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Charged Particle in a Flat Box with Static
Electromagnetic field and Landau's Levels

Gustavo V. Lopez * & Jorge A. Lizarraga °

Absiracl- We study the quantization of the motion of a charged particle without spin inside a flat box under a static
electromagnetic field. Contrary to Landau's solution with constant magnetic field transverse to the box, we found a non
separable variables solution for the wave function, and this fact remains when static electric field is added. However, the
Landau's Levels appear in all cases.

Keywords: landau's levels, quantun hall effect.

I.  INTRODUCTION

Landau’ solution [1] of a charged particle in a flat surface with magnetic field has become of great importance
in understanding integer hall effect [2—6], fractional Hall effect [6-9], and topological insulators [10-16]. This
last elements promise to become essential for future nanotechnology devices [17-19]. Due to this considerable
application of the Landau’s levels, it is worth to re-study this problem and its variations with an static electric
field. In this paper, we show that there exists a non separable solution for this type of quantum problems,
but having the same Landau’s levels. In our cases, instead of having a flat surface, we consider to have a flat
box with lengths L, L,, and L, such that L, < Ly, Ly

[I. ANALYTICAL APPROACH FOR THE CASE B = (0, 0, B)

Let us consider a charged particle “q” with mass “m” in a flat box with a constant magnetic field orthogonal
to the flat surface, B = (0,0, B), as shown in the next figure.

Figure 1: Electric charged in a at box with magnetic field

For a non relativistic charged particle, the Hamiltonian of the system (units CGS) is

(p— qA/c)?
2m

H = ) (1)
where p is the generalized linear momentum, A is the magnetic potential such that B = V x A, and “c” is the
speed of light. We can choose the Landau’s gauge to have the vector potential of the form A = (—By,0,0).
Therefore, the Hamiltonian has the following form

(o +aBy/c)® Py P @)
2m 2m = 2m’

H =
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To quantize the system, we need to solve the Schrédinger’s equation [20]

ot 2m 2m * 2m

andY {@z +aBy/c)® | Dy p} v, (3)
where U = U(x,t) is the wave function, /i is the Plank’s constant divided by 27, p; are the momentum
operators such that [z;, p;] = ihd;j. Now, the argument used by Landau is that due to commutation relation
[P H ] = 0, between the operators p, and the Hamiltonian H (implying that p, is a constant of motion), it
is possible to replace this component of the momentum by Ak, , having a solution for the eigenvalue problem
of separable variable type, fi(t)f2(z)f3(y)f1(z). However, we will see that this type of commutation does
not imply necessarily separability of the solution. Since the Hamiltonian H does not depend explicitly on
time, the proposition

U(x,t) = e PVP(x) (4)

reduces the equation to an eigenvalue problem

H® = E®. (5)
Then, this equation is written as
1 2qB R ¢*B? 9 py g
— —— YD d =FEo. 6
{Qm( + YPa + 2 Y +2m+2m (6)

The variable “z” is separable through the proposition

O(x) = ¢(z,y)e ", k. € R, (7)
resulting the following equation
1 2B . ¢*B? ]32
{2m (pm et Ty A5 =B, (8)
where E’ is
h2k?
F=p-2 9)

om

That is, the resulting partial differential equation is of the form

1 20% _ 20Bh 06 , By
2m{ h8x2 ' c Vot ¢}_2may2_E¢' (10)

This equation does not admit a separable variable solution (¢(z,y) = f(z)g(y)) as Landau’ solution is, but

we can use Fourier transformation [21] on the variable “x”,

bk, ) = Flg] = %2? /% e (. y)d, (11)

to solve this equation. Applying Fourier transformation to this equation, knowing its property F[0¢/0z] =
(—ik)¢, we get the ordinary differential equation

B2 d2¢ m W2 T,
—%@ + iy (y yO) ¢—E¢, (12)
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where w, is the cyclotron frequency

qB
. = — 13
we =" (13a)
and yo is the displacement parameter
he
= —k. 13b
Yo 4B (13b)

This equation is just the quantum harmonic oscillator in the “y” direction displaced by a amount yg. So, the
solution is

A mMwe

(bn(kvy) = n(f)» §= A (y - yO)v T/)n(f) = An€_§2Hn(£)7 (14)

being H,,(¢) the Hermit polynomials, and A, is a constant of normalization, An= (mw./7h)'/*/v/27n!. and
E] = hw.(n+1/2). (15)

n

Now, the solution in the real space ¢, (z,y) is gotten by using the inverse Fourier transformation,

o) = 7 fontho)) = —= [ e ([ e ) (10

Making the change of variable o = /muw./h(y — hck/qB), and knowing that the Fourier transformation of
the harmonic oscillator solution is another harmonic oscillator solution, we get

—qB iz, < qB z )
(2,y) = 2 —i%2 T 17
u(i) = ey, (DL )

This is indeed the non separable solution of (8). Therefore, the normalized eigenfunctions of the eigenvalue
problem (5) are (ignoring the sign)

VqB (4 B
B, g (x,1) = — Y12 —ilGRay—hoz)y (H) (18a)
’ (chFLwc)l/4 me? hw,
and
1. h2k?
En ., = hw = = 18b
b = Bl 5) (18)

These eigenvalues represent just the Landau’s levels , but its solution (18a) is totally different to that given
by Landau since it is of non separable type. Note that there is not displacement at all in the harmonic
oscillation solution. Now, assuming a periodicity in the z-direction, ®,, i, (x,t) = @y k. (¢, y, 2 + L, 1), the
usual condition k,L, = 27n/, n’ € Z makes the eigenvalues to be written as and the general solution of
Schrodinger’s equation (3) can be written as

n?2n?

" (19)

En,n’ = hwc(n + 1/2) +

We must observed that this quantum numbers correspond to the degree of freedom in the “y (n)” and
“z(n’)” directions. The quantization conditions of the magnetic flux appears rather naturally since by asking
periodicity in the y direction ¥(x,t) = ¥(x,y + Ly, 2,t), this one must be satisfied for any = € [0, L,]. So, in

particular for x = L,. Thus, it follows from the phase term that
BL,L
c

where BL, L, is the magnetic flux crossing the surface with area L,L,, and fic/q is the so called quantum
flux [22]. Then, equation (18a) is

(I)nn/j (X; t) = ie_i( Liwgy e 22:/ Z)ll}n (m> : (21)
(mczhwc)l/4 vVme2hw,
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The degeneration of the eigenvalues (19) comes from the degree of freedom in “x” and can be obtained by
making use the following quasi-classical argument: given the energy of the harmonic oscillator E, = fiw.(n +
1/2), we know the the maximum displacement of the particle (classically) is given by Ty = £1/2E,/mw?2,

and since the periodicity in the variable ‘y” mentioned before is valid for any “x” value, we must have that
the maximum value of the quantum number “j” must be

Aj— 1BLy gBL, [2h(n+1/2)

(22)

Tmax =
whe whe mwe

and this represents the degeneration, D(n), we have in the system

D(n) = LqBLy\/m] . (23)

mec2hw,

where [¢] means the integer part of the number £. Therefore, the general solution (absorbing the sign in the
constants) is

D(n) - 1/4 ) .

27]—] h 71-( 2mj zy— 2nn’ Z) . En,n’ t h 271']
U(x, 1) = A Ty o ) i (24
=33 Conn | 1p () ¢ e, (L (ZL)a), e

n,’n j=0

where the constants Cp,,,/; must satisfy that )

; |C,mrj\2 = 1. The Landau’s levels E, ,/ are given by
expression (19).

’
n,n.,

III.  ANALYTICAL APPROACH FOR THE CASE B L E

This case is illustrated on the next figure,

Figure 2: Electric charged in a flat box with magnetic and electric fields

where the magnetic and electric constant fields are given by B = (0,0, B) and E = (0,&,0). We select
Landau’s gauge for the magnetic field such that the vector and scalar potentials are A = (—By,0,0) and
¢ = —€y. Then, our Hamiltonian is [23-25]

;- LA)
H= T + qo(x,) (25)
and the Schrodinger’s equation,
ov A
h— = HU 26
ot ’ (26)
is written as
ov 1 qB \* P2 p?
h— =< — | P + — = =50 — qgEyW 27
ih— {2 (p+ y) +to o+ a€y (27)
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Using the definition p; = —ihd/0x; and the commutation relation [z, p;] = ¢hd;k, the above expression is
written as the following partial differential equation

ov h? 0%V gBROY  ¢*B? h? 0%w h? 020
e L) dlihided 2 TE N IE eyw. 2
ot 9m 922 mec Oz + 2mc? 2m Oy  2m 022 4€y (28)

Taking the Fourier transformation with respect the x-variable, W(k,y,z,t) = Fo[¥(x,t)], the resulting
expression is

i = o= T e (29)

oU  [h2k2 thk q232 o] - B2 9% h? 92U
S + ¢ y

By proposing a solution of the form

U(k,yz,t) = e BY/ITR2(k y) (30)
and after some rearrangements, the resulting equation for ® is

—— + 1mw 2(y —yo)?*® = E'®, (31)

where w, is the cyclotron frequency (13a), and we have made the definitions

hce mc2€
—k 4+ — 32
Yo = 4B ¢B? (32)
and
K2 k2 h2k‘2 1 mcE
E —E— - —(hk 2,
2m 2m + Qm( + B ) (33)

“ 9

This equation is again the quantum harmonic oscillator on the variable with a cyclotron frequency w,

and displaced by a quantity yo. Therefore, the solution (14) is

MW,

(i) = (/50— ) (34

and
E!, = hw.(n+1/2). (35)

Thus, the solution in the Fourier space is

2 —i ikyz mw
\Il(k,y,z,t) =e En,kzt/h+ k- n( hc(y—yo)) (36)

with the energies I, i, given by

En k. = hwe(n+1/2)+ mZ - — = —k. (37)
The solution in the space-time is obtained by applying the inverse Fourier transformation,

U,k (%,1) = .7-'[ k. (k,y, z,t)] = / efixk\ilnvkz(k,y,z,t)dk, (38)

V2T
which after a proper change of variable and rearrangement, we get the normalized function (ignoring the
sign)

B ) B
U,k (x,t) = V4B e~ iPn k2 (%1) n(q( Cit >’

(meho) Ve "B )
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where the phase ¢, i, (x,t) has been defined as

K2 k2 2827 ¢ B Et 2
bunc ) = [+ 1/2) 4 P2 - TN L e B2 (o= T (5= 22E) o)

2m 2B2 hc B qB2

[1%))

asking for the periodicity with respect the variable “z”, U, . (x,t) = U, k. (2,y,2 + L., t), it follows that
k.L. = 2mn' where n’ is an integer number , and the above phase is now written as

(41)

222/2 202 2 / B 2
b ) = [l +1/2) + 200 OS] 42, B () (et

mIz 232 |n L. he B B2
Note from this expression that the term e~**(5%) contains the element ei%my, and by assuming the periodic
condition ¥(x,t) = U(x,y + Ly, z,t), will imply that ¥(x,t) will be periodic with respect the variable “y”,

for any “x” at any time “t.” In particular, this will be true for x = L,. This bring about the quantization of

the magnetic flux of the form
BL,L .
c

obtaining the same expression as (20), and this phase is now depending of the quantum number “j”

2mn’ 2mj 215 [mc€ c€
i (X, 1) = ennit/h— - —tyl . 43
where e,y is the energy associated to the system,
92 h2 202
e = Hwe(n +1/2) + 2 4 1€ (44)

mLZ ' T 2B

In this way, from these relations and the expression (39) we have a family of solutions { U,/ (X, %) }n.nr jez
of the Schrodinger equation (27),

2mj ho\Y? i (x,t) h 2mj c&t
W (%, ) = L.L, (mw) € T\ \IL L, (@=5) ) (45)

Now, by the same arguments we did in the previous case, the degeneration of the systems would be given by
(23), and the general solution would be of the form

D(n)
V(1) =Y > Con Vs, 1) (46)
n,n’ j=0

IV.  ANALYTICAL APPROACH FOR THE CASE B|| E

The following figure shows this case.

Figure 3: Electric charged in a flat box with parallel electric and magnetic fields

© 2020 Global Journals



The fields are of the form B = (0, B,0) and E = (0,&,0). The scalar and vector potentials are chosen as
A = (Bz,0,0) and ¢ = —Ey. The Shrodinger equation is for this case as

00 [ (o —gBz/c)* | By P
h—=J{ =" 4+ 9 4 = v 47
! ot { 2m + 2m + 2m 9cy ’ (47)

which defines the following partial differential equation

OV R 9°U  ¢Bh:OV  ¢°B? B2 92U B2 920
e =7y = g L 00 T eyl 48
ot om 922 ' me Oz | 2mc 2m Oy?  2m 022 “y (48)

Proposing a solution of the form ¥(x,t) = e *#*/"®(x), we get the following eigenvalue problem

B2 90 ¢Bhz9® @B , R 96 12 9%0
“om a2 Tl 5 D ——— — ——— — Y. 49
2m Ox? e or  2mc? i 2m Oy?2  2m 022 €y (49)

E® =

Applying the Fourier transformation over the x-variable, ®(k,y, z) = F,[®(x)], the following equation arises
after some rearrangements

(hk +qBz/c)? . h% 8%¢  h% 9%d .

Eb=-""10 5 T Eyd 50
2m 2m 022 2m Oy ey= (50)
which can be written as
R oed 1 os W2 020 .
S A & L7 geyd, 1
S + 2mw4(z+zo) om 052 qa€y (51a)

where w, is the cyclotron frequency (13a), and z has been defined as

h
iy

= .5~ (51b)

20

This equation admits a variable separable approach since by the proposition é(k,y,z) = f(k,2)g(y), the
following equations are bringing about

h? d? 1
“om (TJ; + gmwi(z+20)° = B f (52a)
and
h? d%g
“omaye ~ 9Eve =B, (52b)

where E = EMW + E®) | The solutions of these equations are, of course, the quantum harmonic oscillator and
the quantum bouncer, which are given by

Fulky2) = Ape €PH,(€), €=z +20), BN =hw(n+1/2). (53a)
h
and
Ai(€ — & - -
gn’ (y) = Ma 5 = y/la Er(LQ) = _qglan (53b)

where A, = (mw./mh)'/*/v/27nl, | = (h2/(=2mqg&))'/3, Ai(—E,) = 0, and Ad'(€) is the differentiation of
the Airy function. In this way, we have

mwe

(i)n;n’(ka Y, Z) = Ay’ n( A (Z + ZO)) A@(l_l(y - yn’))’ En,n’ = hwc(” + 1/2) - qun'v (54)
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where we have defined a, as a,, = 1/|Ai'(—1"1y,/)|. Now, the inverse Fourier transformation will affect
only the quantum harmonic oscillator function ¥,, through the k-dependence on the parameter zp, and the
resulting expression is

anqB 4B qBzx o1
Dy (%) = —m——e' e Y, | o= | Ai(I7 (Y — yr))- 55
(%) \/mc2hwce v (\/m02mc> {7 = ) (55)

Now, asking for the periodicity condition of the above solution with respect the z-variable, ¥(x,t) =

U(z,y,z + L,,t), the periodicity must satisfy for any x-values, and in particular for x = L,. Thus it
follows the quantization expression for the magnetic flux

2oz _onj,  jeZ. (56)

Using the same arguments shown above for the degeneration of the system, we have the same expression (23)
for the degeneration of the system and the function (55) is given by (normalized)

o Jom (RN e (TR (2w P
Pt (%) = ane L,L, (mwc> ¢ mwe \ Ly Ly ©) A7 = 3). 7

Then, we have obtained a family of solution of the Schrédinger equation (48),

\I/n,n’ (X, t) = €_iE"'"/t/h(I)nn’j (X)7 (58>

where the energies E, ,,/ are given by the expression (54). The general solution of (48) can be written as

D(n)
. . 21y
U(x,t) = Z Z C;’n,e—zEn,n/t/heliLmL’z Gy (2, 9), (59)
n,n’ j=0
with the condition -, . |C} |> = 1, and where it has been defined the functions @, ,/ as

| 27j hO\Y4 | h mj
'&n,n’ (.’E, y) = Qp/ IiZy (mwc> lpn< mw, (Iigy> ZL’) Ai (l_l(y - yn’)) (60)

a) Same system but with new magnetic gauge

Let us consider the magnetic gauge given such that the vector potential is of the form A = (0,0, —Bz), and
the potential is the same ¢ = —Ey. Passing directly to the eigenvalue problem for the Schrodinger equation
when we select the wave function of the form W(x,t) = e *#Y/"®(x), the resulting equation is

K2 920 B2 920 K2 90 qBh 0%  ¢’B?
0 0 0 4Bh 0% | g 720 — gEyd = E. (61)

2m 0x2  2m Oy?  2m 022 “me T8z T ome

Taking the Fourier transformation with respect the z-variable, ®(z,y,k) = F.[®(x)], and making some
rearrangements, it follows that

h2 92

1 qB K2 92
2m Ox2 + %(

2A A~ A
- — - —— — = FEo. 2
ik ¢ m) 2m Oy? 9y (62)

This equation admits a variable separable solution of the form @(x, y, k) = ¢1(k, x)d2(y), where the functions
¢1 and ¢ satisfy the equations

W2 &2y (hk — 1Pa)?

1
o da? o ¢ = EWgy (63)
and
K2 92
“2m a;f — q€y¢2 = B¢, (64)
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where E = E(W + E®)| The solution of these equations are

binlk,z) = n(€) = Ape S 2H,(€), €= m;;c(x—mo), EW = hwe(n +1/2) (65)
and
2 1/3
b (9) = awr A =) 1= () D = —aEm (66)

where w, is the cyclotron frequency (13a), zg is the displacement zg = hck/qB, a, = 1/|Ai'(I" y,)| is a
constant, and A,, the constant associated to the quantum harmonic oscillator solution. The inverse Fourier
transformation affect only the function ¢, and we have

— B - gB B
o) =7 ot = e e (). o0

(Y]

The periodic condition on the variable “x”, U(x,t) = U(z + L,,y, z,t), for any value of the other variables,
implies that this will happen in particular for the value of z = L,. So, we get the quantization of the magnetic
flux (BL,L,),

qBL, L,

= 2nj i€ Z. 68
he 7, J € (68)

Thus, we have a family of solutions {¥,,,/;(x,?)} of the Sherddinger equation of the form
W (5,8) = Bt (x), (69)

or (normalized and ignoring the sign)

W5 (%, 1) = 2mj b\ —i( Byt f T Ez 72y [_h (27] Ai(l7Y( ). (70)
nn/ % ) = Gy L,L, \ mw, € o " mwe \ Ly Ly =) Y= Un))-

By the same arguments about the degenerationn of the systems, the general solution is just a combination
of all of these,

U(x,t) = Z Annljefi(E”v"’%+Liﬁsz m)vnn/j(y, 2), (71)

n,n’

where the condition Zn’n, |Apnj|? = 1 must be satisfied, and the function vy, ; is given by

_ 2wy ho\ Y h 2wy 1
Unn (Y 2) = L.L, (mwc) W V mwe \ Ly L, 2| AT~ wa): (72)

V. CONCLUSIONS AND COMMENTS

We have studied the quantization of a charged particle in a flat box and under constants magnetic and
electric fields for several cases and have shown that a full separation of variable solution is not admitted in
these cases (contrary to Landau’s solution in one of these cases). This situation arises since the commutation
of a component of the generalized linear momentum operator with the Hamiltonian of the system does not
imply necessarily that a variable separation of its associated variable must exist in the Schrodinger equation.
However, using the Fourier transformation, we were be able to find the full solution of the problems. As
expected, Landau’s level appears in all these cases, and a characteristic phase which help us to find the
quantization of the magnetic flux in a natural way. We consider that the approach given here maybe very
useful to understand quantum Hall effect and related phenomena.
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