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I.

 

Introduction

 
B-splines play an important role in many areas such as mathematics, engineering 

and computer science in recent years. Specially B-splines were used for approximation 
purposes. I. J. Schoenberg [1]initiate the idea of a spline in 1946 and letter on, in the 
early 1970s, de Boor [2] defined the splines. At present, these are popular in computer 
graphing due to their velvetiness, tractability, and precision.

 

It is well-known that polynomial B-splines, particularly the quadratic and cubic 
B-splines, have gained widespread application and approximate solutions are obtain 
using different types of quadratic B-spline methods.S.Kutuay, et.al.[5] demonstrate the 
numerical solutions of the Burgers’

 

equation by the least-squares quadratic B-spline 
finite element method. B. Saka et.al.[6] obtained a numerical solution of the Regularised 
Long Wave (RLW) equation using the quadratic B-spline Galerkin finite element 
method. A.A. Soliman & K.R. Raslan[7] presented Regularised Long Wave (RLW) 
equation by Collocation method using quadratic B-splines at mid points as element 
shape functions. Curve a pproximation with quadratic B -splines can broadly divided in 
two categories.First, curve approximation with data point interpolation.The use of arc 
length and curvature characteristics of the given curve to extract the interpolation 
points was presented in

 

a method for knot placement of the piecewise polynomial 
approximation of curves was given in [8] and global reparametrization for curve 
approximation was also been published in [9]. Article on rational parametric curve 
approximation was published in [10] where the data points, in this case, may not be 
located on the curve and not much of the work on curve approximation is available 
using this technique. 
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Farago and Horvath [12] (1999) obtained numerical solutions of the heat 

equation using the finite difference method. Bhatti and Bracken [13] (2006) presented 
approximate solutions to linear and nonlinear ordinary differential equations using 
Bernstein polynomials. Bhatta and Bhatti [14] (2006) obtained a numerical solution of 

the KdV equation using modified Bernstein polynomials via Galerkin method. 
MunguiaM. and Bhatta. D. [15] al. (2014) discussed the usage of cubic B-spline 
functions in interpolation.  

The rest of the manuscript is designed as: in section 2, materials and methods 
are furnished. An illustrative example is shown in section 3 conclusions are prescribed in 
section 4.  

II.  Materials  and Methods  

Theorem-1: If ( )xf  is defined at bxxxxa N =<<<= .......210
 then f has a unique 

natural interpolation on the nodes Nxxxx ,.......,,, 210  
that is a spline interpolation that 

satisfies the boundary conditions 0)0('' =s and 0)('' =bs  

Proof:  The boundary conditions 00 =c  and 0=Nc  together with the following equations  

)(2)(3)( 11111
1
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j

jj
j
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are produced by a linear system described by the vector equation BXA =
 

where A
 

is 

the )1( +n
 

by )1( +N
 

matrix.
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(2.1)

(2.2)

(2.3)

(2.4)

The matrix is A strictly diagonally dominant. So it satisfies the hypothesis. 

Therefore the linear system has a unique solution for nccc ,......,, 10 . The solution to the 
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cubic spline problem with the boundary conditions 0)()( ''
0

'' == nxsxs

 

can be obtained 

the theorem.

 
Theorem-2:

 

If ( )xf

 

is defined at bxxxxa n =<<<<= ........210

 

and differentiable at a
and b

 

then has a unique clamed interpolation on the nodes nxxxx ,.....,,, 210

 

that is a 

spline interpolation that satisfies the boundary conditions )()( '' afas =

 

and )()( '' bfbs =

 

It can be

 

seen using the fact that 00
'' )()( bxsas ==

 
Now we have )2(

3
)( 10

0

0

01' cch
h

aaaf +−
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Consequently, )(3)2(
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2 '

10
0

1000 afcchchch −+=+

 

Similarly )()( 111
'

nnnnn cchbbbf ++== −−−

 

Now we have the equation  )2(
3

)(1
11 ++ +−−= jj

j
jj

j
j cc

h
aa

h
b

 

Putting 1−= nj
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( )
20............0

2...........0
...............................
0.......)(20
0......0)(2
0.......002

1

1122

2211

1100

00



























+

+
+

=

−

−−−−

nn

nnnn

hh
hhhh

hhhh
hhhh

hh

A

 

 

                           

          

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
I

Y
ea

r
20

20

13

  
 

( F
)

© 2020 Global Journals

Analysis and Application of Quadratic B-Spline Interpolation for Boundary Value Problems

Proof:

(2.5)
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Notes
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The matrix is A strictly diagonally dominant. So it satisfies the hypothesis. 

Therefore the linear system has a unique solution for nccc ,......,, 10 . The solution to the 

cubic spline problem with the boundary conditions 0)()( ''
0

'' == nxsxs

 

can be obtained 

the theorem

 
Quadratic B-spline:
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The last equation is a quadratic spline with knots 321 ,,, +++ iiii xxxx . Note that the 

quadratic B-spline is zero except on the interval [ 3, +ii xx ). This is true for all B-splines. 

In fact, 0)( =xB k
i if ),[ 1++∉ kii xxx , otherwise 0)( >xB k

i if x ∈  ( 1, ++kii xx ).
  

Since we are only referring to B-splines of degree 2, we write Bi  instead of 2
iB . 

Therefore, after including four additional knots, we assume that  

∆: 2111012 ++−−− <<<<<<<< NNNN xxxxxxxx      

is a uniform grid partition.
 

Using (4) and letting h = ii xx −+1

 
for any 0 ≤

 
i ≤

 
N, we define the uniform 

quadratic B-spline )(xBi as 
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(2.7)

(2.8)

(2.9)

Notes



If we choose 1=h , then in the interval [ ]1,2− we have the following 

                 

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otherwise
xifx
xifxx
xifx

xB

0
10)1(
01122
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0

and its graph is shown in Figure 1. We know that iB lies in the interval ),[ 1, +ii xx this 

interval has nonzero contributions from 11 ,, +− iii BBB
 
and 2+iB . We have a better 

understanding of this from Figure 2. Next, we derive the quadratic B-spline method for 

approximating solutions to second-order linear equations. 

 

Quadratic B-spline Solution Procedure: 
To approximate the solution of this BVP using quadratic B-splines, we let )(xY  

be a quadratic spline with knots∆ . Then )(XY  can be written as linear combinations of 

)(xBi  

                                             

)()(
1

1
xBcxY

N

i
ii∑

+

−=

=             

Where  the  constants ic  are to be determined and the )(xBi
 are defined in (2.9). 

It is required that (2.11) satisfies our BVP (3.1-3.2) at x = ix where ix is an interior 

point. That is 

                              
)()()()()()()( 321 iiiiiii xfxYxaxYxaxYxa =+′+′′     

and the boundary conditions are 

α=)( 0xY for ,0 ax =  

β=)( NxY for .bxN =  

From (2.11), we have 

),()()()()( 221111 iiiiiiiiiiiii xBcxBcxBcxBcxY ++++−− +++=  
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(2.10)

(2.11)

(2.12)

Fig. 1: Quadratic B-spline

Notes



                ),()()()()( 221111 iiiiiiiiiiiii xBcxBcxBcxBcxY ++++−− ′+′+′+′=′
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also by the properties of quadratic  B-spline functions, we obtain the following
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If we combine (2.14) and (2.15), we obtain
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Now we apply the boundary conditions:
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at
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and Nxx =

 

are  given below
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(2.18)  

Therefore,

 

                                             α210 =+ cc
         

 

(2.19) 

                                             β21 =+ +NN cc        (2.20)  
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(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Notes



Now that we have found all the constant coefficients in (2.15), (2.19), and (2.20), 
we can write a system of N + 1 linear equations in N + 1 unknowns. This system is 

represented in (2.21) where the coefficient matrix is an (N + 1)×(N + 1) matrix. 
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Where 
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The quadratic  B-spline approximation for the BVP (3.1-3.2) is obtained using 

(2.13), where the constant coefficients ci

 

satisfy the system defined in (2.21).  

 

III.

 

Numerical Example

 

Let us consider a linear boundary value problem with constant coefficients 

 

6 <<=−′+′′ xforxyyy

 

With boundary conditions

1)1(,0)0( == yy

                                                  

The exact solution to the boundary value problem is

 

                       
36
1

6)(36
)43()43()( 23

2332

−−
−

−−−
= −

−− x
ee

eeeexy
xx

 

The graph of the exact solution  using MATLAB 7.0 is given below 

 

                           

          

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
I

Y
ea

r
20

20

17

  
 

( F
)

© 2020 Global Journals

Analysis and Application of Quadratic B-Spline Interpolation for Boundary Value Problems

(3.1) 10

(3.2) 

(3.3) 

Notes



 

We approximate the solution of (3.1) with the boundary conditions (3.2) using 
the quadratic B-spline method with N = 20. 

 

In order to use (2.13), we first need to find the constant coefficients ic
 

for
 

21,,1,0,1 −=i
 

using the system of linear equations (2.21) where the coefficient matrix 

is an 21×21 matrix and using (2.19) and (2.20)  to find 1−c
 

and 21c
 

respectively. These 

coefficients are given below  
 

0020400.2-0.20400-0.19279

-0.18161-0.17051-0.159565-0.14896-0.13910

-0.13087-0.12619-0.129210-0.00149-0.20532

-0.34113-0.64997-0.133544-0.28407-0.61303

-0.133041-0.28932-0.62963-1.3705037050.3

212019

1817161514
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and therefore the quadratic polynomials are as follows 
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Fig. 2: Exact solution curve

Notes
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The figure of quadratic  B-spline by these polynomials using MATLAB 7.0  is 
given below
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Fig. 3: Quadratic Polynomial

Notes



Comparing Exact values with Quadratic B-spline for Example-1 
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177886156.008071335030097172806.0150
26543980800542570003.0211182808.010.0
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1.00006612-000000000001.00006612-000
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⋅−⋅
⋅−
⋅⋅−⋅

⋅⋅
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IV.
 

Conclusion
 

This paper presented the application of quadratic B-spline function to solve the 
boundary value problems.At first, we have derived the quadratic B-spline functions and 
hence derived the methods.Then we used these methods to solve second order linear 
boundary value problems.After solving these problems, we compare the numerical 
solution with the exact solution. The comparative graph have shown some error in 
quadratic B-spline in comparison to the exact

 

solution of the same function.
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