
function of z and τ whenever =τ > 0. To validate this claim, we need to examine the
behaviour of the integrand as u→ i±∞. The contribution of the denominator is bounded;∣∣∣∣ 1

sinπu

∣∣∣∣ < c

for some constant c whenever =u = 1. The absolute value of the cosine in the numerator
is easy to bound:

| cos(2uz)| ≤ e2|u| |z|

To bound the remaining term, let us examine the argument of the exponential carefully:

=(τu2) = 2<τ <u+ =τ(<u)2 −=τ = =τ
(
<u+

<τ
=τ

)2

− 1−
(
<τ
=τ

)2
)

Therefore, if |<u| > 1 + 3|<τ |/(=τ), it will be the case that =(τu2) ≥ =τ (<u)2/9, and so∣∣∣eiπτu2∣∣∣ = e−π=(τu
2) ≤ e−π=τ (<u)2/9

Taken together, the estimates of the last paragraph imply that∣∣∣∣∣
∫ i+∞

i+R

cos(2uz)eiπτu
2

sin(πu)

∣∣∣∣∣ < c

∫ i+∞

i+R
e2|u||z|−π=τ (<u)

2/9

when R > 1 + 3|<τ |/(=τ). If we impose the further conditions

R >
180|z|
π=τ

R2 >
180|z|
π=τ

,

it will be the case that

2|u||z| − π=τ (<u)2/9 < 2<u |z|+ 2|z| − π=τ (<u)2/9 <(
2<u |z| − π=τ (<u)2/180

)
+
(
2|z| − π=τ (<u)2/180

)
− π=τ (<u)2/10 <

−π=τ (<u)2/10 ,

and hence∣∣∣∣∣
∫ i+∞

i+R

cos(2uz)eiπτu
2

sin(πu)
du

∣∣∣∣∣ < c

∫ i+∞

i+R
e−π=τ (<u)

2/10 du <
5c

π=τ
Re−π=τ R

2/10.

Likewise, under the same restriction on R,∣∣∣∣∣
∫ i−R

i−∞

cos(2uz)eiπτu
2

sin(πu)
du

∣∣∣∣∣ < c

∫ i+∞

i+R
e−π=τ (<u)

2/10 du <
5c

π=τ
Re−π=τ R

2/10.

© 2020 Global Journals
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Since the contour of integration is compact and the integrand is analytic in a neighbor-
hood of the contour, ∫ i+R

i−R

cos(2uz)eiπτu
2

sin(πu)
du

will be an analytic function of z and τ . Suppose that z and τ are restricted to bounded
regions of the complex plane and that, furthermore, Imτ is positive and bounded away
from zero. Then the inequalities of the last paragraph imply that the integral converges
uniformly as R→∞, and hence∫ i+∞

i−∞

cos(2uz)eiπτu
2

sin(πu)
du

is an analytic function of u and z in the domain =τ > 0.

Thus, by the fundamental theorem of analytic continuation, we may conclude that

∫ i+∞

i−∞

cos(2uz)eiπτu
2

sin(πu)
dv = i 1 + 2

∞∑
n=1

(−1)neiπn
2τ cos(2nz)

)
= iϑ4(z|τ)

throughout this domain.
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