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Abstract-

 

The modern scientific and technological revolution 
has led to profound changes in the technique and technology 
of marine seismic research, ensuring an increase in labor 
productivity, a significant increase in the volume of work, as 
well as an increase in their efficiency. At the same time, along 
with the use of floating piezoelectric

 

seismograph, digital 
recording equipment, modern electronic computing 
equipment and more accurate

 

satellite navigation systems, 
one of the important factors that contributed to improving the 
efficiency of seismic exploration was the introduction of a new 
generation of seismic signal excitation devices – non-explosive 
sources – into the practice of marine seismic research. Of 
these, the most widely used in seismic exploration in water 
areas around the world are pneumatic sources, in which 
elastic waves are excited by underwater exhaust of 
compressed air.

 

The purpose of this work is to select and justify

 

a 
theoretical model that adequately describes the process of 
pulsation in the water of the air cavity, as well as its acoustic 
radiation. The model chosen as a result can be used for 
mathematical modeling of new designs of pneumatic sources 
that are being

 

developed.

 

Keywords:

 

pneumatic source, physical explosion, 
hydrodynamics of anoscillating bubble, pressure field of 
anoscillating bubble, rayleigh equation, herring equation, 
keller-kolodner equation, kirkwood-be

 

the approximation.

 

I.

 

Equations of Motion in a Liquid of 
Spherical

 

Gaseous Cavity.

                    

Pressure Field of The

 

Oscillating 
bubble. Basic Quantitative Ratios

 

rom the point of view of hydrodynamics, a 
pneumatic source belongs to the class of sources 
of the «oscillating bubble» type. In the theory of 

sound radiation of a oscillating bubble

 

in an unlimited 
extent of water, the main problem is the description of its 
motion. A significant number of works related to the 
study of acoustic cavitation [1, 2, 14], the calculation of 
the pressure field from the explosion of condensed 
explosives [8, 9, 15], from electric discharges in water 
[10, 11], from the exhaust of compressed air into water 
by a pneumatic source are devoted to this issue[4, 12, 
13, 16, 20].

 

In the study of the problem of describing the 
motion of a cavity, the classical solution of the problem 
of collapse of a spherical cavity in an unlimited volume 

of a non-viscous incondensable and devoid of surface 
tension liquid under the influence of constant pressure, 
given by Rayleigh [9], became fundamental. All further 
decisions are essentially reduced to analyzing the 
influence of Rayleigh's assumptions and taking into 
account the actual properties of the liquid. 

Several types of approximations can be used to 
describe the motion of the cavity. All of them take into 
account the compressibility of the liquid in different 
ways, and each of them leads to a certain nonlinear 
differential equation of motion of the cavity interface. 

a) Zero-order approximation (Rayleigh`s equation) 
Assuming the fluid is incompressible                    

(ρ0 = const), it is easy to show that the motion of the 
interface is described by a second-order nonlinear 
differential equation [8]: 
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where R(t)– the radius of the cavity; ρ0– the density of 
the liquid; P(t) – the pressure in the liquid at the 
interface; Р0– the hydrostatic pressure. 

If it is necessary to study the sound radiation of 
the cavity, the incompressibility condition must be 
modified so that the speed of sound in the liquid is finite. 
In cases where the speed of expansion of the sphere is 
small compared to the speed of sound in a divergent 
medium, the density perturbations caused by the 
expansion of the sphere will also be small. Therefore, for 
such processes, the propagation of a divergent wave 
can be described by a solution of linear acoustics that 
satisfies the boundary condition of velocity continuity on 
the surface of a sphere. Then the pressure distribution in 
the liquid is given by the equation [9, 11]: 
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Or
 
excluding
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using the equation(2.1),
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where r – radial coordinate.
 

Denoting
 

V = 4/3 π R3– the volume of the 
sphere, we get from (2)
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In the wave zone, the second term on the right 
side of this formula is negligible, so we can write down 

r
VPtrp
π

ρ
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),( 00
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=− . 

This shows that the pressure in the liquid is 
proportional to the volume acceleration of the gas 
bubble. The maximum acceleration will be at the 
minimum volume of the bubble. Thus, in the process of 
cavity pulsations, repeated pressure pulses are emitted 
at each minimum volume.

 

Differential equation (1) does not allow us to 
take into account the energy emitted by the 
compression wave, and is a zero-order approximation in 
which all terms of the order R'/сare ignored (where с

 
is 

the speed of sound in a liquid). The elastic modulus is 
assumed to be infinitely large and, consequently, the 
speed of sound in water is infinitely large as well.

 

Solution of the Rayleigh equation, Rayleigh-Willis formula
 

Considering the collapse of a spherical cavity 
having at the initial moment the radius Rмах

 
and the 

pressure Р
 
inside, significantly less than the hydrostatic 

Р0, and taking into account that this pressure ratio 
persists for most of the period of pulsations, Rayleigh 
obtained a simple solution to the equation (1) [14]: 
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This solution describes the collapse of the 
Rayleigh cavity. Based on it, Rayleigh determined the 
time tmax, required for complete collapse of the cavity 
under the conditionR0<< Rmax: 
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For R0

 

= 0this integral can be taken using

 

Γ-function:  
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This time is approximately equal to half the 
period of pulsation of the cavity. Hence 
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Expressing the maximum radius in terms of the 
total energy of the pulsating bubble, Willis obtained              
[9, 11, 18]: 
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Formula (6) is often called the Rayleigh-Willis 
formula. It is very useful for estimating the relative 
energy and acoustic characteristics of various types of 
marine seismic sources. As can be seen from the 
Rayleigh-Willis formula, the pulsation period increases in 
proportion to the cube root of the total energy and 
decreases in proportion to the hydrostatic pressure in 
the power of 5/6. For processes accompanied by the 
formation of spherical gas bubbles in water (explosions 
of condensed explosives, underwater gas explosions, 
electric discharge, exhaust of compressed gas), this 
dependence is in better agreement with the experiment, 
the greater the depth of immersion of the source and the 
less heat exchange between the gas in the bubble and 
the surrounding liquid. Note, however, that formula (6) 
does not apply if the pulsating bubble is located near 
the liquid boundary due to a change in the nature of the 
spreading flows. 

b) First-order approximation: Herring and Keller-
Kolodner equations 

The assumption that the speed of sound in 
water is permanent (and in this case the elastic modulus 
is considered as a constant and there is a linear 
dependence of pressure on density) leads to a first-
order approximation, which contains terms of the order 
R'/c. Acoustic approximation allows us to take into 
account the energy loss due to radiation in this case. 

The transformations performed by Herring [14] 
under the assumption с = c0 = = const, give the 
equation: 
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Compatible equation was obtained by Keller and Kolodner [17]: 
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where 
0

0
0 ρ

PP
H

−
= . 

For the case of an incompressible fluid (c0→∞), equations (7) and (8) are transformed into the Rayleigh equation (1). 

The expression for the pressure field around the oscillating bubbleis obtained in [17] (or equation (13.333) from [8]):  
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wheret1
 = t − r/c0; f and f' are given by the equations 
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In equation (9), Keller and Kolodner left the first 
two terms and omitted the second two, without 
examining their relative values [17]. In [21], an attempt 
was made to prove that the second term in equation (9) 
is not related to linear elastic theory and Newton's 
second law. Indeed, in deriving equation (9), Keller and 
Kolodner began their analysis with the wave equation, 
which applies only to a linearly compressible fluid with a 
constant speed of sound, when the particle velocity is 
sufficiently small. Then they linked the particle velocity to 
pressure via the Bernoulli equation, which has a much 

broader application than the wave equation. The authors 
of [21] correctly pointed out the incompatibility of the 
wave equation and the Bernoulli equation and the 
appearance of terms in equation (9) that are not related 
to linear elastic theory. However, in their analysis, they 
also omitted terms that are significant for linear theory 
when calculating the pressure field in the near zone.

 

Since the particle velocity in a linearly 
compressible fluid is quite small, we transform equation 
(9), by omitting the terms of the order(R'/c)2. In the end 
we get: 
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If in (9) we neglect the term of the order R'/c0, 
we get equation (3).

 

c)
 

Second-order approximation
 

(approximation of 
Kirkwood-Bethe)

 

For the case when the rate of expansion of the 
cavity in the liquid is high and the density perturbations 
caused by the expansion of the cavity are significant, the 
Kirkwood-Bethe approximation is applicable [8, 9]. This 
method, developed in the study of underwater 
explosions, consists in determining the invariant of 
motion, which is taken as the function

 

Ф
 

= r(h + u2/2) , 

where h –specific enthalpy of the liquid; u –particle 
velocity.

 

The value of Ф
 
propagates at a constant speed 

equal to u + c (where c
 
is the local speed of sound). 

Under this condition, the equation of motion of the 
interface takes the form:
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where Н(t)

 

and с(t)
 

are the specific enthalpy and speed 
of sound in the liquid at the interface, respectively. Both 
of these functions depend on the pressure р(t). Equation 

(12) was first obtained by Gilmore [8, 9]. The 
relationship between pressure and enthalpy is found 
from the experimental dependence of pressure on 
density under isentropic compression, which is 
described by the formula [11]:
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where B and n –constants that depend on the type of 
liquid; for water В

 

= 2 500 atm,  n = 8   [20],  or В

 

= 3 
000 atm,   n

 

= 7  [11]. Using the equation (13), 

 

weget
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where с0−speed of sound propagation in an undisturbed 
liquid. 
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On the surface of the sphere h = Н,  c = С ,  p = P, and from equations (14) and (15) we obtain: 
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To compare equation (12) with equations (7) and (8), transform equation (16)
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and determine the order of value
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According to the approximate solution of equation (1) given by Rayleigh [9], the value 
0

0

ρ
PP −

 

is 

proportional to R'2. Therefore, the expression 
 

BP
PP
+
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0

0
 has the order (R'/с0)

2. Thus, up
 
to

 
terms

 
of

 
order(R'/с0)

2
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Similarly, we can show that, neglecting the terms of order (R'/с)2, for the enthalpy Н
 
we get
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Substituting the expressions (18) and (19) in equation (12) and neglecting the term P
c
R ′
′
2
0ρ

, having an order (R'/с0)
2, 

we get the Keller and Kolodner equation (8).  

We now transform equation (12) by multiplying each of its terms by с: 
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Dividing each term of
 
this equation by с

 
+ R'

 
and neglecting the terms of order (R'/с)2,

 
we arrive at

 
the equation
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which is accurate to the term P
c
R ′
′
2
0ρ

, having an order(R'/с)2, coincides with the Herring equation (7). 

Thus, the Kirkwood-Bethe approximation allows us to take into account terms of order(R'/с)2and is a second-
order approximation. It can be considered proved that the Herring (7) and Keller-Kolodner (8) equations coincide 
with each other up to terms of order (R'/с)2.  

Taking into account the terms of the order(R'/с)2 the pressure field of the oscillating bubbleis calculated 
using the formulas [20]: 
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It is easy to show that, ignoring the terms of 
order (R'/с)2, we find an expression for the pressure field 
from (21) that coincides with equation (11).

 

II.
 

Results
 
of

 
Numerical

 
Solution

 
of

 

Equations
 
of

 
the Motion of 

Spherical
 
Cavity. Analysis of the 

Assumptions made in 
 
Relation to the 

Underwater Exhaust of Compressed 
Air

 

a)
 

Comparison of results of numerical solution of 
equations of the motion of a spherical gas cavity in a 
liquid

 

So, to describe the motion of a pulsating 
spherical bubble in a liquid, we can apply three different 
differential equations, depending on the order to which 
the terms R'/c

 
are taken into account. The assumption of 

incompressibility of the fluid leads to the differential 
equation (1), in which all terms of the order R'/c

 
are 

ignored – this is an approximation of the zero order. The 
pressure field in a liquid is described by equation (3).

 

The assumption that the speed of sound in a 
liquid is constant leads to

 
equation (7) or (8), which take 

into account the terms of the order R'/c
 

and which 
coincide with each other up to the terms of the order 
(R'/c)2. This is a first-order approximation. The pressure 
field is given by equation (11). Finally, the Kirkwood-
Bethe approximation leads to differential equation (12), 
which takes into account second-order terms with 
respect to R'/c. This is a second-order approximation. 
The pressure field is given by equation (21).

 

Let's assume that a sphere with radius R0
 
(initial 

volume of the sphere V01=(4/3)πR0
3) with gas pressure 

inside Р01
 
exceeding the hydrostatic pressure is placed 

in an unlimited extent of liquid with
 

densityρ0
 

and
 

hydrostatic pressure Р0. At the initial moment, the shell 
of the sphere is instantly removed and the bubble 
expands with acceleration under the influence of the 
pressure difference in the bubble and in the surrounding 
liquid. In this case, an acoustic signal is emitted, the 
maximum pressure of which is observed at t = 0. 
Assuming that the change in the state of the gas in the 
bubble occurs according to the adiabatic law, the 
pressure in the bubble as a function of its radius is 
described by the dependence
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where γ−is the adiabatic exponent (for air γ = 1,4). 
Knowing the pressure in the bubble, we can solve 
differential equations (1), (7) (or (8)) and (12) by setting 
the following initial conditions: 

             R(0) = R0
 ,    R'(0) = 0,при этом Р(0) = P01.  (24) 

Numerical solutions of these equations 

performed in MathCAD by the fourth-order Runge-Kutta-
Gill method atР01

 = 12 МПа, P0
 = 0,2 МПа, R0

 = 0,089 
м (V01

 = 3 дм3), are shown in Fig. 1. The solutions of 
equations (7), (8), representing the first-order 
approximation, and equation (12), describing the 
second-order approximation, as well as the pressure in 
the liquid, calculated respectively from equations (11) 
and (21), completely coincide and are represented by a 

Hydrodynamics of Underwater Physical Explosion»

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

X
II

Y
ea

r
20

20

33

  
 

( A
)

© 2020 Global Journals

https://www.multitran.com/m.exe?s=oscillating+bubble&l1=1&l2=2�


single curve. Fig. 1 (a) shows the change in the bubble 
radius as a function of time. Fig. 1 (b) shows acoustic 
pressure signals in the far zone, reduced to a distance 
of 1 m from the emitter. As can be seen from figure 1, 
equation (1) gives a sustained solution. Equations (7), 

(8), and (12), which take into account the compressibility 
of the liquid, allow for energy losses due to radiation. In 
this case, along with the attenuation of the amplitude, 
the period of pulsations also decreases. 

Fig. 1: Numerical solution of equations (1), (7), (8) and (12) atР01
 = 12 MPa,  Р0

 = 0,2 MPa, R0
 = 0,089 m; (а) − 

dependence of the bubble radius on time; (b) − pressure in the compression wave; ______  equation (1);  _ _ _ _  
equations (7), (8) and (12) 

Numerical analysis of the equations of motion of 
the cavity shows that at an initial pressure                              
Р01

 
= 10

 
÷

 
15MPa

 
for volumes

 
V01

 
= 0, 1÷10 dm3 

 

(namely, at such pressures and volumes of operating 
chambers, pneumatic sources are used), 
approximations of the first and second orders give the 
same results. Since the vibrations of a free bubble 
represent an idealized case for a pneumatic source, 
when the energy losses associated with the flow of air 
through the exhaust windows of the source are ignored, 
the expansion rate of real bubbles will be at least no 
greater than the expansion rate calculated for free 
bubbles. Hence, we conclude that the rate of expansion 
of bubbles generated by pneumatic emitters is small 
and there is no need to use a second-order 
approximation.

 

The zero – order approximation – equation (1) 
− is the roughest approach to the problem of acoustic 
radiation and is mainly used to obtain semi-quantitative 
information about the

 
oscillating bubble. 

The first-order approximation remains, which 
leads to equations (7) and

 
(8). In our opinion, the use of 

these equations is most advantageous, since with the 
same accuracy of the solution as equation (12), these 
equations are simpler. Since equations (7) and (8) 
coincide up to second-order terms with respect to

 
R'/c, 

any of these equations can be used to describe the 
motion of a bubble formed by an underwater exhaust of 
compressed gas. The Keller-Kolodner equation (8) is 
most often used in the literature devoted to the 
theoretical study of underwater compressed air exhaust.
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b) Analysis of the effect of viscosity and surface tension 
When a fluid moves radially, viscosity and 

surface tension are not included in the equation of 
motion, but they appear under boundary conditions. If 
we assume that the radial stress in the liquid and the 
pressure in the cavity must be continuous at the 
interface, we get [2, 14, 20]: 

                    R
R

R
PPtP vg

′
−−+=

µσ 42)( ,             (25) 

where РgиРv−partial pressures of gas and water vapor, 
respectively; σ− surface tension;  µ− shear viscosity. For 
water, the value is: σ = 72,5⋅10-3N/m,  µ = 10-3kg/m⋅s.  

The effect of surface tension and viscosity can 
be significant only for a very small radius of the bubble 
and a high speed of its surface movement, which is 
observed, for example, in acoustic cavitation [2, 14, 19]. 
For bubbles generated by pneumatic sources with 
operating chamber volumes from 0.1 to 10.0 dm3, 
according to calculations, we obtain the following order 
of values: R≈ 10-1m, R′≈ 10 m/s. Thus, the order of 
magnitude of the stress that occurs under the action of 
surface tension and viscosity is: 

85,142
≈

′
+

R
R

R
µσ

N/m2. 

                         
   

 

 

P = Pg + Pv. 

The water vapor pressure in the bubble Pv will 
reach its maximum when the bubble expands to its 
maximum volume and the gas pressure of the Рg 
becomes minimal (Рg = 0, 2 atm). The partial pressure 
of water vapor never exceeds 10% of the Рg value [20], 
so Pv max = 0, 02 atm, i.e. this value can be ignored. As a 
result, we get 

P = Pg, (26) 

that is, the pressure inside the bubble is caused only by 
the air pressure. 

c) Physical models of pneumatic sources 

i. Model in the form of a spherical gas layer 

 
 

ii. The Schulze-Gattermann model  
In contrast to the spherical layer model 

considered by Gribanov A.M. and Akentiev L.G. based 
on the Rayleigh equation for adiabatic changes in the 
state of gas in a bubble, the Schulze-Gattermann 
spherical layer model is based on the Keller-Kolodner 
equation under the assumption of isothermality of the 
process of changing the state of air in a bubble during 
its pulsation in water. 

Some people calculated characteristics 
obtained for the Schulze-Gattermann model are 
somewhat closer to the experimental ones (the period of 
pulsations), but other indicators (the amplitude and 
shape of the signal) differ from the characteristics of the 
real process. 

iii. The Safar model 
In contrast to all other models in which the 

pneumatic source is modeled as an air sphere with an 
initial volume equal to the volume of the operating 
chamber, in the theoretical model of Safar (Safar M. H. 
[16]), it is proposed to approximate the shape of the 
bubble at the initial stage of the process with an 
equivalent sphere, surface area of which is equal to the 
total area of the exhaust windows of the source. In 
addition, it is assumed that the first pulse of the emitted 
acoustic signal reaches a peak value when the exhaust 
port is fully opened, and the movement of the movable 
piston occurs under constant pressure. 

The calculated characteristics of the underwater 
exhaust process obtained using the Safar model allow 
us to more accurately estimate not only the amplitude, 
steepness, and shape of the first pressure peak of the 
emitted signal, but also the period of its pulsation. 
However, the main parameters that characterize the 
dynamics of the emitter itself are determined in the Safar 
model either too approximately or not at all. 

iv. The Maksakov-Roy Model 
An important step in the study of the process of 

underwater exhaust of compressed air was the work 
(Maksakov A. A., Roy N. A. [3]), which considers a 
system of differential equations describing the impulse 
flow of gas into water through a hole, cross-sectional 
area of which changes in time according to any 
predetermined law. The air pressures in a constant 
volume chamber and in a bubble are expressed from 
the law of conservation of energy and from the equation 
of state and conservation of mass of gas as it flows from 
the chamber to the bubble. The flow rate of gas into the 
bubble during an isentropic flow is given by the Saint-
Venant and Wantzel formula, in which the area of the 
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Since the minimum value of the gas pressure in 
the bubble, reached at R.= Rmax, has an order
Pg min = 0, 2 atm = 2⋅104N/m2, which is 4 orders of 

magnitude greater (
R
R

R
′

+
µσ 42

), the effect of surface 

tension and viscosity in this process can be ignored. 
Thus,

In some works (Schulze-Gattermann R. [22]; 
Gribanov А.M., Аkentyev L. G.[13]), theoretical 
estimates of the parameters of the pressure signal 
emitted by a pneumatic source were achieved. Physical 
model of the source is a spherical layer with 
compressed gas containing an absolutely rigid sphere. 

This model is somewhat closer to reality and takes into 
account the influence of the source body on the 
expansion of the cavity, but the description of the 
dynamics of the process, and especially the acoustic 
radiation at the initial stage of the exhaust, is also 
approximate and differs from the experimental data.



hole was set to vary linearly over time, and the Rayleigh 
equation was used to describe the movement of the 
bubble walls. 

This model already allows us to quantify the 
effect of the opening speed of the exhaust port, its 
maximum area and the initial gas pressure on the 
acoustic efficiency of the underwater exhaust process. 
However, in real designs of pneumatic sources, the 
exhaust area is a complex function of both the design 
parameters and the gas parameters in the operating 
and control chambers and in the cavity, and does not 
change in time according to a linear law. 

v. Model of sources«Signal»  
The most adequate description of the 

underwater exhaust process can be constructed only 
taking into account the dynamics of the moving element 
of the pneumatic source. This model was presented in 
the work (Gulenko V. I. [4], Gulenko V. I., Karpenko V. D. 
[5, etc.]). 

This model is implemented as a system of ten 
differential equations that depend on very many 
parameters, and is a further development of the idea 
laid down in the Maksakov-Roy model. An experimental 
study of the dynamic and acoustic characteristics of 
pneumatic sources of the «Signal» series [6] has 
showed a very good agreement with the theory. 

III. Conclusion 

1. The Rayleigh differential equation, which describes 
the simplest model of a pneumatic source in the 
form of a gas cavity, does not take into account the 
compressibility of water, the presence of a source, 
and the influence of processes occurring in it. 
Therefore, this model can be used only in the first 
approximation as a purely qualitative illustration of 
the process of pulsation in the liquid of an air 
bubble. 

2. In the model described by the Keller-Kolodner 
equation, energy losses due to acoustic radiation 
are taken into account, so its solution is decaying 
and non-periodic. However, it also does not take 
into account the presence of the source and the 
influence of processes occurring in it, as well as the 
heat exchange between the air in the cavity and the 
surrounding liquid. 

3. The Kirkwood-Bethe approximation was developed 
for underwater explosions of condensed explosives 
characterized by very high explosion product 
pressures and, consequently, high bubble 
expansion rates comparable to the speed of sound 
in water. 
In addition, calculations show that the solution of the 
Gilmore equation completely coincides with the 
solution of the Keller-Kolodner equation to describe 
the free vibrations of an air bubble in a 
compressible liquid for the initial parameters of the 

problem corresponding to the typical parameters of 
an underwater pneumatic explosion, so the use of 
the Kirkwood-Bethe approximation for solving this 
class of problems is not justified. 

4. The most adequate description of the process of 
underwater exhaust of compressed air can be built 
on the basis of the Keller-Kolodner equation, but 
with mandatory consideration of the dynamics of the 
moving element of the pneumatic source, which 
determines the mode of air flow from the operating 
chamber to the expanding cavity. 

IV. Annotation 

The piece of work is devoted to the selection 
and justification of a theoretical model of a pneumatic 
source that adequately describes the process of 
pulsation in the water of an air cavity, as well as its 
acoustic radiation. 

The classical solution of this problem given by 
Rayleigh for an incompressible liquid, the Herring and 
Keller-Kolodner differential equations obtained for a 
compressible fluid, and the Kirkwood-Bethe 
approximation developed for underwater explosions of 
condensed explosives are considered as possible 
approximations of this process. 

It is shown that for those modes of expansion of 
the cavity that are typical for underwater exhaust of 
compressed air by a pneumatic source, the most 
adequate description of the pulsation process is the 
description of the pulsation process of the air cavity in a 
compressible liquid – the Keller-Kolodner differential 
equation. It is also shown that the influence of water 
viscosity and surface tension on the walls of the cavity 
can be ignored. 
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