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l. INTRODUCTION

Let (M™, g),n > 3, be a connected semi Riemannian manifold of class C* and V
be its Levi—-Civita connection. Riemannian curvature tensor R is defined by

R(X, Y)Z = VvaZ - VYVXZ - V[X’y]Z (11)

Pseudo—projective curvature tensor Pon a Riemannian manifold (M", g),n>2of
type(1, 3)is defined as follows (Prasad [20]).

P(X,Y)Z=aR(X,Y)Z+b[S(Y,2)X —S(X,2)Y] — % [n“j + b] [g(Y,2)X — g(X,Z)Y] (1.2)

where a and b are constants such that a,b # 0.
Ifa=1and b=———, then (2) takes the form

n—-1"
P(X,Y)Z =R(X,Y)Z — % [S(Y,2)X — S(X,Z)Y] = P(X,Y)Z

where P is Projective curvature tensor. Thus the Projective curvature tensor P is a
particular case of the tensor P, for this reason P is called Pseudoprojective curvature
tensor.

Quasi—conformal curvature tensor € on a Riemannian manifold (M", g), n > 2 of
type (1,3)is defined as follows (Yano and Swaki [24]).

CX,Y)Z =aR(X,Y) +b[S(Y,2)X —S(X,Z) + g(Y,2)QX — g(X,Z)QY]

manifold’, Bull Calcutta Mathematical Society, pp163—166.

—L -2+ 20| [g(v, D)X — g(x, 2)Y] (1.3)

20. PRASAD, B., (2002), ‘A pseudo projective curvature tensor on a Riemannian

where a and b are constants such that a,b # 0.
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Ifa=1andb = —ﬁ , then (3) takes the form

- 1
CONZ = RKY) =~ =5 S, 2)X = S DY + 9V, 20X ~ 9K, DY) + oy =5

gV, )X —gX,2)Y] =CX,Y)Z

where C is Conformal curvature tensor. Thus the Conformal curvature tensor C is a

particular case of the tensor C. For this reason C is calledQuasi-conformal curvature
tensor.

Quasi—concircular curvature tensor ¥ on a Riemannian manifold (M", g),n>2of
type(1, 3)is defined as follows (Prasad and Maurya[19]).

V(X,Y)Z=aR(X,Y)Z+* [n“j + Zb] [g(Y,2)X — g(X, Z)Y] (1.4)
where a and b are constants such that a,b # 0.Ifa = 1andb = —ﬁ, then from (4)

- r

V(X,Y)Z=R(X,Y)Z —m[Q(Y;Z)X -9gX, Y] =V(X,Y)Z

where V is the Concircular curvature tensor. Thus the Concircular curvature tensor Vis
a particular case of the tensor V. For this reason V is called Quasi—concircular curvature
tensor.

m-projective curvature tensor W on a Riemannian manifold (M", g),n > 3 of type (1, 3)
is defined as follows (Pokhariyal and Mishra [18]).

1
2(n—1)
where Q is the Ricci operator defined by S(X,Y) = g(QX,Y), S is the Ricci tensor,
r = trace(S) is the scalar curvature and X,Y,Z € y(M). y(M) is being Lie algebra of

vector fields of M.
In [21], Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension. For such a manifold, the

W(X,Y)Z = R(X,Y)Z — [S(Y,2)X —S(X,2)Y + g(Y,2)QX — g(X,Z)QY] (1.5

sectional curvature of plane sections containing ¢ is a constant, say c. He showed that

they can be divided into three classes:

(1) Homogeneous normal contact Riemannian manifolds with ¢ > 0,

(2) Global Riemannian products of a line or a circle with a Kaehler manifold of constant
holomorphic sectional curvature if ¢ = 0,

(3) A warped product space R X Cif ¢ < 0.It is known that the manifolds of class (1)
are characterized by admitting a Sasakian structure, (2) Kenmotsu [11]characterized
the differential geometric properties of the manifolds of class (3); the structure so
obtained is now known as Kenmotsu structure.

In general, these structures are not Sasakian[l4]. In the Gray-Hervella
classification of almost Hermitian manifolds[8], there appears a class, W, of Hermitian
manifolds which are closely related to locally conformal Kaehler manifolds[10]. An
almost contact metric structure on a manifold M is called a trans—Sasakian structure[13]
if the product manifold M X R belongs to the class W,. The class Cs @ Cs ([13], [14])
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coincides with the class of the trans—Sasakian structures of the type (a,f).In fact, in

[13], local nature of the two subclasses, namely, Cs and Cg structures, of trans—Sasakian
structures are characterized completely.

Also, in [16], Ozgiir and De studied quasi—conformally flat and quasi—conformally
semisymmetric Kenmotsu manifolds. Then, in [25], Yildiz and Murathan studied
Lorentzian a-Sasakain manifolds.

We note that trans—Sasakian structures of the type(0,0), (0,8)and (a,0)are
cosymplectic [2], B-Kenmotsu[11] and a-Sasakain [11] respectively. In [22], it is proved
that trans—Sasakian structures are generalised quasi—Sasakian.Thus, trans—Sasakian
structures also provide a large class of generalized quasi—Sasakian structures.

An almost contact metric structure (¢,¢&,1m,9) on M is calledtrans—Sasakian
structure [13], if (M X R, ], G) belongs to the class W, [8], where J is the almost complex
structure on M X R defined by

](X,fd/dt) = (<pX — f&,n(X) d/dt)

for all vector fields X on M and a smooth function f on M X Rand G is the product
metric on M X R. This may be expressed by the condition [3]

(Vx@)Y = a(g(X, ) —n(")X) + B(g(pX,V)E — (Ve (X)) (1.6)

For some smooth functions ¢ and f on M and we say that the trans—Sasakian
structure is of type (a, ).
From (6) it follows that

Vyxé = —ap(X) + B(X —n(X)E) (1.7)
(Vxn)Y = —ag(eX,Y) + Bg(@X, oY) (1.8)

Trans—Sasakian manifolds have been studied by De and Tripathi[7] and they
obtained the following results:

R(X, V)¢ = (a® = BH(M)X —n(X)Y) + 2ap(n(V)eXn(X)eY) + Ya)pX
—(Xa)eY + (YB)p*X — (XB)p*Y (1.9)

RE VX = (a® = B (gX,1)§ —n(X)Y) + 2ap(g(pX,Y)§ —n(X)eY)

+Xa)oY + g(@X,Y)(grada) + (XB)(Y —n(¥)E) — g(@X, pY)(gradp) (1.10)
R(§,X)§ = (a = B> = /) (n(X)§ = X) (1.11)

20+ &ax =0 (1.12)

S(X,8) = ((n— D(a? = B2) = EB)nX) — (n — 2)XB — (pX)a (1.13)
Q¢ = ((n—1)(a* = p*) = ¢B)¢ — (n — 2)(gradp) + p(grada) (1.14)

A trans—Sasakian structure of type (a,f) is a-Sasakian if § = 0 and «a is a non—
zero constant [10].

If ¢ = 1, then a-Sasakian manifold is a Sasakian manifold.

© 2020 Global Journals
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[I.  LORENTZIAN a-SASAKIAN MANIFOLD

A differentiable manifold of dimension n is called Lorentzian a-Sasakian
manifold if it admits a (1,1)-tensor field ¢, a contravarient vector field &, a covariant

vector field n and Lorentzian metric g which satisfy ([2], [5], [6], [7], [8], [12])

n) =-1,
©* =1+1n®¢&
9(@X,0Y) = g(X,Y) + n(Xn(Y)
9X,8) =nX), ¢ =0, n(epX) =0
for all X,Y € TM.

From (1.7) and (1.8), a Lorentzian a-Sasakian manifold Msatisfying
Vx§ = —ap(X)
(VxmY = —ag(pX,Y)

(2.5)
(2.6)

where V denotes the operator of covariant differentiation with respect to the Lorentzian

metric g.

A Lorentzian a-Sasakian manifold M is said to be n-Einstien if its Ricci tensor S

is of the form
SX,Y) =agX,Y) + bn(X)n(Y)

for any vector fields X,Y, where a, b are functions on M.

2.7)

Further, from equations (1.9)—(1.14) on a Lorentzian a-Sasakian manifold M the

following relations holds:

R, X)Y = a*(g(X,Y)¢ +n(¥)X)
RX, V)¢ = a*(n(V)X + n(X)Y)
R(§,X)¢ = a*(n(X)¢ + X)
S(X, &) = (n— Da’n(X)
Q¢ = (n— Da*¢
5,8 = —-(n—1Da?
S(@X,9Y) = S(X,Y) + (n — Da*n(X)n(Y)

[1I.  @-PSEuDO PROJECTIVELY FLAT LORENTZIAN a- SASAKIAN MANIFOLD

A differentiable manifold (M",g),n > 2, satisfying

the

condition

©’P(pX,pY)pZ =0, is called p-pseudo projectively flat Lorentzian a- Sasakian

manifold.

In this section we assume that Lorentzian a-Sasakian manifold (M", g),n > 2,is

@-pseudo projectively flat. Then @?P(@X, pY)@Z = 0, implies

© 2020 Global Journals
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g(P(@X, pY)pZ, W) = 0 (3.1)
for any vector fields X,Y,Z, W.
By the use of (1.2), ¢-pseudo projectively flat means

' r a
a R(eX,¢Y,9Z,oW) = —=b[S(Y, 9Z)g(pX, pW) — S(9X, 9Z) g (Y, pW)] + [m + b]

[9(oY, 92)g(pX, W) — g(@X, 9Z) g (@Y, pW)] (3.2)

where 'R(X,Y,Z, W) = g(R(X,Y)Z,W).
Let {eq,e3,...,e,_1,€} be a local orthonormal basis of vector fields in M". By

Notes

using the fact that {@eq, pe,, ..., pe,_1,&} is also a local orthonormal basis, if we put

(e}
N
P
[}
@\l
o]
]
>

X =W =e¢; in (3.2) and sum up with respect to, then we have

n—1 n—1
, r a
a ) 'Rlpe, oY, 0Z pe) =—b ) [S(oY,9Z)g(pe;, pe) — S(pe, pZ)g(9Y, pe) +— [nTl + b]
i=1 i=1

i[9 (0¥, 0Z)g(pe, pe) — g(pe, pZ2)g (@Y, pe)  (3:3)
It can be easily verified that ([2])

[ssue II Version I

L'R(pe;, oY, 0Z, pe) = S(pY,9Z) + g(@Y, ¢Z)

(34)

54

YIS e pe) =7 — (n— 1)a? (3.5) -

=1 9(pe, 9Z)S (0, pe) = S(oY, 92) (3.6) =

P g( penpe) =(n—1) 3.7) =

i 9(pe, 9Z)g(pY, per) = (oY, ¢Z) (38) =

So by the use of the (3.4)—(3.8), the equation (3.3) takes the form 2

[a +b(n~D1S(pY,02) = [ (5 +b) (0~ 2) — a] g oY, 02) (3.9) =

Then, by making use of (4.2.3) and (4.2.14), the equation (4.3.10) takes the form o

S(Y,2) = ! Lt b) (-2 Y,2) + —————— .

, )_[a+b(n—2)][z(n—1 (n=2) a]g(, ) [a+ b(n—2)] kS

(55 +b) (= 2) —a—aa® — b(n— D(n — 2)a*In¥)n(2) (310) 2

which shows that M™ is an n-Einstein manifold.Hence we can state the following :g

theorem: e
Theorem 3.1: Let M" be an n-dimensional, n > 2, ¢-pseudo projectively flat Lorentzian

a-Sasakian manifold, then M" is an n-Einstein Manifold.
|

IV. @—-QuAsi CONFORMALLY FLAT LORENTZIAN a—SASAKIAN MANIFOLD

A differentiable manifold (M™, g),n > 2, satisfying the condition
©*C(pX, pY)pZ =0, is called ¢@-quasi conformally flat. (Cabrerizo, Fernandez,

© 2020 Global Journals
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Fernandez and Zhen [28]). In this section we assume that Lorentzian a-Sasakian
manifold (M™, g),n > 2,is ¢-quasi conformally flat. Then @%C(@X, Y)9pZ = 0 implies

9(C(oX, pY)Z, W) =0 (4.1)

for any vector fields X,Y,Z,W € y(M™). So by the use of (4.1.3), ¢-quasi conformally
flat means

a R(pX, @Y, Z, oW) = —b[S(@Y, pZ) g(@X, pW) — S(@X, 9Z) g (oY, pW) + g(@Y, 9Z)S(pX, pW)
—g(0X, 9Z)S(pY, gW)] + = |-= + 2b| [g (0¥, p2) g (9 X, pW) — g (9 X, 9Z) g (@Y, pW)] (4.2)

where 'R(@X, Y, pZ, W) = g(R(pX, Y)pZ, W).

Let {eq,e3,...,e,_1,€} be a local orthonormal basis of vector fields in M". By
using the fact that {@eq,pe,, ..., pe,_1,&} is also a local orthonormal basis, if we put
X =W =e¢; in (4.2) and sum up with respect to i, then we have

n—1 n—1

a ) 'R(pe;, oY, 0Z,pe;) = —b ) [S(pY,0Z)g(pe;, pe;) — S(pe;, Z)g(pY, pe;)
i=1 i=1

+9(Y, pZ)S(pe,, pe)) — g(we, pZ)S(Y, pe)] + L5 g (Y, pZ) g (pe;, pe,)
—9(pe;, pZ)g (Y, pe)] (4.3)
So by the virtue of (3.4)—(3.8), the equation (4.3) takes the form
[a+b(n—3)]S(eY,pZ) = [-a—b{r — (n— Da?} + r(nn—_z){naj + Zb}]g(goY, ©Z) (4.4)
Then, by making use of (2.3) and (2.14), the equation (4.4) takes the for

_ 1 r(n—=2)-n(n-1) n(n—1)a’+(n—4) 1 r(n—2)-n(n—-1)2a%-n(n-1)
S(Y' Z) - l[a+b(n—-3)] [{ nn-1) }a + { n }b]g(Y, Z) T l[a+b(n—-3)] [{ n(n-1) } T
(n—)-n(n-1)n-4)a?
o {FREREERE b (V)n (2) (4.5)

which shows that M™is an n-Einstein manifold. Hence we can state the following
theorem:

Theorem 4.1. Let M™ be an n-dimensional, n > 2, ¢-quasi conformally flat Lorentzian
a-Sasakian manifold, then M" is an n-Einstein Manifold.

V. @ —QuAsl CONCIRCULARLY FLAT LORENTZIAN a-SASAKIAN MANIFOLD

A differentiable manifold (M™, g),n > 2, satisfying the condition

©*V(pX,9Y)pZ =0, is called ¢-quasi concircularly flat Lorentzian a-Sasakian
manifold.

In this section we assume that Lorentzian a-Sasakian manifold (M", g),n > 2,is
@-quasi concircularly flat. Then @2V (X, Y)@Z = 0, implies

9V (X, oY) pZ, W) = 0 (5.1)
for any vector fields X,Y,Z,W € y(M™).
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So, by the use of (1.4), ¢-quasi concircularly flat means
a R(pX, Y, 0Z,oW) = == |-+ 2b| [g(pY, 9Z) g (X, pW) — g (X, pZ) g (@Y, oW)] (5.2)

where 'R(@X, Y, 0Z, W) = g(R(pX, pY)@Z, oW).

Let {eq, €y, ...,€,-1,&} be a local orthonormal basis of vector fields in M" by using
the fact that {pe;,@e,,...,pe,_1,} is also a local orthonormal basis, if we put
X =W =¢; in (5.2) and sum up with respect to i, then we have

n—1

az 'R(pe;, @Y, 9Z, pe;)
i=1

= —Z|-% + 2| 215 g (oY, 02) g (e, pe) — g(wei 9Z)g (oY, pey)]

—9(pei, pZ)g(9Y, pe)] (5.3)
So, by virtue of (3.4)—(3.8), the equation (5.3) takes the form

(n-2)
as(eY, 02) = - |a + 2+ 2b}| g (oY, 02) (5.4)
Then, by making use of (2.3) and (2.14), the equation (5.4) takes the form

r(n-2)

S(Y,Z) = — [1 +T{nafl+ Zb}]g(y,z) _ [M

na

{n“Tl + Zb} +1+(n— 1)a2] n(¥)n(z) (5.5)

which shows that M" is an n-Einstein manifold.
Hence we can state the following theorem:

Theorem 5.1: Let M™ be an n-dimensional, n > 2, ¢-quasi concircularly flat Lorentzian
a-Sasakian manifold, then M™" is an n-Einstein manifold.

VI.  @-m—-PROJECTIVELY FLAT LORENTZIAN a@-SASAKIAN MANIFOLD

A differentiable manifold (M™, g),n > 3, satisfying the condition
©’W(@X,pY)pZ = 0is called @-m—projectively flat Lorentzian a-Sasakian manifold
(Cabrerizo, Fernandez, Fernandez and Zhen [28]).

In this section we assume that Lorentzian a-Sasakian manifold (M", g),n > 3,is
@-m—projectively flat. Then @?W (pX, Y)@Z = Oimplies Y,

gW (X, 9Y)Z,eW) = 0 (6.1)

for any vector fields X,Y,Z,W € y(M").

So, by the use of (1.5), ¢- m—projectively flat means

R(@X, Y, @Z, W) =

1
- (@Y, 9Z)g(@X, pW) — S(@X, pZ) g(pY, W) + g(9Y, 9Z)

S(pX, W) — g(@X, 9Z)S(pY, pW)] (6.2)
where 'R(@X, @Y, 9Z, W) = g(R(@X, pY)Z, oW).
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Let {e1,e;,...,e,_1,€} be a local orthonormal basis of vector fields in M™. By
using the fact that {peq,pe,, ..., pe,_1,&} is also a local orthonormal basis, if we put
X =W =e¢; in (6.2) and sum up with respect to i, then we have

n—1 n—1

, 1
Z R(pe;, oY, 0Z, pe;) = WZ[S(W, 0Z)g(pe;, pe;) — S(pe;, pZ)g(@Y, pe;) +
i=1

i=1
9(@Y,9Z)S(pe;, pe;) — g(pe;, pZ)S(@Y, pe;)] (6.3)

So, by the use of the (3.4)—(3.8), the equation (6.3) takes the form

S(Y,z) = [r—-(m—1Da?-2(n-1)]g,2) + [r—2(n—1)—(n—1)

n+1) (n+1)

(n + 2)a’In(¥)n(2) (6.4)

which shows that M™ is an n-Einstein manifold. Hence we can state the following
theorem:
Theorem 6.1. Let M"™ be an n-dimensional, n > 3, p- m—projectively flat Lorentzian

a-Sasakian manifold, then M™" is an n-Einstein manifold.
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