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Absiract- This paper concerned using spectral relationships in the solution of the integral equation (IE) in two- .
dimensional. To discuss that, the (IE) in two-dimensional under certain conditions was considered. The existence of at
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results and estimating errors were calculated and plotted by the Maple program in different cases.
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[. [NTRODUCTION

XX

In recent years, the main theorem of spectral relationships plays an important role in
many applications in various areas, including models of nanotech nology particles, genetic
engineering, medicine, mathematical chemistry, heat condition and physical phenomena, see
[1-4].

(F) Volume

On the other side, many problems of mathematical physics, contact problems in elastic
media, many applications in electronic engineering applications, and mathematical biology

models lead to an (IEs) in smooth or singular forms. The references [5-7] discuss the methods
for solving the (IEs) in smooth form antically. While the singular forms take a large aria in
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types of researches , see [8-11]. In[10], a spectral technique for solving two-dimensional
fractional integral equations with singular kernel was discussed by using Legendre and
Chebyshev polynomials. Abdou and Salama in [12] obtained the spectral relationships for the
Volterra-Fredholm integral equation (V-FIE) of the first kind. Abdou [13] discussed the
spectral relationships that have many important applications in astrophysics, for the (F-VIE)

Boundary and Initial Value problems and Integral operator,

Computational and Applied Mathematics, 19(4)(2018), 391-404.

of the first kind, when the kernel of position takes a generalized potential form. The relation
between the contact problems and the (F-VIE) in three dimensions were obtained by Abdou
and Moustafa in [14]. Abdou and Nasr in [15] used Chebyshev polynomial to obtain the

Global Journal of Science

solution of (F-VIE) when the kernel takes a logarithmic form. The application of Orthogonal
polynomials in spectral relationships of some kinds of singular contact problems is discussed
by Alharbi in [16].Abdou and Basseem in [17] used Chyebyshev polynomial, the main [
theorem of spectral relationships of (FIE) to obtain the solution of (F-VIE) of the second
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kind numerically. Abdou and Alharbi in [18] derived a general main theorem of spectral

relationships for a mixed integral equation of the first kind (MIE) in the space L,[—1,1] X
C[0,T].

Consider the integral equation,

d(x,y)=f(x,y)+1 J Jk(x, w,y,v)¢(u, v)dudv, (1)

-1 -1
Under the following conditions:

. 1 01,5, 1/2 )
1. [f_1 f_lk (x,u,y,v) dxdudydv] < ¢, c isconstant.

ii.  The function f(x, y) with its partial derivatives with respect to x and y are continuous

in L,[—1,1] X [—1,1] and its norm can be defined as,

11 1/2
ILf Ce, I = f ffz(x, y)dxdy| <M , M is constant.
Z1 21

iii.  The unknown function ¢(x,y) in the space L,[—1,1] X [—1,1] behaves as the given
function f(x,y).

[I.  THE EXISTENCE OF AT LEAST ONE SOLUTION OF A TwoO DIMENSIONAL [E

Theorem 1
The integral equation (1) has at least one solution under the previous condition(i)-(ii1).
Define the integral operator forms:

We¢ =2 f fk(x,u,y,v)gb(u,v)du dv (2)

-1 -1
Eq. (1) can be written in operator form as:
Wo=f+Wgo. 3)

The proof of theoreml can be obtained automatically from the proofs of following
lemmas.

Lemmal
The integral operator (3) under the conditions (i)-(iii) is bounded in the space

L,[-1,1] x [-1,1].
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Proof:
Taking the norm of Eq.(3 ) we get

1 1
17l < Gyl + || [ [ Gy, v) g v)duds @
Z151

Applying the Cauchy-Schwarz inequality, then using conditions (i)-(iii) to have
W (x, Il < M + []C. ()

Eq.(5) means that the integral operator W maps the ball S, into itself, where @ = M + |A|C.
Also, in the second term of inequality (5), we deduce that the integral operator W¢(x,y) is
bounded in the space L,([—1,1] X [—1,1]). Therefore, W ¢(x, y) is also bounded.

Lemma 2
The integral operator (3) under the conditions (i)-(ii1) is continuous in the space

L,[-1,1] x [-1,1].

Proof:
Let ¢, (x,y), $,(x,y) be any two functions in the space L,[—1,1] X [—1,1] then,

Wy y) — Wby e I < 2] j j 1kGe 1y, v)] 12.(5, ) — ()]

-1 -1
After applying Cauchy-Shwarz inequality then using the conditions(i)-(iii), the previous
inequality becomes,
W1 (x,y) = Wepa(x, I < 1AIclipa (x, v) = 2 (e, W)
So,
IWIl < I2le (6)
Inequality (6) implies the continuity of W in the space L,[—1,1] X [—1,1].

Lemma 3

Suppose that a sequence of continuous functions {kn,m (x,u,y, v)} such that,

. 1 01 1 (1 2 1/2
iy | Sy S 12 2 Ve G 10,3, 0) = ey, v) | dxdudydv| = 0. (7)

Then, there exist positive integers n,, mg, such that, for n > ny, m > m,, in general
n # m, after neglecting the very small constants, we have
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1/2

1 1 1 1
f f f f |y G w,y, )| dxdudydv| — <c (8)
-1 -1-1-1
Proof:
11 1 1 1/2
lf f f f|kn,m(x,u,y,v)|2dxdudydv Notes
-1 -1-1-1
1 1 1 1
2
< fjjJ|kn,m(x,u,y,v)—k(x,u,y,v)|
-1-1-1-1

+ 2|kn,m(x, u,y,v) —k(x,u,y, v)| lk(x,u,y,v)|
1/2

+ |k(x,u,y,v)|?) dxdudydv

Hence, for each n > ny, m > m, using Eq.(7) and conditions(i), formula (8) is verified
after neglected a small constant.

Lemma 4
Suppose that {I/I_/n,m(x, y)} is a sequence of integral operators where the
conditions(1)-(ii1) are satisfied, then the sequence of operators

1 1

W) = FGr,7) + A j j Koo (s, ) 1) bty v) il )

-1 -1
is the bounded and continuous sequence.

Proof:
Taking the norm of Eq.(9) then using the conditions (1)-(iii) to get

||Wn,m(x,y)|| <a, a=M+|Ac (10)

Therefore W, ,, maps the largest ball S,into itself.

Also to prove the continuity of W, ,, we choose any two functions ¢, (x,y), ¢, (x,y)
in S, then applying Cauchy-Schwarz inequality and the conditions (1)-(ii1) we get

||Wn,m¢1(x:y) - Wn,md)z(x: y)” < Mlc Vn> Ng,Mm > my (11)
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Lemma 5

If conditions (i)-(iii) are verified then the W (S,) is compact.
Proof:

”Wn,md)(x' y) —Wao(x, J’)“ =
120 |12, 12, (g G0, 3, 9) = e 1,3, ) s, v)dudv |
Hence, using condition(iii) yields

W G, ¥) = W ()|

11 1 1 1/2
< |A|E j f f f|kn,m(x,u,y, v) —k(x,u,y, v)|2dxdudydv
“1-1-1-1
Also, from Eq.(7) we have the following condition:
W, ) = Wo(x,y)|| =0, asnm- . (12)

To prove the compactness of W, we let {(j)n,m (x, y)} be any sequence in S,. Then we

can choose a subsequence{qbnl’m(x, y)} such that {Wnl’m¢n1,m(x, y)} converges.
From that subsequence, we can extract a new subsequence {¢n1,m1(x» y)} in which

{Wnl,m1¢n1,m1 (x, y)}converges, and so on.Thus, we obtain a chain of subsequences,

{¢n,m(x: y)} 2 {¢n1,m(x; y)} > {¢n1,m1 (x; Y)} Do D {d)ni,mj(x; y)} 2 e

Such that the sequence {Wimk®njmi(x,¥)} converges for all i =12, ...,j and k =

1,2, ..., 1. Finally, we pick the sequence {d’nn.mm (x, y)} which is a subsequence of
every ¢, m, except for a finite number of elements, and clearly {VI_/ni,mkqbnn,mm (x, y)}

converges for every i, k. Now, since

For large j, k, and from( ),we get

Wni:mk¢nn’mm - Wnumk¢pp'qq - 0 as m’ n’ p’ q - 0 .

< 20, Vn,p >ny(o),m,q > my(o).

||W¢”n'mm B W¢pp’qq

Hence, {W ¢} is a Cauchy sequence, so W (S,) is compact.

According to the previous lemmas, by Schauder fixed point theorem, see [19-20 ], W has at
least one fixed point in S, , and Theorem 1 is proved.
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[[I. CHEBYSHEV POLYNOMIALS AND THE SYSTEM OF THE INTEGRAL EQUATION

Suppose the approximate kernel k, ,, (x,u,y, v) in the continuous case as,

N
kn,m(xr uy, U) = Z

NgE

P (0 X0 (W) 0 ()1 (V) (12)
n=0m=0
where it satisfies the condition in Eq.(7). R,ef
Therefore Eq.(1) reduce to the algebraic system form as,
11
¢n,m(xr y) = fn,m(x’ y)—A2 J f kn,m(x' wy, v)d’n,m(ur v)dudv + Rym (13)
-1-1 HJ
L]
where, %
=|p—um| 20 asnm-oo (14) 5
Z,
is the approximate error. g
To use the spectral relationships, we write the kernel of Eq.(12) in the form 54
f‘w
'—l
knm (2,7, 0) = Z Z T COT, () Ty () T (¥) as
n=0ms= :

where T;(z) is the Chybeshev polynomials of first kind and degree [ .

Then Eq.(13) reduces to

Pun7) - "Z Z ()T () f f QT (), V) dudy = fon(xy)  (16)

n=0m= -1 -1
Such that,
N M
¢nm(x y) = z Z aan (x)Tm(y) (17)

Since,

11 11

[ [ nmew,0)¢umu v)dudy = T Tw) | [ i@ 00T Gddude ()
-1 -1 -1-1

OIUIOPEIY SIONPOIJ PUE SOLIG ‘STRISHIUT JO so[qe], ‘NIyzAY ‘N ‘T ‘udejyspern) "IN 1°1¢

then by using the relation, see [21]
1
Tn(u)Ti(u) = E [Tn+i(u) + Tln—il(u)] (19)
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and,

! 1—2n2 , n=0,24,...
[ mdu= 1577 s (20)
-1
Eq.(18) reduce to

Notes 1,00m,0) f f T, (W) T ()T, )T, (v) duedy

-1 -1

[1—(n+1)2 1—|n—l|2”1—(m+])2 1—|m |2]T(x)T ) @b

Then, Eq.(13) reduce to obtaining the following algebraic system,

(1 - Anun,m.i.]')an,m = bpm (22)
where,
- [ ! ][ P ] 23
Homif = T vz " 1-n— Pl —m+)2  1-m—jI° (23)
1 1
bum = [ [ FOAT Ty (24)
-1 -1
[V. APPLICATION AND NUMERICAL DISCUSSION
Consider the [E
1
o(x,y)=f(x,y) +2 f f(x + u?)y?v ¢(u, v)dudv (25)
-1 -1

For fixed values of N = M = 100, we can graph the solution ¢(x,y) at different
values of A, and different shapes of surfaces f(x,y), then we can graph the estimating errors

flx,y) =xy, A=0.04
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Figure(1)
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