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Abstract-

 

Artificial Intelligence has played an increasingly 
important role in surface defect detection in recent years. At 
the same time, there are many challenges using deep learning 
for this area, such as the detection accuracy, shortage of data 
and, lack of knowledge of root cause of defects. To solve the 
problem of data shortage, we propose a taxonomy method 
called DataonomyTMto extend a meta defect datasets with a 
small number of samples for training defect classifiers. For the 
accuracy, we apply two latest deep neural network(DNN) 
architectures, Inception v3 and fully convolutional networks 
(FCN) so as not only to classify whether there are defects but 
also to make a pixel-wise prediction to inference the areas of 
defects. For those detected

 

defects, we combine DNN

 

with 
traditional AI methods to find root causes of detected defects. 
We use a generalized multi-image matting algorithm to extract 
common defects automatically. We apply this technology to 
identify defects that stem from systematic errors in the surface 
operation. Experimental results have shown great capability 
and versatility of our proposed methods.  
Keywords:

 

artificial intelligence, deep neural 
networks(DNN),

 

DataonomyTM, defect detection, root 
cause finding. 

 

I.

 

INTRODUCTION

 

isual inspection is a common task not only across 
the industry, but also across the world. In industry, 
in order to improve the quality of products and 

reduce the cost, machine vision has been used for a 
long time. Visual inspection consists of three major 
tasks: defect detection, presence detection, and 
measurement. However, defect detection is still a 
challenging problem due to a large variety of shapes and 
patterns among products from different industries, and 
even different assembly lines of the same product. 
Recently, machine learning  based approach has shown 
great potential in solving complex problems and has 
proven to be successful in a variety of applications. For 
example, using artificial intelligence method[1]

 

for 
asphalt pavement pothole detection based on least 
squares support vector machine and neural network with 
steerable filter-based feature extraction. Another 
example[2]was

 

to use GLCM to extract texture features

 

for surface quality detection for steel sheet.

 

Recently

 

Deepneural network(DNN) has been applied to solve 
surface defect detection problem in various fields: 
automobile parts, car surface, etc. In the field of visual 

inspection, several works [3][4][5] were proposed using 
DNN or Deep Learning(DL) based approach to classify 
and detect the defects. One of the biggest challenges for 
applying DNN based approach to the industry is the lack 
of data samples. In practice, a common approach [6] to 
address this problem is to use transfer learning, in which 
a pre-trained model, such as VGG and Inception V3, is 
chosen and then retrained on the target dataset by 
keeping the model architecture and parameter weights 
of the lower layers constant and only updating the upper 
layers of the neural network. However, it is difficult to get 
a large number of training samples from a certain field or 
industry, for instance, images of defects on the surfaces 
of a specific type of ceramic product. Therefore, in this 
paper we propose a novel approach named 
DataonomyTM, which can be used to train the classifier 
for a specific task across the industry with relatively small 
data samples. Different from the method of adding a 
number of geometric transformations to the original 
image data to enlarge the number of samples in the 
training dataset, DataonomyTM aims at quantifying the 
relationships between different datasets and extracting a 
structure out of them. The “structure” means a collection 
of relations specifying which dataset provides useful 
information to another, and by how much.  

For the accuracy, we apply two latest deep 
neural network(DNN) architectures, Inception v3 and fully 
convolutional networks (FCN) so as not only to classify 
whether there are defects but also to make a pixel-wise 
prediction to inference the areas of defects. Both 
architectures have decent accuracies to find defects. 

Another issue in the surface visual inspection 
field is that besides the basic defect detection tasks, few 
researches have dealt with root cause analysis for the 
detected image defects. In [7], the author proposed a 
knowledge-driven diagnosis approach when defect 
generation mechanism is known. Basically, there are two 
main kinds of root causes: systematic error and random 
error. Systematic error such as mechanic operation error 
will cause the same defect at the same position for each 
product. This kind of error does huge damage to the 
whole batch of products. In this paper, we will focus on 
finding out defects caused by systematic error. 
The major contributions in this research consists of  
1) DataonomyTMmethod to solve the sample 

datashortage  
2) A novel AI approach to detect the surface detects 

with the combination of two latest DNNs 
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3) A generalized multi-image matting algorithm is 
applied to a root-cause analysis from surface 
defects 

The rest of the paper is structured as follows. In 
Section 2, we provide a description of our DataonomyTM. 
Section 3 gives a description of our deep learning-based 
framework for image defect detection. The setup and 
results of the experiments will be presented in Section 4. 
Conclusions will be discussed in Section 5. 

II. DATAONOMYTM 

The patent pending DataonomyTM algorithm 
[3][8] is a fully computational method for quantifying 
data class relationships and extracting a structure out of 
them. The following steps give the idea of the whole 
pipeline, and the framework of our approach is shown in 
Figure 1. 

 

Figure 1: Dataonomy TM Pipeline 

a) Make use of a pre-trained model for object 
classification, for example Inception V3 [9]. 

b) Find affinity matrix across the dataset. 
c) Get normalized data augmentation affinities using 

AHP (Analytic Hierarchy Process) [10]. 
d) Find global mapping taxonomy using BIP (Binary 

Integer Programming) [11]. 
The DataonomyTM algorithm will pull the 

information from an ever-increasing pool of data to 
develop a highly specialized solution for new customers. 
Once the data of a company is added to the pool, the 
model can be fine-tuned to exceed 99.97% accuracy. 

III. FRAMEWORK FOR IMAGE DEFECT DETECTION 

In this section, we present the framework ofour 
proposed method for visual defect inspection. First is by 
using Inception V3, and second is by using FCN.  

a) Inception V3 
As shown in Figure 2 (a), the framework of deep 

learning based visual defect classification and detection 
by Inception V3 consists of three components. The first 
component is the base model training, the second 

component is transfer learning for visual defect 
classification, and the third component is defect 
segmentation. 

 

Figure 2: (a) Framework of Our Proposed Approach 

 

Figure 2: (b) Inception V3 

i. Training of Base Model 
In order to obtain the specific model for visual 

defect classification, the selection of the base model is 
important, and the way to train the base model is also 
crucial. These two factors would impact the overall 
performance of the base model and thereafter. During 
the base model training, we utilize the aforementioned 
DataonomyTM approach to prepare more useful and 
representative datasets related to our tasks. Then deep 
convolution neural network is applied with state-of-the-art 
model architectures. Specifically, we introduced the 
InceptionV3 [9] network, which has been widely used in 
image recognition and has shown promising 
performance on various datasets, as shown in Figure 2 
(b). This network is made up of several inception 
modules which contain convolutions, pooling, 
concatenations, and fully connected layers. The original 
inception module was designed by stacking filters with 
multiple sizes in the same level of the network, which 
enables multiple receptive fields of each filter and, in 
turn, can extract features in multiple scales. In order to 
reduce the computational cost, within an inception 
module, 1x1 convolution layers were added to limit the 
number of input channels. In the Inception V3 network, 
the computational cost was further reduced by 
factorizing convolutional layers within the inception 
module, where an NxN convolutional layer was 
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decomposed into one 1xN convolutional layer followed 
by an Nx1 convolutional layer.  Lastly, batch 
normalization was added to auxiliary layers to improve 
the performance. 

Given the InceptionV3 network structure, we 
modify the fully connected layers to fit the number of 
classes from the dataset generated by our proposed 
DataonomyTM approach. Then augmented data are 
collected into batches and feeding into the network for 
training. The Stochastic Gradient Descent (SGD) with 
momentum is applied for the training procedure. The 
whole training is set to stop when the network converged 
after a number of epochs. The trained weights are stored 
as our base model and would be used in the next steps 
for transfer learning. 

ii. Training of Defect Classifier 
The next step of our proposed framework is to 

train the visual defect model. The transfer learning 
scheme is applied in this step by utilizing our pertained 
models on the dataset that is generated by 
DataonomyTM. Particularly, the pre-trained Inception V3 
model is used as the starting point for the model on the 
visual defect classification task. This transfer learning 
approach is considered to be effective since our base 
model is trained on a large corpus of photos with a large 
number of classes. It enables the model to efficiently 
learn to extract features from these images in order to 
perform well on a specific problem. Moreover, the model 
is pretrained on the dataset selected through 
DataonomyTM, which chooses sample images that have 
certain features that are more closely related to the 
classification task of defect inspection. This approach 
can further boost the capability of the base model to 
differentiate visual defects. During the training, we use 
the full model without freezing any layers, and only the 
last fully connected layer is modified to fit the two-class 
classification problem in defect inspection tasks. 
Hyperparameters such as the initial learning rate are 
modified, and more details are presented in 
experiments. 

iii. Defect Area Detection 
After the above steps, our model is capable of 

detecting the visual defects given an input image. 
Inspired by [5], we further propose a segmentation 
approach, fully convolutional networks, as shown in 
Figure 2 (c), for pixel-wise defect detection so that the 
defect area can be accurately located in the image. 
There are two components included in this stage, patch 
extraction, and model training. We crop patches in 
original images, and each patch as a training image. We 
label the patch whose defect area exceeds the threshold 
0.6 as a defect, vice versa. The ratio of training defect 
patches and non-defect patches is 2:1. For the dataset 
of DAGM-2007, the size of the patch is 64*64 pixels with 
the stride of 64 pixels. When do testing, the whole image 
is the input image. In the FCN architecture, there are four 

convolutional layers as feature extractors followed by 
batch normalization and Relu, and two pooling layers. A 
deconvolutional layer is inserted before the score layer to 
maintain the resolution of the feature map for 
classification. 

b) FCN 
CNN has shown great quality and efficiency in 

different tasks. In order to take full advantage of CNN on 
surface defect inspection, we need to make predictions 
on every pixel. And that’s the reason why we choose 
Fully Convolutional Networks (FCN) as our base model, 
which has been demonstrated to outperform other 
approaches in image segmentation. In this case, the 
networks can thus be trained end-to-end, pixel-to-pixel.  

The other reason that FCN as our top choice is 
that FCN has the property to allow an arbitrary size of 
the image as the input of the networks. This property 
facilitates the processing of images in different sizes.  

According to the paper “Fully Convolutional 
Networks for Surface Defect Inspection in Industrial 
Environment”[12], we use the method two stages 
method for base models. 

 

Figure 3: FCN 

i. Stage 1 -- Coarse Segmentation of Defect Area 

This stage is giving a quick and coarse 
inference of the defect area, which is also called the 
region of interest (ROI). The predicted ROIs would be 
the initialization of stage 2 in order to limit the search 
range of stage 2. The final goal is to improve inspection 
efficiency.  

In the training phase, we cut the original image 
into several small patches. But in the test phase, we use 
the whole image as input. The receptive field should be 
a proper size, not too large or too small. If the receptive 
field is small, the network can focus on rich local spatial 
information rather than global object-level information. 
To interpret what influences the receptive field, we 
assume a network, the kernel size of the 𝑖𝑖-th layer 
(layer𝑖𝑖) is𝐾𝐾𝑖𝑖 , 𝑠𝑠𝑖𝑖

 is the stride of layer 𝑖𝑖 and 𝑆𝑆𝑖𝑖
 is the 

integral stride before layer 𝑖𝑖. We denote 𝑅𝑅𝑖𝑖
 as the 

receptive field of each neuron located on the 𝑖𝑖-th layer 
(noted as layer-𝑖𝑖). Then the recurrence relation of 𝑅𝑅𝑖𝑖

 and 
𝑆𝑆𝑖𝑖

 can be calculated as follows: 

                       𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑖𝑖−1 + 𝑆𝑆𝑖𝑖−1(𝐾𝐾𝑖𝑖 − 1)
  

                                 
𝑆𝑆𝑖𝑖 =

 

𝑠𝑠𝑖𝑖 ×

 

𝑆𝑆𝑖𝑖−1
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It can be concluded from the recursion formula 
that the receptive field is influenced by 𝐾𝐾𝑖𝑖 , 𝑠𝑠𝑖𝑖 , and the 
depth of network layer- 𝑖𝑖. We pick Zeiler and Fergus’s 
model trained for RPN in [13] as our basic architecture. 
We use only the first four layers as our feature extractor 
layer and append a scoring layer at the end of feature 
layers, and we change the strides of all convolutional 
layers from 𝑠𝑠𝑖𝑖  to 1 (𝑠𝑠𝑖𝑖  is the original stride of layer 𝑖𝑖 in 
ZF). Overlap pooling used in RPN controls model 
capacity and increases receptive field size, resulting in a 
coarse, highly-semantic feature representation. While 
effective and necessary for extracting object-level 
information, this general architecture results in low 
resolution feature that are invariant to pixel-level 
variations. This is beneficial for classification and 
identifying object instances but poses a challenge for 
pixel-labeling tasks. So, we change overlap pooling to 
non-overlap pooling as the former cause lager Ri in the 
following layers. To maintain the resolution of the feature 
map used for classification, we insert a deconvolutional 
layer [14] before the score layer. We use logistic 
regression as the loss function for segmentation. More 
details about the network structure are shown in Fig. 4. 

 

Figure 4: Structure of FCN on Stage 1 

ii. Stage 2 -- Segmentation Refinement with Instance-
Sensitive Patches 

Stage 2 is to improve the result of segmentation 
from Stage 1 with a method of detection. The difference 
between stage 1 and stage 2 is that stage 1 focuses 
more on local information; stage 2 is a detection task to 
refine stage 1 with object-level information. In other 
words, stage 2 is detection instead of segmentation. We 
still use those cropped images as training data, but we 
do not use those manually annotated segmentation 
masks in the training process. We label the patches 
whose defect area covers over n% of the total area as 
the defect patches (n can be changed for different 
accuracy requirements, in our experiment in this paper, 
we design n = 40), and others as the non-defect ones. 
We also do not all samples of the whole image, we only 
do sample that around ROI from stage 1 for efficiency.  

As shown in Figure 5, it’s the fusion of stage 1 
and stage 2. The result from stage 1, ROIs, is the 
initialization of stage 2. We crop the patches around ROI 
and do the classification, whether it is a defect or not. 
Then we keep the interaction of the two stages.  

 

Figure 5: The Fusion of Stage 1 and Stage 2 

We design a multi-loss-function in FCN to fuse 
information across layers to make a skip connection in 
order to increase the detection accuracy. All the loss 
function is logistic regression. As we still use FCN in a 
detection task, we label the patch with a label map that 
has the same resolution as the output layer, and its 
values are all the same—0 for defect patches and 1 for 
non-defect patches (shown in Fig. 6). 

 

Figure 6:
 
Multi-loss-function structure of FCN in stage 2

 

While inspection, we vote the score map to one 
single Soft

 
Max layer and average the results from 

different Soft
 
Max layers. This method can average the 

results of certain-size receptive fields under one patch 
and average the results of the different-size receptive 
fields under one patch, as shown in Figure 7.

 

 

Figure 7:
 
Illustration of inspection process

 

c)
 

Defect Cause Analysis
 

There are many works dealing with defect 
detection.

 
However, few of them can conduct the cause-

finding automatically. We provide a way to find the root 
cause of common defects, which is also known as 
systematic error. Normally, if a systematic error exists, it 
will cause the same defect at the same location. The 
following workflow of a generalized multi-image matting 
algorithm shows our approach to extracting the common 
defect.

 

Assuming that a system error exists, our task is 
to determine if there is a common defect and what part 
belongs to a common defect in images. Basically, we 
first compute gradients at each pixel in both x and y 
directions for each image. Then we compute the median 
gradients, which are the medians of gradients obtained 
by a median filter, for x and y-direction independently. 
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Thus, we have two median gradient maps: one 
for x and one for y with all information from the dataset. 

           𝑝𝑝[𝑚𝑚,𝑛𝑛] = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{𝑔𝑔𝑘𝑘[𝑚𝑚,𝑛𝑛, 𝑘𝑘 ∈ 𝑤𝑤]}  

Here, 𝑝𝑝[𝑚𝑚, 𝑛𝑛] is the median gradient value of a 
single pixel at position [𝑚𝑚,𝑛𝑛] in either x or y direction for 
images within the filter window size of 𝑤𝑤. 𝑔𝑔𝑘𝑘[𝑚𝑚,𝑛𝑛] is the 
gradient value of x or y direction in a single image at 
position [𝑚𝑚, 𝑛𝑛]. After the experiment, we find out that 
window size around 30 will start to give us a good result. 
To further explain the filter window, imagine in a 
manufacturing line, every 30 or more consecutive 
products will be taken into analysis to get a median 
gradient map. We get the gradient values maps of all w 
images, and for each pixel, we find the median value of 
all w images at the same pixel as our median output. 
The reason why we use the median filter is to clear noise 
and speckles. As the number of images increases, the 
median gradient at the common defect area will be 
more consistent and significant than other points, 
because the systematic defect occurs in the same 
position for each image. Therefore, after computing the 
magnitude of the gradient for each point, we can get an 
output image that shows the common pattern, which 
normally gives the systematic error. Figure 8 is our 
defect analysis workflow. 

 

Figure 8: Defect Analysis Workflow 

IV. EXPERIMENTS 

 Defect Detection 

i. Datasets 
We choose the DAGM-2007 dataset [15] to 

evaluate the performance of our proposed framework. 
The dataset contains ten classes of the different defects 
with different textured backgrounds, even though the 
data is generated artificially, but similar to the real-world 
problems. The entire dataset consists of 8050 images 
for training, in which 1046 images contain defects; and 
8050 images for testing, in which 1054 images contain 
defects. Each image in the dataset is saved in grayscale 
8-bit PNG format of size 512x512.  In our experiment, we 
split the training dataset into two parts, 80% for training 
and 20% for validation during the training stage. The 
example image for each class contained in this dataset 
shows in Figure 9. 

 

 

Figure 9: DAGM-2007 Dataset 

ii. Experimental Design 
In order to evaluate the effectiveness and 

performance of our proposed framework. We retrain the 
classifier for defect detection on the surface by using 
transfer learning. According to the accuracy on defect 
detection, we compare the relevant data extracted by 
DataonomyTM from Image Net to retrain the Inception V3 
with the method in [3][4] we can prove the effectiveness 
of our method for data augmentation and thus showing 
the possibility of our method to solve the problem of the 
limited dataset in deep learning based tasks. 

Our experiment for retraining the Inception V3 
using selected data from Image Net was running on the 
computer with four Ge Force GTX 1080 Ti graphics 
cards. With the use of transfer learning, the training of 
classifiers for defect detection on the surface was 
running on the computer with two Ge Force GTX 1080 Ti 
graphics cards. 

iii. Experimental Results 
 Defect Image Detection for Texture Surface 

500 classes of data are selected from ImageNet 
to train the base model, and the total time for training 
takes around 252 hours. 

With the use of transfer learning, we take the 
retrained Inception V3 on the selected 500 classes from 
Image Net as our base network. We evaluate the 
performance of our approach for surface defect 
detection in terms of the true positive rate (TPR) and true 
negative rate (TNR). Equation 2 and Equation 3 define 
TPR and TNR, respectively. 

                               TPR = TP(TP + FN)−1                              (4) 

                          TNR = TN(FP + TN)−1                            (5) 

Table 1 shows the performance of our 
framework compared to the state-of-art deep learning-
based approach proposed in [16] with DAGM-2007. 
From the table, we can see that our method outperforms 
the others, and therefore shows the effectiveness of our 
proposed framework for the deep learning-based 
approach with limited data samples.  
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a)

a.



 

 

Table 1: Defect detection result (%). 

No. 
Weimer et al. [16]

 
Inception V3(Ours)

 
TPR

 
TNR

 
TPR

 
TNR

 1
 

100
 

100
 

100
 

100
 2 100

 
97.3

 
100

 
100

 3 95.5
 

100
 

98.8
 

100
 4 100

 
98.7

 
100

 
100

 5 98.8
 

100
 

98.8
 

100
 6 100

 
99.5

 
97

 
100

 7 NA
 

NA
 

100
 

100
 8 NA

 
NA

 
96.7

 
100

 9 NA
 

NA
 

100
 

100
 10

 
NA

 
NA

 
99.3

 
100

 
In addition, we also compared the accuracy of 

our method of defect detection with the work in [4] and 
[17]. The accuracy of our method with the pre-trained 
base model on Wood Dataset is 99.12%, compared with 
the build-in Inception V3, which is 97.7%. And the 
average accuracy of our method on the DAGM-2007 
dataset is 99.88%. It can be seen that our framework 
using DataonomyTM for data augmentation shows high 
performance on defect detection with a limited dataset 
compared to the state-of-the-art method. 

b. Defect Area Detection on Texture Surface 
The next step of our proposed framework is to 

highlight the defect area on the surface. Besides the 
dataset of DAGM-2007, we use the samples of the 
phone screen with scratches to validate our methods.  
Part of the result for the texture data in this step by using 
Inception V3 and FCN is shown in Figure 10 and Figure 
11, showing a decent performance of our two methods. 

 

 (a) 

 

(b) 

 

(c)
 

Figure 10:
 
Inception V3: (a) DAGM-2007 Original Image

 

(b) Mask Image (c) Highlighted Defect
 

(a)  (b)  

(c)  (d)  

Figure 11: FCN: (a) DAGM-2007 Original Image 
(b)Result for DAGM-2007; (c) Phone Screen Original 
Image (d)Result for Phone Screen 

b) Defect Cause Analysis 

i. Dataset for Root Cause Detection 
In order to evaluate our method, we created a 

new dataset for our root cause detection based on the 
DAGM-2007 dataset [15]. We chose all 1046 images 
which contain a common defect with the existing types of 
scratch defect independently on chosen images. In this 
case, we have 1046 training images for each scratch 
type and around 10,000 images in total. In order to 
simulate the systematic error, the added scratch is the 
same size and in the same position for each image. 
Figure 12 (a) and (b) are two examples with different 
systematic defects with the original defect from DAGM-
2007. 

(a)   (b)  

Figure 12: Example of 2 Types of Scratches 

ii. Experimental Results for Root Cause Detection 
Using the method in Sec. 3.1.3, we got 

common defect image for each type of scratch. 
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(a) (b)  

(c)  

Figure 13: (a)(b) Results with Common Defect Detected; 
(c) Result with No Common Defect Detected 

From Figure 13 (a) and (b), we can find out 
where the common defect is. This defect may come from 
the mechanical error in the product assembly line, which 
can cause a huge loss in production if not detected 
automatically. 

Figure 13 (c) is the resultant image of the 
common defect detection for 1046 images with defects 
in the DAGM-2007 dataset [15]. Because there are 
random defects (scratches), the resultant image 
obtained by the generalized multi-image matting 
algorithm is a blank image. 

This technique can also be used in other areas, 
such as troubleshooting in printing systems(Figure 
14).We created a 500-large text defect dataset by adding 
the same ink defect at the same position of text images. 
image.  

Using our root cause detection method, the 
resulting image Figure 14 (b) does detect those four ink 
defects in the original dataset (we reversed the colour for 
better notice). Therefore, in real life, we can know there is 
a problem in the printing system that causes a common 
defect using this method. 

(a)

 

(b) 

 

 

Figure 14:
 
(a) One of Original Text Defect Image; (b) 
Root Cause Detection Result

 

V. CONCLUSION 

In this paper, we provided a novel algorithm 
named DataonomyTM to improve the performance of the 
deep learning-based approach to detect product 
defects with limited data samples for training, which 
proved to be successful in our experiments. Also, the 
fully convolutional networks have been proved as 
effective end-to-end tools for defect segmentation. 
Detailed steps are provided regarding our approach for 
the tasks of defect image classification and defect 
detection. Besides that, a generalized multi-image 
matting algorithm was proposed to analyse defect 
cause and find defects associated with systematic 
errors and generated impressive results on our data. 
The well-designed and extensive experiments in this 
study verified the effectiveness of the proposed 
framework for surface defect inspection tasks. 
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