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Abstract- The object of this paper to study various curvature tensors in a Lorentzian 𝜶𝜶–

 

Sasakian manifold, we also

 

study 𝝋𝝋–pseudo projectively flat,

 

𝝋𝝋–quasi conformally flat,

 

𝝋𝝋–quasi concircularly flat, 𝝋𝝋–𝒎𝒎–projectively flat Lorentzian 

𝜶𝜶–Sasakian manifolds are an 𝜼𝜼–Einstein Manifold.

 

Keywords:

 

𝜑𝜑–pseudo projectively flat, 𝜑𝜑–quasi conformally flat,

 

𝜑𝜑–quasi concircularly flat, 𝜑𝜑–𝑚𝑚–projectively 

flat, Lorentzian 𝛼𝛼–Sasakian manifold, 𝜂𝜂–Einstein Manifold.

 
I.

 

Introduction

 
Let

 

(𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 3,

 

be a connected semi Riemannian manifold of class 𝐶𝐶∞

 

and ∇

 

be its Levi–Civita connection. Riemannian curvature tensor

 

𝑅𝑅

 

is defined by

 
                                𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 = ∇𝑋𝑋∇𝑌𝑌𝑍𝑍 − ∇𝑌𝑌∇𝑋𝑋𝑍𝑍 − ∇[𝑋𝑋,𝑌𝑌]𝑍𝑍       

 

          (1.1) 

Pseudo–projective curvature tensor 𝑃𝑃�on a Riemannian manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 2 of 

type(1, 3)is defined as follows (Prasad [20]).

 

 

𝑃𝑃�(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑎𝑎

 

𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 + 𝑏𝑏[𝑆𝑆(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑆𝑆(𝑋𝑋,𝑍𝑍)𝑌𝑌] − 𝑟𝑟
𝑛𝑛
� 𝑎𝑎
𝑛𝑛−1

+  𝑏𝑏� [𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌]

 

(1.2) 

where 𝑎𝑎

 

and 𝑏𝑏

 

are constants such that 𝑎𝑎, 𝑏𝑏 ≠ 0. 

If 𝑎𝑎 = 1

 

and  𝑏𝑏 = − 1
𝑛𝑛−1

 

, then (2) takes the form

 𝑃𝑃�(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 −
1

𝑛𝑛 − 1
[𝑆𝑆(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑆𝑆(𝑋𝑋,𝑍𝑍)𝑌𝑌] = 𝑃𝑃(𝑋𝑋,𝑌𝑌)𝑍𝑍

 where

 

𝑃𝑃

 

is Projective curvature tensor. Thus the Projective curvature tensor P is a 

particular case of the tensor 𝑃𝑃�, for this reason 𝑃𝑃�

 

is called Pseudoprojective curvature 
tensor.

 

Quasi–conformal curvature tensor 𝐶̃𝐶

 

on a Riemannian manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔), 𝑛𝑛 > 2 of 

type

 

(1, 3)is defined as follows (Yano and Swaki [24]).

 
𝐶̃𝐶(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑎𝑎

 

𝑅𝑅(𝑋𝑋,𝑌𝑌) + 𝑏𝑏[𝑆𝑆(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑆𝑆(𝑋𝑋,𝑍𝑍) +  𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑄𝑄𝑄𝑄 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑄𝑄𝑄𝑄]

                                     − 𝑟𝑟
𝑛𝑛
� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏� [𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌]             (1.3) 

where 𝑎𝑎

 

and 𝑏𝑏

 

are constants such that 𝑎𝑎, 𝑏𝑏 ≠ 0. 
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If 𝑎𝑎 = 1  and  𝑏𝑏 = − 1
𝑛𝑛−2  , then (3) takes the form  

𝐶̃𝐶(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑅𝑅(𝑋𝑋,𝑌𝑌) −
1

𝑛𝑛 − 2
[𝑆𝑆(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑆𝑆(𝑋𝑋,𝑍𝑍)𝑌𝑌 + 𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑄𝑄𝑄𝑄 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑄𝑄𝑄𝑄] +

𝑟𝑟
(𝑛𝑛 − 1)(𝑛𝑛 − 2)  

[𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌] = 𝐶𝐶(𝑋𝑋,𝑌𝑌)𝑍𝑍  

where 𝐶𝐶  is Conformal curvature tensor. Thus the Conformal curvature tensor C is a 

particular case of the tensor 𝐶̃𝐶. For this reason 𝐶̃𝐶  is calledQuasi–conformal curvature 
tensor.  

Quasi–concircular curvature tensor 𝑉𝑉�  on a Riemannian manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 2 of 

type(1, 3)is defined as follows (Prasad and Maurya[19]).  

              𝑉𝑉�(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑎𝑎  𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 + 𝑟𝑟
𝑛𝑛
� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏� [𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌]  (1.4) 

where 𝑎𝑎  and 𝑏𝑏  are constants such that 𝑎𝑎, 𝑏𝑏  ≠ 0. If  𝑎𝑎 = 1 and𝑏𝑏 = − 1
𝑛𝑛−1

 , then from (4)  

𝑉𝑉�(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 −
𝑟𝑟

𝑛𝑛(𝑛𝑛 − 1)
[𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌] = 𝑉𝑉(𝑋𝑋,𝑌𝑌)𝑍𝑍  

where 𝑉𝑉  is the Concircular curvature tensor. Thus the Concircular curvature tensor  𝑉𝑉is 

a particular case of the tensor 𝑉𝑉� . For this reason 𝑉𝑉�  is called Quasi–concircular curvature 
tensor.  

𝑚𝑚–projective curvature tensor 𝑊𝑊  on a Riemannian manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 3 of type (1, 3)  

is defined as follows (Pokhariyal and Mishra [18]).  

    𝑊𝑊(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 − 1
2(𝑛𝑛−1)

[𝑆𝑆(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑆𝑆(𝑋𝑋,𝑍𝑍)𝑌𝑌 +  𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑄𝑄𝑄𝑄 −  𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑄𝑄𝑄𝑄]      (1.5)  

where 𝑄𝑄  is the Ricci operator defined by 𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝑔𝑔(𝑄𝑄𝑄𝑄,𝑌𝑌), 𝑆𝑆  is the Ricci tensor,              

𝑟𝑟 = trace(𝑆𝑆)  is the scalar curvature and 𝑋𝑋,𝑌𝑌,𝑍𝑍 ∈ 𝜒𝜒(𝑀𝑀).  𝜒𝜒(𝑀𝑀)  is being Lie algebra of 

vector fields of 𝑀𝑀.  

In [21], Tanno classified connected almost contact metric manifolds whose 
automorphism groups possess the maximum dimension. For such a manifold, the 

sectional curvature of plane sections containing 𝜉𝜉  is a constant, say 𝑐𝑐.  He showed that 
they can be divided into three classes:  

(1)
 

Homogeneous normal contact Riemannian manifolds with 𝑐𝑐 > 0,  

(2)
 

Global Riemannian products of a line or a circle with a Kaehler manifold of constant 

holomorphic sectional curvature if 𝑐𝑐 = 0,
 

(3)
 

A warped product space ℝ ×𝑓𝑓 𝐶𝐶
 

if 𝑐𝑐 < 0.It is known that the manifolds of class (1) 

are characterized by admitting a Sasakian structure, (2) Kenmotsu [11]characterized 
the differential geometric properties of the manifolds of class (3); the structure so 
obtained is now known as Kenmotsu structure.

 

In general, these structures are not Sasakian[14]. In the Gray–Hervella 

classification of almost Hermitian manifolds[8], there appears a class, 𝑊𝑊4
 

of Hermitian 
manifolds which are closely related to locally conformal Kaehler manifolds[10]. An 

almost contact metric structure
 

on a manifold 𝑀𝑀  
is called a trans–Sasakian structure[13] 

if the product manifold 𝑀𝑀 × ℝ  belongs to the class
 𝑊𝑊4. The class 𝐶𝐶6 ⊕𝐶𝐶5

 
([13], [14]) 
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coincides with the class of the trans–Sasakian structures of the type (𝛼𝛼,𝛽𝛽). In fact, in 

[13], local nature of the two subclasses, namely, 𝐶𝐶5 and 𝐶𝐶6 structures, of trans–Sasakian 
structures are characterized completely. 

Also, in [16], 𝑂̈𝑂zg𝑢̈𝑢r and De studied quasi–conformally flat and quasi–conformally 
semisymmetric Kenmotsu manifolds. Then, in [25], Yildiz and Murathan studied 

Lorentzian 𝛼𝛼–Sasakain manifolds. 
We note that trans–Sasakian structures of the type(0, 0), (0,𝛽𝛽)and (𝛼𝛼, 0)are 

cosymplectic [2], 𝛽𝛽–Kenmotsu[11] and 𝛼𝛼–Sasakain [11] respectively. In [22], it is proved 

that trans–Sasakian structures are generalised quasi–Sasakian.Thus, trans–Sasakian 

structures also provide a large class of generalized quasi–Sasakian structures.
 

An almost contact metric structure (𝜑𝜑, 𝜉𝜉, 𝜂𝜂,𝑔𝑔) on 𝑀𝑀
 
is calledtrans–Sasakian 

structure [13], if (𝑀𝑀 × ℝ, 𝐽𝐽,𝐺𝐺)
 
belongs to the class 𝑊𝑊4 

[8], where 𝐽𝐽
 
is the almost complex 

structure on 𝑀𝑀 × ℝ
 
defined by

 

𝐽𝐽�𝑋𝑋, 𝑓𝑓 𝑑𝑑 𝑑𝑑𝑑𝑑� � = �𝜑𝜑𝜑𝜑 − 𝑓𝑓𝑓𝑓, 𝜂𝜂(𝑋𝑋)𝑑𝑑 𝑑𝑑𝑑𝑑� � 

for all vector fields 𝑋𝑋 on 𝑀𝑀 and a smooth function 𝑓𝑓 on 𝑀𝑀 × ℝ and 𝐺𝐺 is the product 

metric on 𝑀𝑀 × ℝ. This may be expressed by the condition [3] 

                  (∇𝑋𝑋𝜑𝜑)𝑌𝑌 = 𝛼𝛼(𝑔𝑔(𝑋𝑋,𝑌𝑌)𝜉𝜉 − 𝜂𝜂(𝑌𝑌)𝑋𝑋) + 𝛽𝛽�𝑔𝑔(𝜑𝜑𝜑𝜑,𝑌𝑌)𝜉𝜉 − 𝜂𝜂(𝑌𝑌)𝜑𝜑(𝑋𝑋)�            (1.6) 

For some smooth functions 𝛼𝛼 and  𝛽𝛽 on 𝑀𝑀 and we say that the trans–Sasakian 
structure is of type (𝛼𝛼,𝛽𝛽).  
From (6) it follows that  

                                   
∇𝑋𝑋𝜉𝜉 = −𝛼𝛼𝛼𝛼(𝑋𝑋) + 𝛽𝛽(𝑋𝑋 − 𝜂𝜂(𝑋𝑋)𝜉𝜉)                      (1.7) 

                               (∇𝑋𝑋𝜂𝜂)𝑌𝑌 = −𝛼𝛼𝛼𝛼(𝜑𝜑𝜑𝜑,𝑌𝑌) + 𝛽𝛽𝛽𝛽(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)                      (1.8) 

Trans–Sasakian manifolds have been studied by De and Tripathi[7] and they 
obtained the following results: 

      𝑅𝑅(𝑋𝑋,𝑌𝑌)𝜉𝜉 = (𝛼𝛼2 − 𝛽𝛽2)(𝜂𝜂(𝑌𝑌)𝑋𝑋 − 𝜂𝜂(𝑋𝑋)𝑌𝑌) + 2𝛼𝛼𝛼𝛼(𝜂𝜂(𝑌𝑌)𝜑𝜑𝜑𝜑𝜑𝜑(𝑋𝑋)𝜑𝜑𝜑𝜑) + (𝑌𝑌𝑌𝑌)𝜑𝜑𝜑𝜑  

                                −(𝑋𝑋𝑋𝑋)𝜑𝜑𝜑𝜑 + (𝑌𝑌𝑌𝑌)𝜑𝜑2𝑋𝑋 − (𝑋𝑋𝑋𝑋)𝜑𝜑2𝑌𝑌                      (1.9) 

𝑅𝑅(𝜉𝜉,𝑌𝑌)𝑋𝑋 = (𝛼𝛼2 − 𝛽𝛽2)(𝑔𝑔(𝑋𝑋,𝑌𝑌)𝜉𝜉 − 𝜂𝜂(𝑋𝑋)𝑌𝑌) + 2𝛼𝛼𝛼𝛼(𝑔𝑔(𝜑𝜑𝜑𝜑,𝑌𝑌)𝜉𝜉 − 𝜂𝜂(𝑋𝑋)𝜑𝜑𝜑𝜑)  

           +(𝑋𝑋𝑋𝑋)𝜑𝜑𝜑𝜑 + 𝑔𝑔(𝜑𝜑𝜑𝜑,𝑌𝑌)(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) + (𝑋𝑋𝑋𝑋)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉) − 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) (1.10) 

                                        𝑅𝑅(𝜉𝜉,𝑋𝑋  )𝜉𝜉 = (𝛼𝛼2 − 𝛽𝛽2 − 𝜉𝜉𝜉𝜉)(𝜂𝜂(𝑋𝑋)𝜉𝜉 − 𝑋𝑋)           (1.11) 

                                           2𝛼𝛼𝛼𝛼 + 𝜉𝜉𝜉𝜉 = 0                              (1.12) 

               𝑆𝑆(𝑋𝑋, 𝜉𝜉) = �(𝑛𝑛 − 1)(𝛼𝛼2 − 𝛽𝛽2) − 𝜉𝜉𝜉𝜉�𝜂𝜂(𝑋𝑋) − (𝑛𝑛 − 2)𝑋𝑋𝑋𝑋 − (𝜑𝜑𝜑𝜑)𝛼𝛼          (1.13) 

                 𝑄𝑄𝑄𝑄 = ((𝑛𝑛 − 1)(𝛼𝛼2 − 𝛽𝛽2) − 𝜉𝜉𝜉𝜉)𝜉𝜉 − (𝑛𝑛 − 2)(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) + 𝜑𝜑(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)          (1.14) 

A trans–Sasakian structure of type (𝛼𝛼,𝛽𝛽) is 𝛼𝛼–Sasakian if 𝛽𝛽 = 0 and 𝛼𝛼 is a non–
zero constant [10]. 

If 𝛼𝛼 = 1, then 𝛼𝛼–Sasakian manifold is a Sasakian manifold. 

On Lorentzian 𝛼𝛼–Sasakian Manifolds
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II.  Lorentzian  𝛼𝛼–Sasakian Manifold  
A differentiable manifold of dimension 𝑛𝑛

 
is called Lorentzian 𝛼𝛼–Sasakian 

manifold if it admits a (1, 1)–tensor field 𝜑𝜑,
 

a contravarient vector field 𝜉𝜉, a covariant 

vector field 𝜂𝜂
 

and Lorentzian metric 𝑔𝑔
 

which satisfy ([2], [5], [6], [7], [8], [12])
 

                                             𝜂𝜂(𝜉𝜉) = −1,                                (2.1) 

                                              𝜑𝜑2 = 𝐼𝐼 + 𝜂𝜂⨂𝜉𝜉                               (2.2) 

                               𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = 𝑔𝑔(𝑋𝑋,𝑌𝑌) + 𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑌𝑌)                               (2.3) 

                              𝑔𝑔(𝑋𝑋, 𝜉𝜉) = 𝜂𝜂(𝑋𝑋),   𝜑𝜑𝜑𝜑 = 0,   𝜂𝜂(𝜑𝜑𝜑𝜑) = 0                                 (2.4) 

for all 𝑋𝑋,𝑌𝑌 ∈ 𝑇𝑇𝑇𝑇.  
From (1.7) and (1.8), a Lorentzian 𝛼𝛼–Sasakian manifold 𝑀𝑀satisfying  

                                                  ∇𝑋𝑋𝜉𝜉 = −𝛼𝛼𝛼𝛼(𝑋𝑋)                               (2.5) 

                                            (∇𝑋𝑋𝜂𝜂)𝑌𝑌 = −𝛼𝛼𝛼𝛼(𝜑𝜑𝜑𝜑,𝑌𝑌)                               (2.6) 

where ∇  denotes the operator of covariant differentiation with respect to the Lorentzian 

metric 𝑔𝑔.  
A Lorentzian 𝛼𝛼–Sasakian manifold 𝑀𝑀  is said to be 𝜂𝜂–Einstien if its Ricci tensor 𝑆𝑆  

is of the form  

                                        𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝑎𝑎𝑎𝑎(𝑋𝑋,𝑌𝑌) + 𝑏𝑏𝑏𝑏(𝑋𝑋)𝜂𝜂(𝑌𝑌)                      (2.7) 

for any vector fields 𝑋𝑋,𝑌𝑌,  where 𝑎𝑎, 𝑏𝑏  are functions on 𝑀𝑀.  
Further, from equations (1.9)−(1.14) on a Lorentzian 𝛼𝛼–Sasakian manifold 𝑀𝑀  the 

following relations holds:  

𝑅𝑅(𝜉𝜉,𝑋𝑋)𝑌𝑌 = 𝛼𝛼2(𝑔𝑔(𝑋𝑋,𝑌𝑌)𝜉𝜉 + 𝜂𝜂(𝑌𝑌)𝑋𝑋)             (2.8) 

𝑅𝑅(𝑋𝑋,𝑌𝑌)𝜉𝜉 = 𝛼𝛼2(𝜂𝜂(𝑌𝑌)𝑋𝑋 + 𝜂𝜂(𝑋𝑋)𝑌𝑌)             (2.9) 

𝑅𝑅(𝜉𝜉,𝑋𝑋)𝜉𝜉 = 𝛼𝛼2(𝜂𝜂(𝑋𝑋)𝜉𝜉 + 𝑋𝑋)            (2.10) 

𝑆𝑆(𝑋𝑋, 𝜉𝜉) = (𝑛𝑛 − 1)𝛼𝛼2𝜂𝜂(𝑋𝑋)            (2.11) 

𝑄𝑄𝑄𝑄 = (𝑛𝑛 − 1)𝛼𝛼2𝜉𝜉             (2.12) 

𝑆𝑆(𝜉𝜉, 𝜉𝜉) = −(𝑛𝑛 − 1)𝛼𝛼2            (2.13) 

𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = 𝑆𝑆(𝑋𝑋,𝑌𝑌) + (𝑛𝑛 − 1)𝛼𝛼2𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑌𝑌)         (2.14) 

III.  𝜑𝜑– seudo  rojectively  lat  orentzian  𝛼𝛼– asakian anifold  

A differentiable manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 2,  satisfying the condition 

𝜑𝜑2𝑃𝑃�(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑 = 0, is called 𝜑𝜑–pseudo projectively flat Lorentzian 𝛼𝛼– Sasakian 
manifold.  

In this section we assume that Lorentzian 𝛼𝛼–Sasakian manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 2,  is 

𝜑𝜑–pseudo projectively flat.  Then  𝜑𝜑2𝑃𝑃�(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑 = 0, implies  
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                                        𝑔𝑔(𝑃𝑃�(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = 0                      (3.1) 

for any vector fields 𝑋𝑋,𝑌𝑌,𝑍𝑍,𝑊𝑊. 
By the use of (1.2), 𝜑𝜑–pseudo projectively flat means 

𝑎𝑎  ′𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = −𝑏𝑏[𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) − 𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)] +
𝑟𝑟
𝑛𝑛 �

𝑎𝑎
𝑛𝑛 − 1

+ 𝑏𝑏�  

                                  [𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) − 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)]              (3.2) 

where ′𝑅𝑅(𝑋𝑋,𝑌𝑌,𝑍𝑍,𝑊𝑊) = 𝑔𝑔(𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍,𝑊𝑊). 
Let {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛−1, 𝜉𝜉} be a local orthonormal basis of vector fields in  𝑀𝑀𝑛𝑛 . By 

using the fact that {𝜑𝜑𝑒𝑒1,𝜑𝜑𝑒𝑒2, … ,𝜑𝜑𝜑𝜑𝑛𝑛−1, 𝜉𝜉} is also a local orthonormal basis, if we put 

𝑋𝑋 = 𝑊𝑊 = 𝑒𝑒𝑖𝑖 in (3.2) and sum up with respect to , then we have  

𝑎𝑎� ′𝑅𝑅(𝜑𝜑𝑒𝑒𝑖𝑖

𝑛𝑛−1

𝑖𝑖=1

,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖) = −𝑏𝑏�[𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖) − 𝑆𝑆(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖) +
𝑟𝑟
𝑛𝑛 �

𝑎𝑎
𝑛𝑛 − 1

+ 𝑏𝑏�
𝑛𝑛−1

𝑖𝑖=1
 

                                          ∑ [𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖) − 𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖)𝑛𝑛−1
𝑖𝑖=1                       (3.3) 

It can be easily verified that ([2])
 

                                ∑ ′𝑅𝑅(𝜑𝜑𝑒𝑒𝑖𝑖𝑛𝑛−1
𝑖𝑖=1 ,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖) = 𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) + 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)

 
             

  
(3.4)

 

                                                 ∑ 𝑆𝑆(𝑛𝑛−1
𝑖𝑖=1

 
𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖) = 𝑟𝑟 − (𝑛𝑛 − 1)𝛼𝛼2                                              (3.5)

 

                                               ∑ 𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑆𝑆(𝜑𝜑𝜑𝜑,𝑛𝑛−1
𝑖𝑖=1 𝜑𝜑𝑒𝑒𝑖𝑖) = 𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)                              (3.6)

 

                                                 
∑ 𝑔𝑔(𝑛𝑛−1
𝑖𝑖=1

 
𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖) = (𝑛𝑛 − 1)             

 

                   (3.7) 
                                    

∑ 𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝑛𝑛−1
𝑖𝑖=1 𝜑𝜑𝑒𝑒𝑖𝑖) = 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)                            (3.8)

 

So by the use of the (3.4)−(3.8), the equation (3.3) takes the form

 

        
       [𝑎𝑎 + 𝑏𝑏(𝑛𝑛 − 2)]𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = �𝑟𝑟

𝑛𝑛
� 𝑎𝑎
𝑛𝑛−1

+ 𝑏𝑏� (𝑛𝑛 − 2) − 𝑎𝑎�𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)

 

          (3.9) 

Then, by making use of (4.2.3) and (4.2.14), the equation (4.3.10) takes the form

 

𝑆𝑆(𝑌𝑌,𝑍𝑍) =
1

[𝑎𝑎 + 𝑏𝑏(𝑛𝑛 − 2)] �
𝑟𝑟
𝑛𝑛
�

𝑎𝑎
𝑛𝑛 − 1

+ 𝑏𝑏� (𝑛𝑛 − 2) − 𝑎𝑎�𝑔𝑔(𝑌𝑌,𝑍𝑍) +
1

[𝑎𝑎 + 𝑏𝑏(𝑛𝑛 − 2)]

 

       
      

      [𝑟𝑟
𝑛𝑛
� 𝑎𝑎
𝑛𝑛−1

+ 𝑏𝑏� (𝑛𝑛 − 2) − 𝑎𝑎 − 𝑎𝑎𝛼𝛼2 − 𝑏𝑏(𝑛𝑛 − 1)(𝑛𝑛 − 2)𝛼𝛼2]𝜂𝜂(𝑌𝑌)𝜂𝜂(𝑍𝑍)                       (3.10) 

which shows that

 

𝑀𝑀𝑛𝑛

 

is an

 

𝜂𝜂–Einstein manifold.Hence we can state the following 
theorem:

 

Theorem 3.1: Let 𝑀𝑀𝑛𝑛

 

be an

 

𝑛𝑛–dimensional,

 

𝑛𝑛 > 2,𝜑𝜑–pseudo projectively flat Lorentzian 

𝛼𝛼–Sasakian manifold, then

  

𝑀𝑀𝑛𝑛

 

is an

 

𝜂𝜂–Einstein Manifold.

 

IV.

 

–Quasi Conformally Flat Lorentzian

 

–Sasakian Manifold

 

A differentiable manifold

 

(𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 2,  satisfying the condition

             

  𝜑𝜑2𝐶̃𝐶(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑 = 0, 

 

is called 𝜑𝜑–quasi conformally flat.

 

(Cabrerizo, Fernandez, 
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𝜑𝜑 𝛼𝛼

Notes



Fernandez and Zhen [28]).  In this section we assume that Lorentzian 𝛼𝛼–Sasakian 

manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 2,  is 𝜑𝜑–quasi conformally flat.
 

Then
 

𝜑𝜑2𝐶̃𝐶(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑 = 0 implies          

                                   𝑔𝑔�𝐶̃𝐶(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑� = 0      (4.1) 

for any vector fields   𝑋𝑋,𝑌𝑌,𝑍𝑍,𝑊𝑊 ∈ 𝜒𝜒(𝑀𝑀𝑛𝑛).  So by the use of (4.1.3), 𝜑𝜑–quasi conformally 
flat means  

𝑎𝑎′𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = −𝑏𝑏[𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) − 𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) + 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)  

−𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)] + 𝑟𝑟
𝑛𝑛
� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏� [𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) − 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)]     (4.2)  

where ′𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = 𝑔𝑔(𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑, 𝜑𝜑𝜑𝜑).  

Let  {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛−1, 𝜉𝜉}  be a local orthonormal basis of vector fields in  𝑀𝑀𝑛𝑛 .  By 

using the fact that {𝜑𝜑𝑒𝑒1,𝜑𝜑𝑒𝑒2, … ,𝜑𝜑𝜑𝜑𝑛𝑛−1, 𝜉𝜉}  is also a local orthonormal basis, if we put 

𝑋𝑋 = 𝑊𝑊 = 𝑒𝑒𝑖𝑖  in (4.2)  and sum up with respect to 𝑖𝑖 hen we have    

𝑎𝑎� ′𝑅𝑅(𝜑𝜑𝑒𝑒𝑖𝑖

𝑛𝑛−1

𝑖𝑖=1

,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖) = −𝑏𝑏�[
𝑛𝑛−1

𝑖𝑖=1

𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖) − 𝑆𝑆(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖)  

+𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑆𝑆(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖) − 𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖)] + ∑ [𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖)
 𝑛𝑛−1

𝑖𝑖=1     

                                                               −𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖)]                  (4.3) 

So by the virtue of (3.4)−(3.8), the equation (4.3) takes the form  

[𝑎𝑎 + 𝑏𝑏(𝑛𝑛 − 3)]𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = [−𝑎𝑎 − 𝑏𝑏{𝑟𝑟 − (𝑛𝑛 − 1)𝛼𝛼2} + 𝑟𝑟(𝑛𝑛−2)
𝑛𝑛

� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏�]𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)      (4.4)  

Then, by making use of (2.3) and (2.14), the equation (4.4) takes the for  

     𝑆𝑆(𝑌𝑌,𝑍𝑍) = 1
[𝑎𝑎+𝑏𝑏(𝑛𝑛−3)]

[�𝑟𝑟(𝑛𝑛−2)−𝑛𝑛(𝑛𝑛−1)
𝑛𝑛(𝑛𝑛−1)

� 𝑎𝑎 + �𝑛𝑛(𝑛𝑛−1)𝛼𝛼2+(𝑛𝑛−4)
𝑛𝑛

� 𝑏𝑏]𝑔𝑔(𝑌𝑌,𝑍𝑍) + 1
[𝑎𝑎+𝑏𝑏(𝑛𝑛−3)]

[�𝑟𝑟(𝑛𝑛−2)−𝑛𝑛(𝑛𝑛−1)2𝛼𝛼2−𝑛𝑛(𝑛𝑛−1)
𝑛𝑛(𝑛𝑛−1)

� +

𝑎𝑎 �(𝑛𝑛−4)−𝑛𝑛(𝑛𝑛−1)(𝑛𝑛−4)𝛼𝛼2

𝑛𝑛
� 𝑏𝑏]𝜂𝜂(𝑌𝑌)𝜂𝜂(𝑍𝑍)

 
                                        

(4.5) 

which shows that 𝑀𝑀𝑛𝑛
 

is  an  𝜂𝜂–Einstein manifold. Hence we can state the following 
theorem:

 

Theorem 4.1:
 

Let

 

𝑀𝑀𝑛𝑛
 

be an 𝑛𝑛–dimensional, 𝑛𝑛 > 2,𝜑𝜑–quasi conformally flat Lorentzian 

𝛼𝛼–Sasakian manifold, then 
 

𝑀𝑀𝑛𝑛
 

is an  𝜂𝜂–Einstein Manifold.
 

V.
 

𝜑𝜑 −Quasi Concircularly Flat Lorentzian
 

𝛼𝛼–Sasakian Manifold
 

A differentiable manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 2,  satisfying the condition 

𝜑𝜑2𝑉𝑉�(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑 = 0,  is called 𝜑𝜑–quasi concircularly flat Lorentzian 𝛼𝛼–Sasakian 
manifold.

 

In this section we assume that Lorentzian 𝛼𝛼–Sasakian manifold
 

(𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 2,  is 

𝜑𝜑–quasi concircularly flat. Then
 

𝜑𝜑2𝑉𝑉�(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑 = 0,  implies 
 

                                     𝑔𝑔�𝑉𝑉�(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑� = 0               (5.1) 

for any vector fields   𝑋𝑋,𝑌𝑌,𝑍𝑍,𝑊𝑊
 

∈ 𝜒𝜒(𝑀𝑀𝑛𝑛). 
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So, by the use of (1.4), 𝜑𝜑–quasi concircularly flat means 

    𝑎𝑎′𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = − 𝑟𝑟
𝑛𝑛
� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏� [𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) − 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)]    (5.2) 

where ′𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = 𝑔𝑔(𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑, 𝜑𝜑𝜑𝜑). 
Let {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛−1, 𝜉𝜉} be a local orthonormal basis of vector fields in 𝑀𝑀𝑛𝑛  by using 

the fact that {𝜑𝜑𝑒𝑒1,𝜑𝜑𝑒𝑒2, … ,𝜑𝜑𝜑𝜑𝑛𝑛−1, 𝜉𝜉} is also a local orthonormal basis, if we put                 

𝑋𝑋 = 𝑊𝑊 = 𝑒𝑒𝑖𝑖 in (5.2) and sum up with respect to 𝑖𝑖, then we have  

𝑎𝑎� ′𝑅𝑅(𝜑𝜑𝑒𝑒𝑖𝑖

𝑛𝑛−1

𝑖𝑖=1

,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖) 

         = − 𝑟𝑟
𝑛𝑛
� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏� ∑ [𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖) − 𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖)] 𝑛𝑛−1
𝑖𝑖=1

 

                                             −𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑍𝑍)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖)]                    (5.3) 

So, by virtue of (3.4)−(3.8), the equation (5.3) takes the form 

                            𝑎𝑎𝑎𝑎(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = − �𝑎𝑎 + 𝑟𝑟(𝑛𝑛−2)
𝑛𝑛

� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏�� 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)           (5.4) 

Then, by making use of (2.3) and (2.14), the equation (5.4) takes the form
 

  𝑆𝑆(𝑌𝑌,𝑍𝑍) = −�1 + 𝑟𝑟(𝑛𝑛−2)
𝑛𝑛𝑛𝑛

� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏�� 𝑔𝑔(𝑌𝑌,𝑍𝑍) – �𝑟𝑟(𝑛𝑛−2)
𝑛𝑛𝑛𝑛

� 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏�+ 1 + (𝑛𝑛 − 1)𝛼𝛼2�
 
𝜂𝜂(𝑌𝑌)𝜂𝜂(𝑍𝑍)  (5.5)

 

which shows that 𝑀𝑀𝑛𝑛
 
is an 𝜂𝜂–Einstein manifold.

 

Hence we can state the following theorem:
 

Theorem 5.1:

 

Let  𝑀𝑀𝑛𝑛
 

be an 𝑛𝑛–dimensional, 𝑛𝑛 > 2,𝜑𝜑–quasi concircularly flat Lorentzian 

𝛼𝛼–Sasakian manifold, then 𝑀𝑀𝑛𝑛
 
is an 𝜂𝜂–Einstein manifold.

 

VI.
 

𝜑𝜑–m–Projectively Flat Lorentzian
 
𝛼𝛼–Sasakian Manifold

 

A differentiable manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 3,  satisfying the condition 

𝜑𝜑2𝑊𝑊(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑 = 0 is called 𝜑𝜑–m–projectively flat Lorentzian 𝛼𝛼–Sasakian manifold
 

(Cabrerizo, Fernandez, Fernandez and Zhen [28]).
 

In this section we assume that Lorentzian 𝛼𝛼–Sasakian manifold (𝑀𝑀𝑛𝑛 ,𝑔𝑔),𝑛𝑛 > 3, is 
𝜑𝜑–𝑚𝑚–projectively flat.

 
Then 𝜑𝜑2𝑊𝑊(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑 = 0implies ∑  

                                       
𝑔𝑔(𝑊𝑊(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = 0             (6.1) 

for any vector fields   𝑋𝑋,𝑌𝑌,𝑍𝑍,𝑊𝑊
 
∈ 𝜒𝜒(𝑀𝑀𝑛𝑛).

 

So, by the use of (1.5), 𝜑𝜑–𝑚𝑚–projectively flat means 

 

𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) =
1

2(𝑛𝑛 − 1) [𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) − 𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) + 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)

 

                                       
𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) − 𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)]                (6.2) 

            
where ′𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑) = 𝑔𝑔(𝑅𝑅(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝜑𝜑𝜑𝜑, 𝜑𝜑𝜑𝜑).
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Let {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛−1, 𝜉𝜉}  be a local orthonormal basis of vector fields in 𝑀𝑀𝑛𝑛 .  By 

using the fact that {𝜑𝜑𝑒𝑒1,𝜑𝜑𝑒𝑒2, … ,𝜑𝜑𝜑𝜑𝑛𝑛−1, 𝜉𝜉}  is also a local orthonormal basis, if we put 

𝑋𝑋 = 𝑊𝑊 = 𝑒𝑒𝑖𝑖  in (6.2) and sum up with respect to 𝑖𝑖, then we have  

�′𝑅𝑅(𝜑𝜑𝑒𝑒𝑖𝑖

𝑛𝑛−1

𝑖𝑖=1

,𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖)  =
1

2(𝑛𝑛 − 1)
�[𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=1

− 𝑆𝑆(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖) +  

                        𝑔𝑔(𝜑𝜑𝜑𝜑,𝜑𝜑𝜑𝜑)𝑆𝑆(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝑒𝑒𝑖𝑖) − 𝑔𝑔(𝜑𝜑𝑒𝑒𝑖𝑖 ,𝜑𝜑𝜑𝜑)𝑆𝑆(𝜑𝜑𝜑𝜑,𝜑𝜑𝑒𝑒𝑖𝑖)]                      (6.3) 

So, by the use of the (3.4)−(3.8), the equation (6.3) takes the form 
 

𝑆𝑆(𝑌𝑌,𝑍𝑍) =
1

(𝑛𝑛 + 1)
[𝑟𝑟 − (𝑛𝑛 − 1)𝛼𝛼2 − 2(𝑛𝑛 − 1)]

 
𝑔𝑔(𝑌𝑌,𝑍𝑍) +

1
(𝑛𝑛 + 1) [𝑟𝑟 − 2(𝑛𝑛 − 1) − (𝑛𝑛 − 1)

 

                                        (𝑛𝑛 + 2)𝛼𝛼2]𝜂𝜂(𝑌𝑌)𝜂𝜂(𝑍𝑍)              (6.4) 

which shows that 𝑀𝑀𝑛𝑛
 

is an  𝜂𝜂–Einstein manifold.

 

Hence we can state the following 
theorem:

 

Theorem 6.1: Let  𝑀𝑀𝑛𝑛
 

be an  𝑛𝑛–dimensional, 𝑛𝑛 > 3,𝜑𝜑–𝑚𝑚–projectively flat Lorentzian 

𝛼𝛼–Sasakian manifold, then 𝑀𝑀𝑛𝑛
 

is an  𝜂𝜂–Einstein manifold.
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